有向图最小树形图
数据结构 第7章 图3-最小生成树

3
5
4
2
6
lowcost[i] 0 0 0 0
(g) u={1,3,6,4,2,5} w={ }
prim方 法构造 最小生 成树的 过程
克鲁斯卡尔(kruskal)算法 克鲁斯卡尔(kruskal)算法
1. 克鲁斯卡尔算法基本思想 . 克鲁斯卡尔算法的基本思想是:将图中所有边按权值递 增顺序排列,依次选定取权值较小的边,但要求后面选 取的边不能与前面选取的边构成回路,若构成回路,则 放弃该条边,再去选后面权值较大的边,n个顶点的图中, 选够n-1条边即可。 例如,对上图中无向网,用克鲁斯卡尔算法求最小生 成树的过程见下图。 4
1 13 17 3 9 5 7
7 5 6 12 18 10
2 24 4
1 13 9 5
2 7 6 5 10 4
3
普里姆算法
下面仅讨论无向网的最小生成树问题。 普里姆方法的思想是:在图中任取一个顶点K 作为开始点,令U={k},W=V-U,其中V为图 中所有顶点集,然后找一个顶点在U中,另一 个顶点在W中的边中最短的一条,找到后,将 该边作为最小生成树的树边保存起来,并将 该边顶点全部加入U集合中,并从W中删去这 些顶点,然后重新调整U中顶点到W中顶点的 距离, 使之保持最小,再重复此过程,直到W 为空集止。求解过程参见下页图。
注:亦可由邻接矩阵或邻接表直接画出生成森林
下面选用邻接表方式来求深度优先搜索生成森林
先写出邻接表(或邻接矩阵): 先写出邻接表(或邻接矩阵): 0 A 1 2 1 2 3 4 5 6 7 8 9 10 11 12 B C D E F G H I J K L M 0 0 ^ 4 ^ 3 ^ 0 ^ 7 6 6 ^ 11 6 0 1 12 7 9 9 ^ ^ 8 10 ^ 12 ^
最小树与最小树形图(数学建模资料)

考虑弧(i,j)时,只需判断first(i)与 first(j)是否相 等,相等则端点属于同一单向链表;否则合并链表. 因此所有这些判断所需要的计算时间为O(m).
合并时, 我们总是把节点数较多的链表L’ 放在前面, 而把节点 数较少的链表L追加在后面.
16
Kruskal 算法的计算复杂性
合并后, 对于size和last的修改非常容易,可以在常数时间内完成; 但对 first的 修改必须对链表L中的每个元素(节点)进行, 复杂度为 O(h),h=size(L) . 这种合并最多进行(n-1)次, 对 first 进行修改的总的复杂度为 O(n log n) 记链表L追加在链表L’(size( L) h, size( L ) h , h h ) 后面而合并 成一个链表时的计算时间(操作次数)不超过 p1h(这里p1为常数)
R1
C13 C12
C24
R3
R2
R4
一般地,给定差异信息cij,如何确定存贮哪些行之间的差异元素, 使得存 贮空间尽可能少呢?这一问题可以用最小树问题来描述: 我们把矩阵每行 作为一个节点构成一个完全图, 第i个节点对应于矩阵第i行,并令弧(i,j) 上的权为cij. 对于存贮问题, 实际上只需要存贮一行的元素, 以及由该完 全图的一棵支撑树所对应的差异元素. 最小树就对应于最优的存贮方案.
O(m log n mn) O(mn)
O(n3 )
15
Kruskal 算法的计算复杂性改进
算法实现改进:利用三个数组
size - 用来记录每个链表中所含节点的个数(链表规模); last - 用来记录每个链表中最后的节点编号 first - 用来记录每个节点所在链表的第一个节点. 如果链表L={1,2,4,5} ,则size(L)=|L|=4, last(L)=5, first(1)= first(2)= first(4) = first(5)=1.
最小树形图——朱刘算法学习笔记

最⼩树形图——朱刘算法学习笔记问题描述给定⼀张⽆向图和⼀个根r,求出⼀个n-1条边的⼀张⼦图,使得从r出发可以到达任意⼀个点,同时使得所有选择的边权之和最⼩。
根据最⼩树形图的定义,这张图的除了根的每⼀个点都必须有且仅有⼀个⼊度。
那么我们可以贪⼼⼀点,对于除了根的所有点都找出⼀条连向它的边且边权最⼩,称作这个点的代表边,并把这些边权加⼊答案中。
然后我们找出了⼀张图,这张图中每个点都只有⼀个⼊度。
如果不算根的话,它应当是⼀个外向基环树森林。
然后我们找到所有的环,把它们缩成⼀个点。
再去扫描不在环内的边,假设有u->v,那么这条边的边权要减掉v的代表边权。
因为v是⼀个环,如果继续连u->v的边的话,相当于是把原来v的⽗亲断开,再连上u。
于是我们就完成了缩点,⼀直做下去,知道图中没有环。
⽆解就是图中除了根有点没有⼊度。
代码细节1、初始化,我们令id[]表⽰这个点在那个环⾥,top[]表⽰环顶(找环时⽤),mi[]表⽰代表边的边权,cnt表⽰环数。
2、找环的时候,因为是⼀颗外向基环树,所以我们对于每个点记录father,这样father就变成了内向基环树,这样可以⽅便找环。
3、没有和其他点组成环的让它⾃⼰成为⼀个环。
4、每做完⼀轮之后要更新⼀下点数和根。
代码#include<iostream>#include<cstdio>#define N 109#define M 10009#define inf 2e9using namespace std;int tot,top[N],id[N],cnt,mi[N],n,m,fa[N],r;long long ans;inline int rd(){int x=0;char c=getchar();bool f=0;while(!isdigit(c)){if(c=='-')f=1;c=getchar();}while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}return f?-x:x;}struct edge{int from,to,l;}e[M];inline void add(int u,int v,int l){e[++tot].to=v;e[tot].l=l;e[tot].from=u;}inline bool solve(){while(1){for(int i=1;i<=n;++i)id[i]=top[i]=0,mi[i]=inf;for(int i=1;i<=m;++i)if(e[i].to!=e[i].from&&e[i].l<mi[e[i].to])fa[e[i].to]=e[i].from,mi[e[i].to]=e[i].l;int u=0;mi[r]=0;for(int i=1;i<=n;++i){if(mi[i]==inf)return0;ans+=mi[i];for(u=i;u!=r&&top[u]!=i&&!id[u];u=fa[u])top[u]=i;if(u!=r&&!id[u]){id[u]=++cnt;for(int v=fa[u];v!=u;v=fa[v])id[v]=cnt;}}if(!cnt)return1;for(int i=1;i<=n;++i)if(!id[i])id[i]=++cnt;for(int i=1;i<=m;++i){int num=mi[e[i].to];e[i].from=id[e[i].from];e[i].to=id[e[i].to];if(e[i].from!=e[i].to)e[i].l-=num;}n=cnt;r=id[r];cnt=0;}}int main(){n=rd();m=rd();r=rd();int u,v,w;for(int i=1;i<=m;++i){u=rd();v=rd();w=rd();add(u,v,w); }if(solve())cout<<ans;else puts("-1");return0;}。
最小生成树和最短路径 -回复

最小生成树和最短路径-回复什么是最小生成树和最短路径?如何确定它们?这两个概念通常在计算机科学中被广泛应用于解决图论中的相关问题。
在这篇文章中,我们将一步一步地回答这些问题。
首先,让我们来了解最小生成树是什么。
在图论中,最小生成树是一个连通无向图的生成树,其所有边的权重之和最小,并且包含该图的所有顶点。
生成树是一种树状结构,它是由图中所有的顶点以及它们之间的一些边组成,并且这些边必须满足以下条件:它们连接图中的不同顶点,并且不形成环。
为了更好地理解这个定义,让我们通过一个简单的例子来说明最小生成树的概念。
假设我们有一个城市网络,城市之间的路径可以用边来表示,边上的权重表示两个城市之间的距离。
现在我们的目标是建设一条最小的路径,连接这些城市,使得整个网络的总距离最小。
这条路径就是最小生成树。
那么如何确定最小生成树呢?在解决这个问题时,我们可以使用一些经典的算法,其中最著名的是普里姆算法和克鲁斯卡尔算法。
普里姆算法是一种贪心算法,在每一步中选择一个顶点并将其加入最小生成树中,然后选择一个连通该顶点的边权重最小的顶点,将其也加入最小生成树中。
这个过程会一直重复,直到所有的顶点都被添加到最小生成树中。
克鲁斯卡尔算法也是一种贪心算法,它首先将所有的边按权重进行排序,然后从最小权重的边开始,依次将边添加到最小生成树中,直到所有的顶点都被连接起来。
在添加每一条边时,需要判断是否会形成环,如果会形成环,则不选择该边。
当然,最小生成树不止有普里姆算法和克鲁斯卡尔算法这两种求解方法,还有其他一些算法,例如克鲁斯卡尔算法的变体Prim-Dijkstra算法和Boruvka算法等等。
每种算法都有其自身的特点和适用场景,根据具体的问题需求选择合适的算法进行求解。
接下来,让我们来了解最短路径是什么。
在一个加权有向图中,最短路径是指两个顶点之间的路径,其边的权重之和最小。
最短路径问题在计算机科学中有许多应用,例如导航系统、网络路由以及大规模数据处理等领域。
最小树与最小树形图(数学建模)讲解

最小树与最小树形图(数学建模)讲解一、最小树的定义及性质1. 定义:最小树,又称最小树,是指在给定的带权无向图中,包含图中所有顶点的一个树形结构,且树中所有边的权值之和最小。
2. 性质:(1)最小树中不存在回路;(2)对于最小树中的任意两个顶点,它们之间有且仅有一条路径;(3)最小树中边的数量等于顶点数量减一;(4)在最小树中添加任意一条边,都会形成一条回路;(5)最小树不唯一,但权值之和相同。
二、求解最小树的方法1. Prim算法Prim算法是一种贪心算法,其基本思想是从图中的一个顶点开始,逐步添加边和顶点,直到形成最小树。
具体步骤如下:(1)初始化:选择一个顶点作为最小树的起点,将其加入最小树集合;(2)迭代:在最小树集合和非最小树集合之间,寻找一条权值最小的边,将其加入最小树集合;(3)重复步骤2,直到所有顶点都加入最小树集合。
2. Kruskal算法Kruskal算法同样是一种贪心算法,其基本思想是将图中的所有边按权值从小到大排序,然后依次选择权值最小的边,判断是否形成回路,若不形成回路,则将其加入最小树集合。
具体步骤如下:(1)初始化:将所有顶点视为独立的树;(2)按权值从小到大排序所有边;(3)迭代:选择权值最小的边,判断其是否形成回路,若不形成回路,则将其加入最小树集合;(4)重复步骤3,直到所有顶点都在同一棵树中。
三、最小树形图的定义及求解方法1. 定义:最小树形图,又称最优树形图,是指在给定的有向图中,找到一个包含所有顶点的树形结构,使得树中所有边的权值之和最小。
2. 求解方法:朱刘算法(Edmonds' Algorithm)朱刘算法是一种用于求解最小树形图的算法,其基本思想是通过寻找图中的最小权值环,进行收缩和扩展操作,最终得到最小树形图。
具体步骤如下:(1)寻找最小权值环;(2)对最小权值环进行收缩操作,将环中的顶点合并为一个新顶点;(3)在新图中寻找最小树形图;(4)将新图中的最小树形图扩展回原图,得到原图的最小树形图。
图的常用算法——最小生成树

TE= {(V1,V4)5,(V4,V2)3 ,(V4,V6)7,
(V6,V3)2 ,(V3,V5)6 } LW= {(V4,V7)15
9
第六次 U={ V1,V4,V2 ,V6,V3 ,V5,V7 } TE= {(V1,V4)5,(V4,V2)3 ,(V4,V6)7, (V6,V3)2 ,(V3,V5)6},(V4,V7)15 } LW= { }
3
5
7
20
所以最小生成树由GE数组中的1,2,3,5,7 边组成。 2012-1-10
2012-1-10
10
2012-1-10
11
(4)算法如下: Procedure Prim(GA,CT); begin for I:=1 to n-1 do { 给CT赋初值,对应第0次的LW值 } [ CT[I].from :=1 ; ct[I].end: =I+1 ; ct[I].w:=GA[1, i+1 ]; for k:=1 to n-1 do { 进行n-1次循环,求出最小生成树的第K条边 } ①[ min:=maxint ; m:=k ; for j:=k to n-1 do if ct[j].w < min then min:=ct[j].w ; m:=j; ] ② if m<> k then ct[k] 与ct[m] 的交换 { 将最短边调到第K单元 }
1. 从图“G”的选取一个顶点放到“G’” 中,因只有一个顶点,因此该图是连通 的; 2. 以后每加入一个顶点,都要加入以该点 为顶点与已连通的顶点之中的一个顶点 为端点的一条边,使其既连通而不产生 回路,进行n-1次后,就产生G’,在G’ 中有n个顶点,n-1条边且不产生回路。
二、图的最小生成树
《图论最小生成树》课件

在计算机科学中,图论最小生成树是一种常见的算法,用于在给定的加权图 中找到一棵包含所有顶点的最小权重树。
什么是图论最小生成树
1 定义
图论最小生成树是指在一个图中,找到一棵 包含所有顶点的且边的权重之和最小的树。
2 应用
最小生成树常用于网络设计、链路优Байду номын сангаас、行 程规划等问题。
如何生成最小生成树
1
Kruskal算法
2
按照边权重递增的顺序选择边,直到最
小生成树中包含所有顶点。
3
Prim算法
从一个顶点开始,逐步扩展最小生成树, 直到包含所有顶点。
其他算法
除了Prim和Kruskal算法,还有其他一些 生成最小生成树的算法,如Boruvka算法 和BFS算法。
最小生成树与带权图
最小生成树算法通常用于带权图,这种图中的边带有权重,代表顶点之间的 关系强度或代价。
应用实例
网络设计
在计算机网络中,最小生成树可用于确定网络拓扑,优化链路和路由。
城市规划
通过最小生成树算法,可以确定城市道路的规划和建设顺序。
行程规划
最小生成树可在旅行规划中,帮助确定最短路径和最优路线。
总结和提高建议
1 重要性
最小生成树在图论和算法设计中扮演着重要的角色。
2 优化算法
不同的最小生成树算法在效率和应用场景上有所不同,需要根据具体情况选择合适的算 法。
朱刘算法(最小树形图)

图论是ACM竞赛中比较重要的组成部分,其模型广泛存在于现实生活之中。
因其表述形象生动,思维方式抽象而不离具体,因此深受各类喜欢使劲YY的Acmer的喜爱。
这篇文章引述图论中有关有向图最小生成树的部分,具体介绍朱刘算法的求解思路,并结合一系列coding技巧,实现最小树型图O(VE)的算法,并在最后提供了该算法的模版,以供参考。
关于最小生成树的概念,想必已然家喻户晓。
给定一个连通图,要求得到一个包含所有顶点的树(原图的子图),使之所构成的边权值之和最小。
在无向图中,由于边的无向性质,所以求解变得十分容易,使用经典的kruskal与prim算法已经足够解决这类问题。
而在有向图中,则定义要稍微加上一点约束,即以根为起点,沿给定有向边,可以访问到所有的点,并使所构成的边权值之和最小,于是问题开始变得不一样了,我们称之为最小树型图问题。
该问题是由朱永津与刘振宏在上个世纪60年代解决的,值得一提的是,这2个人现在仍然健在,更另人敬佩的是,朱永津几乎可以说是一位盲人。
解决最小树型图的算法后来被称作朱刘算法,也是当之无愧的。
首先我们来阐述下算法的流程:算法一开始先判断从固定根开始是否可达所有原图中的点,若不可,则一定不存在最小树形图。
这一步是一个很随便的搜索,写多搓都行,不加废话。
第二步,遍历所有的边,从中找出除根结点外各点的最小入边,累加权值,构成新图。
接着判断该图是否存在环。
若不存在,则该图便是所求最小树型图,当前权为最小权。
否则对环缩点,然后回到第二步继续判断。
这里存在一系列细节上的实现问题,以确保能够达到VE的复杂度。
首先是查环,对于新图来说只有n-1条入边,对于各条入边,其指向的顶点是唯一的,于是我们可以在边表中添加from,表示该边的出发点,并考虑到如果存在环,则对环上所有边反向,环是显然同构的,于是最多作V次dfs就能在新图中找到所有的环,并能在递归返回时对顶点重标号进行缩点,此步的重标号可以用hash数组映射。