暨南大学601高等数学2020到2010十一套考研真题
暨南大学601高等数学2010--2014,2017,2019--2020年考研真题试卷

3.若 y5 2 y x 3x7 0 ,则 dy |x0 __________________________.
4.
lim(
n
n
1 2
1
2 n2 2
...
n ______.
5.以函数 y C2 作为通解的微分方程是_______________________. x C1
____________
(A) 充要条件 (B) 充分不必要条件 (C) 必要不充分条件 (D) 既不充分也不必要
4. 若级数 (an bn ) 收敛,那么说法正确的是___________
n1
(A) an 和 bn 中至少有一个收敛 (B) an 和 bn 有相同的敛散性
n1
n1
n1
n1
(C) an 和 bn 都收敛
D
6.求 4 ln(1 tan x)dx . 0
dx
7. 判断积分 0
(1 x)(1 x2 ) 的收敛,如果收敛,求其值.
8. 求一阶线性微分方程 dy 5y x 的通解. 并求满足初始条件 y(0) 0 的特解. dx
9.求在平面 x y z 1与柱面 x2 y2 1的交线上到 XOY 面的距离最远的点. 345
考试科目:高等数学B
共 4 页,第 3 页
4、证明题 (本题共2小题,每小题5分,共10分)
1. 设函数 f (x) 在 (,) 上可导,证明:若 f ' (x) f (x) 没有实数解,那么曲线
y f (x) 与 x 轴最多只能有一个交点.
df
1 ( dx
x)
|x3
___________
(A) 1 3
(B) 3
(C) 1
西方经济学(暨南大学)2010考研真题

2010 年招收攻读硕士学位研究生入学考试试题考试科目名称:803 西方经济学考生注意:所有答案必须写在答题纸(卷)上,写在本试题上一律不给分。
一、简答题(共 6 题,每题 10 分,共 60 分)1.列举影响财政政策挤出效应的因素,并解释这些因素如何影响挤出效应。
2.画图简要说明完全竞争厂商短期均衡的形成和条件。
3.简述2009 年诺贝尔经济学奖获得者威廉姆森的主要理论贡献。
4.要素使用原则与利润最大化原则有何联系?5.即使经济是完全竞争的,当存在公共物品时,为什么也不可能达到帕累托最优状态?6.假定经济起初处于充分就业状态,现在政府要改变总需求构成,增加私人投资而减少消费支出,但不改变总需求水平,应当采取一种什么样的混合政策?二、计算题(共 2 题,第 7 小题 16 分,第 8 小题 14 分,共 30 分)7.假设一个垄断厂商面临的需求曲线为P=10-3Q,成本函数为TC=Q2+2Q。
(1)求厂商实现利润最大化时的产量、价格和利润;(2)如果政府试图对该垄断厂商采取限价措施迫使其达到完全竞争行业所能达到的产量水平,则限价应为多少?(3)如果政府对该垄断厂商征收一笔固定的调节税,以便取得该厂商所获得的超额利润,那么这笔固定税的总额应是多少?(4)以上两种方法对消费者会产生什么影响?8.假定某经济存在以下关系:消费函数C=1400+0.8Y d,投资函数I=200-50r,税收T=0.25Y,政府购买支出G=200,名义货币供给M=900,价格水平P=1,货币需求函数L=0.4Y-100r。
求:(1)总需求函数;均衡国民收入与利率;(2)当总供给函数为Y=3350+400P 时,总供给与总需求均衡时的国民收入和价格水平;(3)假设该经济的充分就业收入为3800,如果用扩张性的财政政策实现充分就业,政府购买支出应增加多少?此时利率将变动到多少?。
2010考研数一真题及解析

2010考研数一真题及解析考研啊,那可真是一场“硬仗”!就说 2010 年考研数一的真题,那难度,真是让不少同学抓耳挠腮。
记得我当年考研的时候,有个同学叫小李,他为了准备数学一,那可是下了苦功夫。
每天天不亮就起床,抱着一堆复习资料去图书馆占座。
到了晚上,图书馆闭馆了他还舍不得走,非得在路灯下再看一会儿书。
咱们先来说说 2010 年考研数一真题里的选择题。
这部分题目考查的知识点那叫一个细,像函数的性质、极限的计算、导数的应用等等,一个不小心就容易出错。
比如说有一道题,考查的是函数的连续性,给出了一个分段函数,让判断在某一点处的连续性。
这要是对函数连续性的定义理解不透彻,很容易就掉进坑里啦。
再看看填空题,计算量可不小。
像求定积分、偏导数,那都得一步步仔细算,稍微马虎一点,答案就错了。
有一道填空题是关于曲线的弧长计算的,好多同学看到就头疼,公式记不住或者记错了,这分就丢了。
说到大题,那才是真正考验综合能力的时候。
有一道概率论的大题,要求计算随机变量的分布函数和概率密度。
这题啊,不仅要对概率论的基本概念清楚,还得会运用相关的公式和定理进行推导。
当时我那同学小李,在做这道题的时候,额头上的汗珠都冒出来了,咬着笔杆苦思冥想。
还有一道关于多元函数微分学的大题,要先求偏导数,再利用极值的条件求解。
这题的计算过程比较繁琐,需要有耐心和细心,一步一步来,不然很容易出错。
接下来咱们讲讲真题的解析。
对于每一道题,都得认真分析它考查的知识点和解题思路。
比如说选择题里那道函数连续性的题,通过分析函数在该点处的左右极限是否相等,就能判断出连续性。
而填空题里的弧长计算,只要记住弧长公式,再代入计算就可以了。
对于大题的解析,更是要重点关注。
像概率论那道题,要先明确题目要求,然后根据已知条件列出相应的式子,逐步推导。
多元函数微分学那道题,要注意求偏导数的方法和极值条件的运用。
总的来说,2010 年考研数一真题还是有一定难度的,需要同学们对知识点掌握得非常扎实,并且具备较强的解题能力和运算能力。
暨南大学810高等代数2010--2020年考研专业课真题

考试科目名称及代码:810高等代数(A卷)
考生注意:所有答案必须写在答题纸(卷)上,写在本试题上一律不给分。
一、(10分)设 为给定正整数, 为给定常数,计算对角线上元素均为 、其它位置元素均为1的 阶矩阵 的行列式 .
2证明 在某基下的矩阵是
六(15分)1设 ,证明秩 =秩 =秩 。
2设 是实对称矩阵, ,证明 。
七(15分)已知矩阵 是数域 上的一个 级方阵,如果存在 上的一个 级可逆方阵 ,使得 为对角矩阵,那么称 在 上可对角化。分别判断 能否在实数域上和复数域上可对角化,并给出理由。
八(16分)用 表示实数域 上次数小于4的一元多项式组成的集合,它是一个欧几里得空间,内积为 。设 是由零次多项式及零多项式组成的子空间,求 以及它上的一个基。
研究方向:各专业研究方向
考试科目名称:810高等代数
考生注意:所有答案必须写在答题纸(卷)上,写在本试题上一律不给分
一、判断下列命题的正误(只需回答“正确”或“错误”并将你的答案写在答题纸上,不需说明理由,每题2分,共20分):
1唯一解,并求其解;
2无穷多解,给出解的表达式;
3无解。
四(15分)设
1求 的全部特征值;
2对 的每个特征值 ,求 的属于特征值 的特征子空间的维数和一组基;
3求正交矩阵 ,使 是对角矩阵,并给出此对角矩阵。
五(15分)设 是数域 上的一个n维线性空间 ,若有线性变换 与向量 使得 ,但 。
1证明 线性无关;
2020年招收攻读硕士学位研究生入学考试试题
********************************************************************************************
2022年暨南大学研究生考试试题及答案

研究生考试真题及答案一、名词解释〔每题2.5分,共10分〕1.多烯色素:含有40个碳的多烯四粘,由异戊二烯经头尾或尾尾相连而构成2.低聚肽:肽键数目少于10个的肽类聚合物3.味觉相乘:某物质的味感会因为另一味感物的存在而显著强化,这种现象叫味的相乘作用4.反式脂肪酸:当链中碳原子以双键连接时,脂肪酸分子可以是不饱和的。
当一个双键形成时,这个链存在两种形式:顺式和反式二、填空题〔每空1分,共30分〕1. 食品中的水分依据其存在状态大致可分为结合水和自由水。
2. 在以下几种胶中,属于微生物来源的食品胶有黄原胶 G ELLAN胶、属于植物来源的食品胶有阿拉伯胶瓜尔豆胶:阿拉伯胶、黄原胶、瓜尔豆胶、Gellan胶、明胶。
3.用作脂肪模拟品的两类大分子物质分别为蛋白质和碳水化合物。
4.使蔗糖甜味显著增强的取代蔗糖为三氯蔗糖。
5. 列出能改善肠道菌群平衡的低聚糖两种低聚木糖和低聚果糖。
6.面筋所含的主要蛋白质为麦谷蛋白和麦醇溶蛋白。
7.具有增香作用的物质有麦芽酚和异麦芽酚等。
8.食品中应用广泛的改性纤维素有三种,请列出两种:羧甲基纤维素、甲基纤维素。
9. 在碱性条件下,一些L-氨基酸加热简单形成醛和酮。
10.制作方便面时,通常添加K2CO3,它可与面粉中麦谷蛋白反响而使面体呈金黄色。
11.含金属元素较多的食物称成碱食物。
12.目前使用较多的油溶性抗氧化剂主要有TBHQ BHA〔列出2种〕。
13.蛋白质中,氨基酸氧化可形成砜和亚砜。
14.新奇大蒜、葱和芥菜的组织被破坏后会产生刺激性气味,这些物质的共同特点是含有硫元素。
15.食物中能够增加钙、铁等生物有效性的成分主要有〔列2种〕植酸草酸。
16.抑制蛋白质起泡的物质主要有酸和碱。
17.甜味和苦味的基准物质分别为蔗糖和奎宁。
18. 某些调配型酱油中含有的有害物质主要为三氯丙醇,它是由于酸水解含油植物蛋白而产生的一种副产物。
19.焦糖化反响产生的主要色素为焦糖色素,香味物质为异麦芽酚。
广东省2010~2020年专插本考试《高等数学》真题及答案

广东省2010年普通高校本科插班生招生考试《高等数学》试题一、单项选择题(本大题共5小题,每小题3分,共15分)1.设函数()y f x =的定义域为(,)-∞+∞,则函数1[()()]2y f x f x =--在其定义域上是()A .偶函数B .奇函数C .周期函数D .有界函数2.0x =是函数1,0()0,0x e x f x x ⎧⎪<=⎨≥⎪⎩的()A .连续点B .第一类可去间断点C .第一类跳跃间断点D .第二类间断点3.当0x →时,下列无穷小量中,与x 等价的是()A .1cos x-B .211x +-C .2ln(1)x x ++D .21x e -4.若函数()f x 在区间[,]a b 上连续,则下列结论中正确的是()A .在区间(,)a b 内至少存在一点ξ,使得()0f ξ=B .在区间(,)a b 内至少存在一点ξ,使得()0f ξ'=C .在区间(,)a b 内至少存在一点ξ,使得()()()()f b f a f b a ξ-'=-D .在区间(,)a b 内至少存在一点ξ,使得()()()b af x dx f b a ξ=-⎰5.设22(,)f x y xy x y xy +=+-,则(,)f x y y∂∂=()A .2y x-B .-1C .2x y-D .-3二、填空题(本大题共5小题,每小题3分,共15分)6.设a ,b 为常数,若2lim()21x ax bx x →∞+=+,则a b +=.7.圆²²x y x y =++在0,0()点处的切线方程是.8.由曲线1y x=是和直线1x =,2x =及0y =围成的平面图形绕x 轴旋转一周所构成的几何体的体积V =.9.微分方程5140y y y '--'='的通解是y =.10.设平面区域22{(,)|1}D x y x y =+≤D={x ,y )x ²+y'≤1},则二重积分222()Dx y d σ+=⎰⎰.三、计算题(本大题共8小题,每小题6分,共48分)11.计算22ln sin lim(2)x xx ππ→-.12.设函数22sin sin 2,0()0,0x x x f x xx ⎧+≠⎪=⎨⎪=⎩,用导数定义计算(0)f '.13.已知点1,1()是曲线12xy ae bx =+的拐点,求常数a ,b 的值.14.计算不定积分cos 1cos xdx x -⎰.15.计算不定积分ln 51x e dx -⎰.16.求微分方程sin dy yx dx x+=的通解.17.已知隐函数(,)z f x y =由方程231x xy z -+=所确定,求z x ∂∂和z y∂∂.18.计算二重积分2Dxydxdy ⎰⎰,其中D 是由抛物线²1y x =+和直线2y x =及0x =围成的区域.四、综合题(本大题共2小题,第19小题10分,第20小题12分,共22分)19.求函数0Φ()(1)xx t t dt =-⎰的单调增减区间和极值。
考研数学数一数二数三 一元函数微分学2010-2020真题整理

题型一导数的定义
(2015 年数二3 题/4 分)
(2018年数一1题数二2题数三1题 /4分)
(2020年数一 2题/4分)
题型二切线、法线(几何及物理应用)
(2018年数二10题数三 9题 /4分)
题型三导数的计算(复合,参数,反函数,隐函数,高阶导数的计算)
(2012 年数三10 题/4 分)
(2017年数一9题/4分)
(2017年数二 10题/4分)
(2019年数二 10 题/4分)
(2020年数一 10题数二9题/4分)
(2020年数一 4题/4分)
也可解为
题型四单调性、极值和最值
(2017年数一 2题/4分)
(2017年数二 2题/4分)
(2017年数三 3题/4分)
(2017年数一 17题/10分)
(2017年数二 18题/10分)
(2019年数一 2题 4/分)
(2019年数二 15题数三 15题/10分)
题型五凹凸性与拐点
(2011 年数二16 题/11 分)
(2019年数二 2题数三10 题 4/分)
题型六函数的渐近线
(2020年数二 15题/10分)
题型七不等式的证明
(2020年数一 19题数三19题/10分)
题型八方程根的问题
(2017年数一 18题/11分)
(2017年数二 19题/11分)
(2019年数三 2题/4分)
题型九微分中值定理
(2019年数二 21题/11分)
(2020年数二 20题/11分)
题型十曲率与弧长(数学一、数学二)
(2018 数二 12题 4分)
(2019年数二 12 题/4分)可不选取该题
题型十一利用导数研究函数性态。
2018年暨南大学高等数学硕士研究生考试试题

5.设 为球面 的外侧, 则 .
6. 在 处的全微分是_________________.
7. _________________.
8.函数 的极大值为.
9.微分方程 的通解为.
二、选择题(单选题, 共8小题,每小题4分,共32分)
1.设 和 均为 阶方阵,则下列结论中成立的是( ).
A.若 ,则 或 B.若 ,则 或
2018年招收攻读硕士学位研究生入学考试试题
********************************************************************************************
招生专业与代码:理工类, 凝聚态物理、光学、生物物理学、环境科学、生物医学工程专业
8. 设函数 .下面说法正确的是( ).
A. 没有可去间断点B. 有1个可去间断点
C. 有2个可去间断点D. 有3个可去间断点
三 、计算题(本题共9小题,每小题8分,共72分)
1.已知实对ቤተ መጻሕፍቲ ባይዱ矩阵 ,求正交矩阵 ,使得 为对角矩阵.
考试科目:高等数学601共3页,第2页
2.已知 ,计算行列式 .
3.求级数 的和.
C.若 ,则 或 D.若 ,则 或
考试科目:高等数学601共3页,第1页
2. 设矩阵 ,齐次线性方程组 仅有零解的充要条件是( ).
A. 的列向量组线性无关 B. 的列向量组线性相关
C. 的行向量组线性无关 D. 的行向量组线性相关
3.实二次型 是正定二次型的充要条件是( ).
A. B. C. D.
(2)任给 ,存在(0,),使得 .
考试科目:高等数学601共3页,第3页