第十一章组合变形(习题解答)

合集下载

工程力学(高教第3版)习题解答:第11章 组合变形

工程力学(高教第3版)习题解答:第11章 组合变形

1mF1mB A 第11章 组合变形 习题解答题11-1解:取AB 杆为研究对象1)∑=0xF 0sin =-αF F Ax kN 42543.F Ax =⨯= ∑=0yF0cos =-+αF F F B Ay∑=0)(F m A 05.225.2cos =⨯+⨯-B F F α 得:kN 90.F F B Ay == 2)m kN 1251452cos max ⋅=⨯=..F M αkN 42N .F = 3)MPa 7561010611252max max ...W M Z t,=⨯⨯==σ MPa 996101024001010611252N max max .....A F W M Z c,=⨯+⨯⨯=+=σ(压应力) 题11-2解:1)取横梁AB 为研究对象∑=0xF 030cos =- BC Ax F F ∑=0yF030sin =+- BC Ay F F F ∑=0)(F mA06230sin 31=⨯+⨯-.F .F BCB1.3mx1.3mF ADC30F AxF AyFF Bαx y AB得:kN 30=BC F kN 26=Ax F kN 15=Ay F2)作内力图(略) 知:kN 26max N =Fm kN 5194max ⋅==.lF M3)查表得:N O 18工字钢 2cm 75630.A = 3cm 185=Z W则:MPa 91131075630102610185105194363Nmax max max ...A F W M σZ =⨯⨯+⨯⨯=+=--<MPa 160][=σ横梁强度足够题11-3 解:1) kN 15N ==F Fm kN 64015⋅=⨯=⨯=.e F M因 ][max σσ≤+=A FW M2)先按][max σσ≤=WM进行设计则633103532π106⨯≤⨯d 得:mm 5120.d = 3)代入拉弯组合应力公式校核MPa 2436120504π10151205032π1062333max ...A F W M =⨯⨯+⨯⨯=+=σ%6.3][][max =-σσσ<5%所以取 d =mm 5120.题11-4 解:1)内力分析kN 100N ==F F30m kN 502⋅=⨯=a aF M 2)应力分析6692max 10610)200(1805010)200(180650⨯≤⨯-⨯+⨯-⨯⨯⨯=+=--a a a AF W M σ得:mm 439.a ≤ 所以允许mm 439max .a =题11-5解:受力图略1)计算截面形心和ZC Imm 555381135138)553(113...y C =⨯⨯+⨯⨯⨯++⨯⨯=42323mm 6103138)51555(1238113)55558(12113.....I ZC =⨯⨯-+⨯+⨯⨯-+⨯=2)内力分析F F =N 310)55.526(-⨯+=F M3)确定夹紧力F410300][1055.563max ,⨯=≤⨯⨯+=-t ZC t I M A F σσ 得:N 400=F410600][1045.863max ,⨯=≤⨯⨯+-=-c ZC c I M A F σσ 得:N 7622.F =所以 N 400max =F题11-61)柱子受压弯组合,危险点为K 和K ′点(见图中所示)。

组合变形习题及参考答案

组合变形习题及参考答案

组合变形一、判断题1.斜弯曲区别与平面弯曲的基本特征是斜弯曲问题中荷载是沿斜向作用的。

( )2.斜弯曲时,横截面的中性轴是通过截面形心的一条直线。

( )3.梁发生斜弯曲变形时,挠曲线不在外力作用面内。

( )4.正方形杆受力如图1所示,A点的正应力为拉应力。

( )图 15. 上图中,梁的最大拉应力发生在B点。

( )6. 图2所示简支斜梁,在C处承受铅垂力F的作用,该梁的AC段发生压弯组合变形,CB段发生弯曲变形。

( )图 27.拉(压)与弯曲组合变形中,若不计横截面上的剪力则各点的应力状态为单轴应力。

( )8.工字形截面梁在图3所示荷载作用下,截面m--m上的正应力如图3(C)所示。

( )图 39. 矩形截面的截面核心形状是矩形。

( )10.截面核心与截面的形状与尺寸及外力的大小有关。

( )11.杆件受偏心压缩时,外力作用点离横截面的形心越近,其中性轴离横截面的形心越远。

( )12.计算组合变形的基本原理是叠加原理。

()二、选择题1.截面核心的形状与()有关。

A、外力的大小B、构件的受力情况C、构件的截面形状D、截面的形心2.圆截面梁受力如图4所示,此梁发生弯曲是()图 4A、斜弯曲B、纯弯曲C、弯扭组合D、平面弯曲三、计算题1.矩形截面悬臂梁受力F1=F,F2=2F,截面宽为b,高h=2b,试计算梁内的最大拉应力,并在图中指明它的位置。

图 52.图6所示简支梁AB上受力F=20KN,跨度L=2.5m,横截面为矩形,其高h=100mm,宽b=60mm,若已知α=30°,材料的许用应力[σ]=80Mpa,试校核梁的强度。

3.如图7所示挡土墙,承受土压力F=30KN,墙高H=3m,厚0.75m,许用压应力[σ]ˉ=1 Mpa,许用拉应力[σ]﹢=0.1 Mpa,墙的单位体积重量为,试校核挡土墙的强度。

图 6 图 74.一圆直杆受偏心压力作用,其偏心矩e=20mm,杆的直径d=70mm,许用应力[σ]=120Mpa,试求此杆容许承受的偏心压力F之值。

材料力学 第11章 组合变形习题集

材料力学 第11章  组合变形习题集

横截面m-m上任一点C(y,z)处由 弯矩Mz和My引起的正应力分别为
M z y M cos y M y z M sin z
Iz
Iz
Iy
Iy
38
C点的正应力
' ''
M
cos
Iz
y
sin
Iy
z
悬臂梁固定端截面A的弯矩Mz和My 均达到最大值,故该截
面是危险截面。设yo、zo为中性轴上任一点的坐标,并令σ
算 圆轴表面上与轴线成30°方位上的正应变。
32
解: (1)由内力图知,所有截面均为危险截面,危险点为靠近
轴表面的各点,应力状态如图。计算危险点的主应力。轴力
引起的正应力
FN 4F
A πd 2
扭矩引起的切应力
T M 8F
Wp Wp 5πd 2
危险点处的主应力为
1
2
(
)2
( )2
它在y、z两轴上的截距分别为
y* z* h / 2
该截面惯性半径的平方为
iy2
Iy A
h2 12
iz2
Iz A
b2 12
28
中性轴①对应的核心边界上点1的坐标为
ey1
iz2 y*
0
ez1
iy2 z*
h 6
按上述方法可求得与它们对应的截面核
心边界上的点2、3、4,其坐标依次为:
ey2
b 6
ez2 0
车臂的直径d。
18
解:两个缆车臂各承担缆车重量的一半,如 图。则缆车臂竖直段轴力为FN=W/2=3kN 弯矩为M=Wb/2=540N·m 危险截面发生在缆车臂竖直段左侧,由强度条件

第11章 组合变形

第11章 组合变形

120 MPa , 校核梁的强度。
z
z
30kN
y
A
C
D
x
h
B
30kN
b
y 100mm 100mm 100mm
A
B
C
Dx
+
My
1kNm 2kNm
Mz
1kNm
AB
2kNm
C
x D
解:(1)画内力图,确定 危险截面:
M By 2kNm, M Bz 1kNm
M Cy 1kNm, M Cz 2kNm
[例11-3-1] 最大吊重为 P=20kN的简易吊车,如图所
示择D,工A字B梁为型工号字。A3钢梁,许用X应A Y力A [σ]=10T0MPa,Ty 试选
A
Tx C
B
F
A
30° C B
FN
2m
1m F
_ 52kN
20kN·m
解:(1)选工字梁为研究对
象受力如图所示:
M
-
MA 0 : T 2sin 30 3F 0
F=1400kN , 机 架 用 铸 铁 作 成 , 许 用
拉 应 力 [σt]=35MPa , 许 用 压 应 力 [σc]=140MPa, 试 校核该 压力机立 柱部分的强度。立柱截面的几何性质
如 下 : yc=200mm , h=700mm , A=1.8×105mm2,Iz=8.0×109mm4。 解:由图可见,载荷F 偏离立柱轴线,
h 2b 118.8mm
⑤、校核刚度
wmax
w2 y m ax
w2 z max
5L4 384E
(
qy Iz
)2
(
qz Iy

组合变形习题课

组合变形习题课

解: w q0 x l 3 3lx 2 2x 3 48EI w q0 l 3 9lx 2 8x 3 48EI
M EIw q0 18lx 24x 2 48
FS
EIw
q0 48
18l
48 x
q EIw 4 q0
w q0 x l 3 3lx 2 2 x 3 w q0 l 3 9lx 2 8x 3
M FS FS q M q
y
A
B
x
y=Ax3
l
反问题
2. 反应梁旳变形与内力旳关系
——挠曲线近似微分方程。
y M EI
M EIy FS EIy q EIy4
y
A
B
x
y=Ax3
l
反问题
解:
y =Ax3
EIy 3AEIx 2
M EIy 6AEIx 线性分布(M<0)
FS EIy 6AEI q EIy4 0
48EI
48EI
M EIw q0 18lx 24x 2
48
FS
EIw
q0 48
18l
48 x
q EIw 4 q0
x=0, w=0 , M=0 , FS≠0 , θ ≠0 铰支座 x=l , w=0 , θ =0 , FS≠0 , M≠0 固定端
q0
l
3.公式合用范围问题
每个公式都有其合用条件,使用公式时
F
1 2 3 4
选项
1
2
3
4
(A)
(B)
(C)
(D) 正确答案:B,D
如图所示直角三角形单元体旳斜面上无应力,它属
于____。
xy
x
30°
yx y

材料力学组合变形习题

材料力学组合变形习题

L1AL101ADB 〔3〕偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,那么外力作用点 到形心之距离e和中性轴到形心距离d之间的关系有四种答案:〔A 〕 e=d; 〔B 〕 e>d;〔C 〕 e越小,d越大; 〔D 〕 e越大,d越小。

正确答案是______。

答案〔C 〕1BL102ADB 〔3〕三种受压杆件如图。

设杆1、杆2和杆3中的最大压应力〔绝对值〕分别用 max1σ、max 2σ和max3σ表示,现有以下四种答案:〔A 〕max1σ=max 2σ=max3σ; 〔B 〕max1σ>max 2σ=max3σ;〔C 〕max 2σ>max1σ=max3σ; 〔D 〕max 2σ<max1σ=max3σ。

正确答案是______。

答案〔C 〕1BL103ADD 〔1〕在图示杆件中,最大压应力发生在截面上的哪一点,现有四种答案:〔A 〕A点; 〔B 〕B点; 〔C 〕C点; 〔D 〕D点。

正确答案是______。

答案〔C 〕1AL104ADC 〔2〕一空心立柱,横截面外边界为正方形, 边界为等边三角形〔二图形形心重 合〕。

当立柱受沿图示a-a线的压力时,此立柱变形形态有四种答案: 〔A 〕斜弯曲与中心压缩组合; 〔B 〕平面弯曲与中心压缩组合;〔C 〕斜弯曲; 〔D 〕平面弯曲。

正确答案是______。

答案〔B 〕1BL105ADC 〔2〕铸铁构件受力如下图,其危险点的位置有四种答案:〔A 〕①点; 〔B 〕②点; 〔C 〕③点; 〔D 〕④点。

正确答案是______。

答案〔D 〕1BL106ADC 〔2〕图示矩形截面拉杆中间开一深度为h/2的缺口,与不开口的拉杆相比,开口处 的最大应力的增大倍数有四种答案:〔A 〕2倍; 〔B 〕4倍; 〔C 〕8倍; 〔D 〕16倍。

正确答案是______。

答案〔C 〕1BL107ADB 〔3〕三种受压杆件如图,设杆1、杆2和杆3中的最大压应力〔绝对值〕分别用 max1σ、max 2σ和max3σ表示,它们之间的关系有四种答案:〔A 〕max1σ<max 2σ<max3σ; 〔B 〕max1σ<max 2σ=max3σ;〔C 〕max1σ<max3σ<max 2σ; 〔D 〕max1σ=max3σ<max 2σ。

第11章习题及其答案

第11章习题及其答案

mnmn 第十一章的课后答案11-1 在计算行星轮系的传动比时,式i= 1- i H 只有在什么情况下才是正确的?mHmn答:在行星轮系,设固定轮为 n ,即ξ = 0 时, i= 1- i H 公式才是正确的。

nmHmn11-2 在计算周转轮系的传动比时,式i mH = (n m - n H )/ (n n - n H ) 中的i mH 是什么传动比,如何确定其大小和“ ± ”号?答:i mH 是在根据相对运动原理,设给原周转轮系加上一个公共角速度“ -ξH ”,使之绕 行星架的固定轴线回转,这时各构件之间的相对运动仍将保持不变。

而行星架的角速度为 0, 即行星架“静止不动”,于是周转轮系转化成了定轴轮系,这个转化轮系的传动比。

其大小可以用i mH = (n m - n H ) / (n n - n H ) 公式计算;方向由“ ± ”号确定,但注意,它由在转化轮系中m ,n两轮的转向关系来确定。

11-3 用转化轮系法计算行星轮系效率的理论基础是什么?为什么说当行星轮系为高速时,用它来计算行星轮系的效率会带来较大的误差?答:用转化轮系法计算行星轮系效率的理论基础是行星轮系的转化轮系和原行星轮系的差别,仅在于给整个行星轮系附加了一个公共角速度“ -ξH ”。

经过这样的转化之后,各构 件之间的相对运动没有改变,而轮系各运动副中的作用力(当不考虑构件回转的离心惯性力时)以及摩擦因数也不会改变。

因而行星轮系与其转化轮系中的摩擦损失功率应相等。

用转化轮系法计算行行轮系效率没有考虑由于加工、安装和使用情况等的不同,以及还有一些影响因素如搅油损失、行星轮在公转中的离心惯性力等,因此理论计算的结果并不能完全正确地反映传动装置的实际效率。

11-4 何谓正号机构、负号机均,各有何特点?各适用什么场合?答:行星轮系的转化轮系中当传动比i H > 0 ,称为正号机构;当传动比i H < 0 ,称为负号机构。

组合变形

组合变形
三向受拉应力状态。
1 b
断裂破坏仅与最大正应力有关。适用于脆性材料的二向或
2最大正应变理论(第二强度理论) :
由于
1 1 [ 1 ( 2 3 )] E
1 b
当最大正应变等于强度极限对应的正应变时,断裂破坏。
b
b
E
1 ( 2 3 ) b
m
x
m m
Pz

z Py y
m

z
P
P
y
Py P sin Pz P cos
矩形截面梁,作用集中力P与Z轴成角,确定m—m截面的应力
m
m
Mz
z
Mz My
m
z
My
m
M
y
y
Py P sin Pz P cos M yz Iy
Mzy Iz
M y Pz x Px cos M cos M z Py x Px sin M sin
z y cos sin 0 Iy Iz
过形心的斜直线
最大、最小正应力,a、b两点。
斜弯曲时中性轴斜率与弯矩作用面的关系
z y cos sin 0 中性轴方程 Iy Iz z Iy tan tan y Iz
z


y
中性轴
当 I y I z 时, 说明载荷作用面与中性层不垂直 当 Iy Iz 时
1 3 2
对应第四强度理论
1 1 2 2 2 3 2 3 1 2 3 2


复杂应力状态危险点单元体的强度条件:
ri [ ]
ri
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章组合变形(习题解答)————————————————————————————————作者:————————————————————————————————日期:10-3 试求图示[16a 简支梁由于自重作用所产生的最大正应力及同一截面上AB 两点的正应力。

(-) (-)(-)q q y4.2mC φo=20(+)(+) (+)qq zAB解:(1)查表可矩[16a 的理论重量为17.24kg/m ,故该梁重均布载荷的集度为172.4N/m 。

截面关于z 轴对称,而不关于y 轴称,查表可得:364640108cm 10810,73.3cm 0.73310m ,63mm =0.063m , 1.8cm =0.018mz y W I b z --==⨯==⨯==⑴外力分析:cos 172.4cos 20162.003/sin 172.4sin 2058.964/y z q q N m q q N mϕϕ======o o⑵内力分析:跨中为危险面。

32,max 32,max 11162.003 4.2357.217881158.964 4.2130.01688z y y z M q l N mM q l N m==⨯⨯=⋅==⨯⨯=⋅⑶应力分析:A 、B 点应力分析如图所示。

A 点具有最大正应力。

,max,max max 66,max,max max 066357.217130.016(0.0630.018)11.29MPa 108100.73310357.217130.0160.018 6.50MPa108100.73310y z A A z y y z B zyM M z W I M M z W I σσσσ---+--==--⋅=--⨯-=-⨯⨯==++⋅=+⨯=⨯⨯max 11.29MPa A σσ==-10-4 试求图示简支梁的最大正应力,及跨中的总挠度。

已知弹性模量100Pa E G =。

解:(1) 外力分析:由于集中力在横截面内与轴线垂直,故梁将发生斜弯曲。

cos 10cos159.66kN sin 10sin15 2.59kNy z P P P P ϕϕ======o o⑵内力分析:集中力作用在跨中,故跨中横截面为危险面。

,max ,max119.6637.245kN m 44112.593 1.943kN m 44z y y z M P l M P l ==⨯⨯=⋅==⨯⨯=⋅⑶应力分析:跨中横截面D 2、D 1点分别具有最大的拉压应力,应力分析如图所示。

133,max,maxmax227.24510 1.94310(Pa)110.150.200.200.15667.245 2.591(MPa)9.836MPay z D z yM M W W σσ+⨯⨯==++=+⨯⨯⨯⨯=+=2,max ,max max 7.245 2.591(MPa)9.836MPa y z D zyM M W W σσ-==--=--=-(4)求梁的跨中的总挠度。

9.66kN y P =使简支梁上下弯曲,发生挠度f y ; 2.59kN z P =使简支梁前后弯曲,发生挠度f z 。

查《教材》P.156第12栏,可知跨中的挠度333-439333-4399.6610310m=0.5434mm 480.150.2048(10010)122.59103 2.5910m =0.259mm 480.200.1548(10010)12y y z z z y P l f EI P l f EI ⨯⨯===⨯⨯⨯⨯⨯⨯⨯===⨯⨯⨯⨯⨯故:2222-45.434 2.5910m 0.602mm 5.434tan 2.09864.522.59z y z y f f f f f ββ=+=+====→=o10-5 由木材制成的矩形截面悬臂梁受力、尺寸如图所示。

材料的弹性模量41.010MPa E =⨯。

试:(1)求梁的最大正应力及其作用点的位置;(2)求梁的最大挠度。

(3)如果截面是圆形,130mm d =,试求梁横截面的最大正应力。

2my 1mD 2D 1z x+ + +180(-)(-)(-)(-)D 290(+)(+)(+)(+)D 1- - -y zP 2=0.8kNP 1=1.6kNMy x(N m)(N m)3200xP 2Mz-800-P 1解:(1)求梁的最大正应力及其作用点的位置①外力分析,判变形。

P 1使梁发生水平面内绕y 轴转动的弯曲。

P 2使梁发生铅垂平面内绕z 轴转动的弯曲。

梁发生斜弯曲。

②内力分析,判危险面:P 1 、P 2都在固定端面引起最大弯矩,固定端面为危险面。

,max 1,max 22160023200(1800()y z M P M P =⨯=⨯=⋅=⨯=⋅N m)N m③应力分析,判危险点,如右所示图P 1使危险面上出现前压后拉的应力,P 2使危险面上出现上拉下压的应力。

故,固定端右截面上危险点是:前下角D 1和后上角D 2。

,max ,max max maxmax223200800Pa 14.8MPa110.180.090.090.1866y z y z M M W W σσσ+-===+=+=⨯⨯⨯⨯(2)求梁的最大挠度。

查《教材》P.154第4栏,可知333231033313100.8101(3)(321)0.001524m 0.090.1866(110)121.61020.03902m 0.180.0933(110)12y zz yP a f l a EI Pl f EI ⨯⨯=-=⨯-=⨯⨯⨯⨯⨯⨯===⨯⨯⨯⨯故:()()22220.039020.0015240.039m0.03902tan 25.7287.770.001524z y z y f f f f f ββ=+=+====→=o(3)当截面是圆形时,求梁横截面的最大正应力 当截面是圆形时梁发生平面弯曲,由于截面寻找中性轴难度大,我们将两个平面的弯矩合成,是几何合成而不是代数相加。

固定端面的合成弯矩为:2222max ,max ,max 80032003298.48(N m)z y M M M =+=+=⋅22,max ,maxmax max33298.48Pa 15.29M 0.1332z y M M M W Wσπ+====⨯11-9 简支折线梁受力如图所示,截面为25cm ×25cm 的正方形截面,试求此梁的最大正应力。

φP/22.4mzP2.4m NVyM+ + +- - -----25252mD 1ABCD 2M 图(kN .m )N (kN )2.561--9.6解:(1)外力分析,判变形。

由对称性可知,A 、C 两处的约束反力为P/2 ,主动力、约束反力均在在纵向对称面内,简支折线梁将发生压弯组合变形。

(2)内力分析,判危险面:从下端无限靠近B 处沿横截面将简支折线梁切开,取由右边部分为研究对象,受力如图所示。

梁上各横截面上轴力为常数,B 横截面具有最大弯矩,故B 横截面为压弯组合变形危险面。

,max 22244249.6(k 282cos =2.561(k )222 2.4y P M P N ϕ=⨯=⨯=⋅=⨯=⨯+..N m)N(3)应力分析,判危险点,如右所示图由于截面为矩形,而D 1 D 2是压弯组合变形的压缩边缘,故危险面上D 1 D 2边缘是出现最大压应力。

,maxmax3324362.561109.610Pa 0.040976 3.6864MPa 3.727MPa 1251025106z zM N A W σ---=+⨯⨯=+=+=⨯⨯⨯11-10 水塔盛满水时连同基础总重量为G ,在离地面H 处,受一水平风力合力为P 作用,圆形基础直径为d ,基础埋深为h ,若基础土壤的许用应力[σ]=300kN/m 2,试校核基础的承载力。

P =60kNh =3mG =6×10 kNH =15md =6m+-----z3解:(1)外力分析,判变形。

主动力、约束反力均在在纵向对称面内左右弯,基础及盛满水的水塔的重量使结构发生轴向压缩变形,而风荷载使其发生左拉右压弯曲。

结构发生压弯组合变形。

(2)内力分析,判危险面:基础底部轴力、弯矩均达到最大值,故该横截面为压弯组合变形的危险面。

,max 315+36018108(k 610(k y M P N G =⨯=⨯=⋅==⨯()N m)N)(3)应力分析,判危险点,如右所示图由于截面为圆形,中性轴是左右对称的水平直径所在线上,最右边点压弯组合变形的压缩边缘将出现最大压应力。

(4)强度计算。

[],max max6323-61010810--Pa -212.21-50.93kPa 263.14kPa 300kPa66432z zM N A W σσππ-=⨯⨯===≤=⨯⨯11-11 试求图示具有切槽杆的最大正应力。

+ + +10(-)(-)(-)(-)D 25(+)(+)(+)(+)D 1- - - y zP =1kN4040101010P =1kNxy zM yM Z+ + + + + + + +5解:(1)外力分析,判变形。

P 与缺口轴线平行不重合,所以发生双向偏心拉伸。

(2)内力分析,判危险面:从缺口处沿横截面将梁切开,取由右边部分为研究对象,将集中力作用点在端部平移到与缺口对应的形心位置,受力如图所示。

可先将集中力向前水平平移2.5mm,则附加My ;再将力向下平移5mm ,则附加Mz 。

梁上各横截面上轴力、弯矩均为常数。

332.510 2.5(5105(1(k y z M P M P N P =⨯⨯=⋅=⨯⨯=⋅==N m)N m)N)(3)应力分析,判危险点,如右所示图整个横截面上均有N 引起的均布的拉应力,My 引起后拉前压的弯曲应力,Mz 引起上拉下压的弯曲应力,点于D 2点三者可以均引起拉应力,可代数相加。

622991000 2.55=Pa 51010105510101066206060MPa 140MPay z y z M M N A W W σ---++=++⨯⨯⨯⨯⨯⨯=++= 11-12 矩形截面悬臂梁受力如图所示。

确定固定端截面上中性轴的位置,应力分布图及1、2、3、4四点的应力值。

600y4zx5kN25kN25100150123Kzya ya za ya zK4321(+) (+) (+) (+)D 2(-) (-) (-) (-)D 1yz中性轴中性轴解:(1)外力分析,判变形。

5kN 作用下构件在xy 平面内上下弯曲;25kN 作用下构件发生轴向压缩的同时,还将在xz 平面内前后弯曲。

结构将发生双向偏心压缩组合变形。

(2)内力分析,判危险面:5kN 作用下构件将使M z 在固定端面达到最大值弯矩,max 50000.63000N m z M =⨯=⋅;25kN 作用下使构件各横截面具有相同的内力,3325000N ,25102510625N m y N M -==⨯⨯⨯=⋅。

相关文档
最新文档