最新数学建模-学生成绩问题

合集下载

中学生数学建模竞赛题目

中学生数学建模竞赛题目

中学生数学建模竞赛题目
题目:中学生数学建模竞赛题目
背景:小明是一名中学生,对数学建模很感兴趣。

最近,他参加了一场中学生数学建模竞赛。

竞赛有三个题目,分别是:
题目一:平均数的计算
小明班级共有30名同学,升学率是80%。

假设这30名同学的期末考试总成绩平均分为85分,小明想知道升学同学的平均成绩是多少?
题目二:几何图形的面积计算
小明看到一个园林设计图,其中有一个不规则图形,小明想计算其面积。

可是,这个图形没有标明具体的尺寸。

请问小明该如何计算这个图形的面积?
题目三:概率的计算
小明是一名篮球爱好者,他参加了10次的投篮练习,每次投篮成功的概率为60%。

小明想知道他至少投中5次的概率是多少?
要求:
对于题目一,小明需要通过给出数据和计算方法,得出升学同学的平均成绩的具体数值。

对于题目二,小明需要通过解释几何图形的特点和常用的几何公式,得出计算该图形面积的方法。

对于题目三,小明需要用概率的计算公式和相关知识,得出至
少投中5次的概率的数值,并给出计算过程。

注意:
题目的目的是考察中学生的数学建模能力和解决实际问题的能力,因此要求考生能够认真分析题目,并运用合适的数学知识进行建模和计算。

数学建模,如何客观合理的评价学生学习状况

数学建模,如何客观合理的评价学生学习状况

如何客观、合理的评价学生学习状况摘要现行的以考试成绩衡量学生学习状况的方法比较主观,且评价方式单一,忽略了不同基础水平的同学的进步程度,为了激励优秀学生努力学习取得更好的成绩,同时鼓励基础相对薄弱的学生树立信心,不断进步,我们需要建立一个客观,合理的评价学生状况的数学模型。

考虑到以上情况,本文通过以下几步来达到目的。

步骤一:通过分析题目所给198名学生的整体成绩情况,包括大一两个学期每个学期的整体平均成绩、及格率、方差、标准差等多项指标有关,通过所给数据,得到图表。

分析数据充分理解学生的学习情况,更有利于以下两个模型的进行,为模型的建立提供参考.步骤二:对于全面、客观、合理的评价学生的学习状况,我们采用了二个模型:模型一:利用黑尔指数法求得的进步分数和层次分析法进行评价:设定适当的权系数,使最终成绩更为合理。

本专业为工科类专业,应更加重视专业学习能力,因此专业课程所占权系数较高,成绩也能更好的选拔专业能力强的学生。

同时为了激励进步学生,进步分也占有部分权限,能够起到很好的鼓励作用。

为此我们设置:最终成绩Y=0。

55*专业课程+0.4*其他课程+0.05*进步分数.模型二:采用成绩标准化模型对成绩进行评价:采用对数变换将负偏态的成绩分布正态化,并用Matlab进行了正态检验。

从而学生成绩的差距分布更为合理,成绩偏低的学生变换后将处于中等位置,得到适当的鼓励,改变了负偏态分布中较多学生成绩集中在高分段或低分段的现象。

然后,将正态分布归一化为标准正态分布,消除每个学期评价考核体系的不稳定性因素,得到每个学生各学期的“有效成绩”。

并基于”有效成绩"提出了等级评定子模型,确定了等级分数线,更清楚的表明了每个学生在整体位置。

关键词:黑尔指数层次分析成绩标准化有效成绩一.问题重述现行的评价方法相对比较局限、主观、有失公允,只能对学习基础好的学生产生激励作用,而不能对所有学生尤其是后进学生起到激励作用,这种评价弊端开始被越来越多的人关注。

学生成绩分析数学建模

学生成绩分析数学建模

2012年暑期培训数学建模第二次模拟承诺书我们仔细阅读了数学建模联赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其它公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。

我们的参赛报名号为:参赛队员(签名) :队员1:队员2:队员3:2012年暑期培训数学建模第二次模拟编号专用页参赛队伍的参赛号码:(请各个参赛队提前填写好):竞赛统一编号(由竞赛组委会送至评委团前编号):竞赛评阅编号(由竞赛评委团评阅前进行编号):2012年暑期培训数学建模第二次模拟题目学生成绩的分析问题摘要本文针对大学高数和线代,概率论成绩进行建模分析,主要用到统计分析的知识及SPSS软件,建立了方差分析、单因素分析、相关性分析等相关模型,从而分析两个专业、四门课程成绩的显著性,以及课程之间的相关性。

最后利用分析结论表明了我们对大学数学学习的看法。

问题一:每门课程两个专业的差异性需要进行多个平均数间的差异显著性检验,首先应该对数据进行正态分布检验,结论是各个专业的分数都服从正态分布,之后可以根据Kolmogorov-Smirnov 检验(K-S检验)原理,利用SPSS软件进行单因素方差分析,得出方差分析表,进行显著性检验,最后得出的结论是高数1、高数2、线代和概率这四科成绩在两个专业中没有显著性差异。

问题二:对于甲乙两个专业分别分析,应用问题一的模型,以每个专业不同班级的高数一、高数二、线代和概率平均数为自变量,同第一问相同的做法,得到两个专业中不同学科之间没有显著差异。

问题三:我们通过对样本数据进行Spss的“双变量相关检验”得出相关系数值r、影响程度的P值,从而来分析出高数1、高数2与概率论、现代的相关性。

数学建模竞赛b题

数学建模竞赛b题
11 10.5 10 9.5 9 8.5 8 样本标准差
学期四的平 均成绩:
74.9
10.29
学期一
学期二
学期三
学期四
各个学期的成绩波动由大到小的顺序是:第二学期>第四学期>第一学期>第三学期。 而且有表格二也证实了这个波动的顺序。这说明第三学期不同学生的成绩之间的差距最小, 第二学期不同学生的成绩之间的差距最大。 1.可以看到各个学生之间的差异是不同的,说明不同的学生的基础条件是有所不 同。基础较好的学生在取得更加优异的成绩上是本身具有优势的。 2.样本标准差呈折线变化,但整体来说,是有逐渐减小的趋势的。这说明虽然基 础条件不同,但是,学生成绩之间的差距是逐渐变小的。即基础条件不太好的学 生取得了进步的。




通过对学生的各学期的成绩的统计处理分析,并针对题目的三个 问题建立了数学模型,在模型的求解过程中,利用统计学软件 Excel计算工具,编写相应的函数,对建立的模型进行求解,得出 相应的结论。 问题一:我们假设第i个学期学生的平均成绩为Xi,则可利用excel 软件来求得Xi的平均值,用所得的平均值来分析说明所给出的学 生的整体情况 问题二:由于现在需要采用适当的方法来评价学生的学习情况, 为此我们把这目的转化为求学生的各学期Xi的变化规律及所能反 映学生成绩波动的方差变化。利用Excel软件编写相应函数关系式, 进行绘图,结合数据和图形,评价学生的学习情况。 问题三:其模型问题二相似,不同之处在于要收集数据,对数据 走向进行预测。为此我们将四个学期的成绩当成一个总体进行分 析。当总体数据n越大,则总体近似服从正态分布,故后两个学期 也近似服从正态分布。因此,可以选择不同的置信区间来估算得 出后两个学期学生的成绩的大致范围。

数学建模竞赛成绩的评定

数学建模竞赛成绩的评定

数学建模竞赛成绩的评定摘要本文主要采用统计学方法,结合EXCEL MATLAB、等数学统计工具解决了数学建模中成绩的评定等一系列问题。

关于问题一,如何补缺缺失数据,我们将各个老师对数学建模队的评分视为随机事件,算出各分数发生的概率,最后用其数学期望代替缺失的分数,得出结果为:9号队缺失的分数是77;25号队缺失的分数是80;58号队缺失的分数是80。

关于问题二,考虑到各个老师的打分方式有异,根据加权平均分给出了101个队列的排名,结果详见表5.2.1。

关于问题三,利用统计学方法,通过比较每位老师评分的方差大小,得出各老师打分严格程度的差异,最后得出老师甲最严格,老师丙最宽松,其余三位老师的严格程度相差不大。

关于问题四,先将参加队的平均分数从大到小排序,然后其中有48个队参加复评。

关键词:成绩评定成绩排名数学期望统计学MATLAB加权平均一、问题重述在某高校一次数学建模竞赛中,5位评阅老师分别独立地为101个参赛队打分,最终依据某种方式对各参赛队进行排序、确定所获的奖项。

(见附表),请你运用数学建模方法解决下列问题:(1)补齐表中缺失的数据。

(2)给出101个参赛队的排名顺序。

(3)建立模型对5位老师进行分类,评价5位老师中哪位老师打分比较严格,哪位老师打分比较宽松(4)通常还会对一部分平均分在80分以上的参赛队进行复评,你认为应该对哪些队进行复评?二、问题分析此问题是关于五位老师对101个参加队进行评分的问题。

根据问题要求首先我们采用数学的方法对该题进行分析,补全附表中缺失的三个分数。

再根据已补全的数据排列出参赛队的排名。

然后确定哪位老师打分比较严格,哪位打分比较松,并给出可以给予复评机会的参赛队的序号。

三、问题假设1、假设所有老师的评分都是客观、公平公正的。

2、假设所提供的数据都是真实可靠的。

3、假设参赛队是否有复评机会对其所打的分有关和其他因素无关。

四、变量说明五、模型的建立与求解5.1 问题一 5.1.1 问题分析该问题要求我们根据已有的数据,利用数学知识分析并补全缺失的数据。

数学建模竞赛成绩的评定

数学建模竞赛成绩的评定

数学建模竞赛成绩的评定摘要本文主要采用统计学方法,结合EXCEL MATLAB、等数学统计工具解决了数学建模中成绩的评定等一系列问题。

关于问题一,如何补缺缺失数据,我们将各个老师对数学建模队的评分视为随机事件,算出各分数发生的概率,最后用其数学期望代替缺失的分数,得出结果为:9号队缺失的分数是77;25号队缺失的分数是80;58号队缺失的分数是80。

关于问题二,考虑到各个老师的打分方式有异,根据加权平均分给出了101个队列的排名,结果详见表5.2.1。

关于问题三,利用统计学方法,通过比较每位老师评分的方差大小,得出各老师打分严格程度的差异,最后得出老师甲最严格,老师丙最宽松,其余三位老师的严格程度相差不大。

关于问题四,先将参加队的平均分数从大到小排序,然后其中有48个队参加复评。

关键词:成绩评定成绩排名数学期望统计学MATLAB加权平均一、问题重述在某高校一次数学建模竞赛中,5位评阅老师分别独立地为101个参赛队打分,最终依据某种方式对各参赛队进行排序、确定所获的奖项。

(见附表),请你运用数学建模方法解决下列问题:(1)补齐表中缺失的数据。

(2)给出101个参赛队的排名顺序。

(3)建立模型对5位老师进行分类,评价5位老师中哪位老师打分比较严格,哪位老师打分比较宽松(4)通常还会对一部分平均分在80分以上的参赛队进行复评,你认为应该对哪些队进行复评?二、问题分析此问题是关于五位老师对101个参加队进行评分的问题。

根据问题要求首先我们采用数学的方法对该题进行分析,补全附表中缺失的三个分数。

再根据已补全的数据排列出参赛队的排名。

然后确定哪位老师打分比较严格,哪位打分比较松,并给出可以给予复评机会的参赛队的序号。

三、问题假设1、假设所有老师的评分都是客观、公平公正的。

2、假设所提供的数据都是真实可靠的。

3、假设参赛队是否有复评机会对其所打的分有关和其他因素无关。

四、变量说明五、模型的建立与求解5.1 问题一 5.1.1 问题分析该问题要求我们根据已有的数据,利用数学知识分析并补全缺失的数据。

数学建模论文--基于综合成绩的学生学习状况评价体系

数学建模论文--基于综合成绩的学生学习状况评价体系
每个学生的成绩是一个随时间变化的随机序列。对于预测第五学期的成绩,我们可以根据所给定的前面的几个学期学生的成绩进行预测。由于第五学期与第四学期时间的偏离是最小的,因此,对于第五学期学生的成绩受第四学期的影响比较大。而其他学期与它偏离的比较大,因此对它的影响应该小于第四学期对它的影响。由于每个学期之间的成绩存在一定的相关度,因此,计算不同学期之间存在的相关系数作为权值,预测出第五、六学期学生的成绩。再次我们可以运用神将网络的预测功能,对学生成绩进行预测,然后比较两种方法的结果。
5.1.4模型评价
由于我们只是静态的对每个学期的综合成绩进行分析,而忽略了由于知识的累积性,并随着时间的推移学生的受教育程度也是在不断变化的。因此不同时期学生的基础条件是不同的。因此要想更科学客观的反映各个学期学生整体的学习效值就必须去除基础条件变化所造成的影响,方可更好的体现学生整体的学习状况以及知识掌握程度。
最后综合比较这三个模型,我们发现综合评价模型是最全面、最科学的评价模型,这个模型得到的结果可以作为我们最终评价的定量结果。同时标准分模型可以反映评价对象的平均水平,进步度模型可以反映评价对象的进步水平,综合得出学生的整体水平。
针对问题三,我们采用两个预测模型:
1、时间序列预测模:由于学生的成绩是一个随时间变化的变量,前面时间的成绩影响后面时间的成绩,因此我们算出不同学期之间的相关系数作为时间序列的权值,采用时间序列预测模型得到了第五、六学期的预测结果。
本文首先对所给的612名学生4个学期的成绩进行整体分析。由于试卷的难易程度是不确定的,因此我们在建立模型之前对试卷进行统一化的分析,即分析试卷的难度和区分度。同时,我们对所给出的数据进行了合理的筛选。首先统计出每个学期各个分数段的学生人数,计算出整体的平均分,学生成绩的离散度,比较出学生成绩整体的情况。

客观、合理评价学生学习状况的数学模型

客观、合理评价学生学习状况的数学模型

客观、合理评价学生学习状况的数学模型摘 要目前对学生学习状况的评价相对比较主观,以测试成绩的高低来评价学生的学习优劣。

这种评价方式单一,忽略了不通基础水平同学的进步程度以及测试本身的局限性,为了更好鼓励基础相对较差的学生努力学习,我们需要建立一个客观、更合理的评价学生学习状况的数学模型。

通过以上考虑,本文试图通过回答以下几个问题来达到目的: 问题一:通过分析题目所给的612名学生的整体成绩情况,其中包括每个学期整体的平均成绩、及格率、最高分、最低分、方差、标准差等多项指标有关,通过所给数据,得到图表。

整体情况为:及格率均在90%以上,并逐年增长,平均分在70分以上,整体成绩良好。

问题二:为了体现学生成绩进步在整体评价中的作用,采用学生每个学期的成绩和进步情况作为指标, 我们采用了两种方法:模糊层次分析法:考虑到每次考试的难易度不同先通过分数转换将学生的成绩转换成“标准分”,且进步度=进步率×学生的成绩平均分。

通过糊层次分析方法得出最后求出各个因素的权重向量为:)2400.0,1800.0,1800.0,1030.0,1033.0,0967.0,0900.0('=W ,再利用模糊层次分析方法得出学生i 学习状况的综合评定指标如下:11223344556677i i i i i i i i C k x k x k x k x k x k x k x =*+*+*+*+*+*+*灰色关联分析法:利用标准分和由黑尔指数法求得的进步分数进行评价。

根据灰色关联度分析法得到各指标的关联度,又由于灰色关联分析法是等权划分,不能显示出各指标的重要性差异,所以我们运用模糊层次分析法中得到的权重。

由此可以得到较为客观的综合评价模型:总和评价结果=各个指标的权重与取值的乘积之和。

问题三: 根据不同的评价方法预测这些学生后两个学期的学习情况:多元线性回归预测模型:只考虑原先度考试成绩对后来考试成绩的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目1
1.某校60名学生的一次考试成绩如下:
93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55
(1)计算均值、标准差、极差、偏度、峰度,画出直方图;
(2)检验分布的正态性;
(3)若检验符合正态分布,估计正态分布的参数并检验参数。

一、模型假设
1、假设60名同学的成绩记录准确。

2、假设60名同学的成绩服从正态分布。

二、模型的分析、建立与求解
第(1)小题是求60名同学成绩的均值、标准差、极差、偏度、峰度,并画出直方图。

根据题目已给的数据用matlab求解,命令分别为:均值:mean(x)
中位数:median(x)
标准差:std(x)
方差:var(x)
偏度:skewness(x)
峰度:kurtosis(x)
matlab求解过程如下:
1、数据的输入
x=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55];
2、用相应的命令求解
均值:mean(x) ans =80.1000
标准差:std(x) ans = 9.7106
极差:range(x) ans = 44
偏度:skewness(x) ans =-0.4682 峰度:kurtosis(x) ans = 3.1529
画出直方图为:hist(x(:),6)
第(2)题为检验分布的正态性,根据matlab中的命令h = normplot(x)画出数据的概率分布图,此命令显示数据矩阵x的正态概率图.如果数据来自于正态分布,则图形显示出直线性形态.而其它概率分布函数显示出曲线形态。

图形如下:
由图可以看出这60名同学的成绩符合正态分布。

第(2)题已经验证这60名同学的成绩符合正态分布,第(3)题估计正态分布的参数并检验参数,用matlab 求解过程如下:
1、参数估计
[muhat,sigmahat,muci,sigmaci]=normfit(x(:))
muhat =80.1000
sigmahat =9.7106
muci =
77.5915
82.6085
估计出这60名同学成绩正态分布的均值为80.1,标准差为9.7106, 95%置信区间为[ 77.5915,82.6085]
2、假设检验
已知这60名同学成绩服从正态分布,现在方差未知的情况下,检验其均值 m 是否等于80.1,用t 检验的过程如下:
原假设 00:μμ=h
备择假设 00:μμ≠h
过程如下:[h,sig,ci]=ttest(x(:),80.1,0.05)
h = 0
sig = 1
ci =
77.5915
82.6085
检验结果: 1. 布尔变量h=0, 表示不拒绝零假设,说明提出的假设寿命均值594是合理的.
2. 95%的置信区间为[77.5915,82.6085], 它完全包括80.1, 且精度比较高。

3. sig值为1, 远超过0.5, 不能拒绝零假设.。

高远才刘宏伟李苏文
2014年6月30日。

相关文档
最新文档