数学建模 交通问题

合集下载

2023年国赛数学建模d题

2023年国赛数学建模d题

2023年国赛数学建模d题
以下是2023年国赛数学建模d题,供您参考:
1.一个自行车车队计划进行一次长途骑行,总路程为200公里。


个队员的骑行速度不同,车队的速度由最慢的队员决定。

假设车队中的队员骑行速度在5-15公里/小时之间均匀分布,请问车队完成整个骑行所需的最短时间是多少?
2.一家快递公司需要在规定时间内将货物送达目的地。

假设快递公
司有n辆卡车,每辆卡车的运输速度不同,且运输速度在v1到v2之间均匀分布。

如果将所有卡车按照其运输速度从慢到快排列,那么最慢的卡车将决定整个运输队伍的速度。

快递公司希望找到一种最优的卡车排列方式,使得整个运输队伍的平均运输速度达到最大。

请设计一个数学模型来解决这个问题。

3.一个公司有n个销售代表,每个销售代表每个月可以完成一定数
量的销售任务,且完成销售任务的数量在区间[a, b]之间均匀分布。

如果将所有销售代表按照其销售能力从低到高排列,那么销售能力最低的销售代表将决定整个销售团队的销售业绩。

公司希望找到一种最优的销售代表排列方式,使得整个销售团队的平均销售业绩达到最大。

请设计一个数学模型来解决这个问题。

4.一个城市有n个居民区,每个居民区的居民数量不同。

居民区之
间的距离也不同,且已知每个居民区到市中心的最短距离。

居民们可以选择不同的交通方式前往市中心,每种交通方式的费用和
时间也不同。

城市管理者希望找到一种最优的交通方式组合,使得所有居民到达市中心的总费用最小。

请设计一个数学模型来解决这个问题。

生活中的数学建模问题例子

生活中的数学建模问题例子

生活中的数学建模问题例子生活中的数学建模问题数学建模是将实际问题抽象为数学模型的过程,通过数学模型的建立和求解,可以对问题进行分析、预测和优化。

在生活中,我们会遇到许多需要用数学建模来解决的问题。

下面是一些常见的例子。

1. 交通拥堵问题问题描述在城市交通流量较大时,往往会出现交通拥堵的情况。

为了合理规划交通流量,我们需要建立一个能预测交通拥堵程度的数学模型。

建模过程•收集数据:首先,我们需要收集一段时间内的交通数据,包括车辆数量、行驶速度等信息。

•分析数据:根据收集到的数据,我们可以分析交通拥堵的原因和模式。

例如,可以通过分析车辆密度和速度的关系来确定交通流量的阈值。

•建立数学模型:基于分析结果,我们可以建立一个数学模型来描述交通拥堵程度。

例如,可以使用流体力学中的守恒方程,考虑车辆的流入、流出和流动等因素。

•模型求解:通过求解建立的数学模型,我们可以得到交通拥堵程度的预测结果。

•模型评估和优化:根据模型预测的结果,我们可以评估当前交通规划的效果,并提出优化建议。

2. 疫情传播问题问题描述在疫情爆发时,我们希望能够及早预测疫情的传播趋势和规模,以便采取相应的措施来控制疫情。

建模过程•收集数据:收集疫情传播的相关数据,包括感染人数、治愈人数、病毒传播速度等信息。

•分析数据:利用收集到的数据,我们可以分析疫情传播的特点和规律。

例如,可以通过分析感染人数的增长速度来预测疫情的传播趋势。

•建立数学模型:基于分析结果,我们可以建立一个数学模型来描述疫情传播的过程。

例如,可以使用传染病数学模型中的传染病传播动力学模型,考虑人群的感染、康复和死亡等因素。

•模型求解:通过求解建立的数学模型,我们可以得到疫情传播的预测结果。

•模型评估和优化:根据模型预测的结果,我们可以评估当前疫情防控的效果,并提出优化建议。

3. 资产投资问题问题描述在投资领域,我们希望能够通过建立数学模型来分析不同投资策略下的收益和风险,并进行优化选择。

初中数学建模案例

初中数学建模案例

初中数学建模案例数学建模案例:城市交通拥堵问题的优化摘要:城市交通拥堵是大城市所面临的普遍问题,本案例将通过建立数学模型对城市交通拥堵问题进行优化分析,以求解最佳车辆通行路线,提高交通运行效率。

通过引入实时的交通流数据,通过数学建模和优化算法,对现有的交通流模型进行改进。

1.引言城市交通拥堵严重影响到居民的出行效率和生活质量,同时还造成大量的汽车尾气排放,给环境带来巨大的负面影响。

因此,对城市交通拥堵问题进行优化分析,以提高交通运行效率和减少交通污染,具有重要的现实意义。

2.问题建模2.1基本假设我们对城市交通拥堵问题进行以下基本假设:1)假设城市交通网络是一个有向图,交叉口为节点,道路为边。

2)假设车辆的行驶速度在不同道路上是相同的。

3)假设车辆在交叉口处按照指定的交通规则进行行驶。

4)假设车辆的目的地是已知的。

2.2确定目标我们的目标是通过优化交通流模型,使得车辆在城市交通网络中的行驶时间最短。

2.3建立数学模型我们将采用最短路径算法求解车辆行驶的最佳路径。

首先,我们需要对城市交通网络进行建模。

假设城市交通网络中交叉口数量为N,那么可以用一个N×N的矩阵A来表示交通网络的连通关系,其中A[i][j]表示从节点i到节点j的道路长度。

如果节点i和节点j之间不存在直接的道路连接,则取A[i][j]为无穷大。

然后,我们可以采用Dijkstra算法来求解最短路径。

Dijkstra算法是一种贪心算法,它通过不断更新起点到所有其他节点的最短路径长度,从而找到起点到终点的最短路径。

具体步骤如下:1)初始化起点到所有其他节点的最短路径长度为无穷大。

2)将起点到起点的最短路径长度设为0。

3)将起点标记为已访问。

4)对于起点直接相连的节点,更新起点到这些节点的最短路径长度。

5)选择一个未访问的节点中最短路径长度最小的节点,将其标记为已访问。

6)更新这个节点直接相连的节点的最短路径长度。

7)重复步骤5和步骤6,直到所有节点都被标记为已访问。

数学建模--交通问题

数学建模--交通问题

数学建模--交通问题摘要近年来随着机动车辆的迅猛增长,城市道路的交通压⼒⽇渐增⼤,各⼤城市对旧城改造及城市道路建设的投⼊也不断扩⼤,交通拥挤问题却仍旧⽇益严重。

因此,科学全⾯地分析和评价城市的绩效,进⽽找到适合我国的城市交通规划模式,已成为我国城市交通迫切需要解决的课题。

本⽂通过⼤量查阅城市交通绩效评价指标,结合⽬前我国交通发展现状,以兰州为例,⾸先建⽴了绩效评价指标的层次结构模型,确定了⽬标层,准则层(⼀级指标),⼦准则层(⼆级指标)。

其次,建⽴评价集V=(优,良,中,差)。

对于⽬标层下每个⼀级评价指标下相对于第m 个评价等级的⾪属程度由专家的百分数u 评判给出,即U =[0,100]应⽤模糊统计建⽴它们的⾪属函数A(u), B(u), C(u) ,D(u),最后得出⽬标层的评价矩阵Ri ,(i=1,2,3,4,5)。

利⽤A,B 两城相互⽐较法,根据实际数据建⽴⼆级指标对于相应⼀级指标的模糊判断矩阵P i (i=1,2,3,4,5)然后,我们经过N 次试验调查,明确了各层元素相对于上层指标的重要性排序,构造模糊判断矩阵P ,利⽤公式1,ij ij n kj k u u u ==∑1,n i ij j w u ==∑ 1,i i n j j ww w ==∑[]R W R W R W R W R W W R W O 5544332211,,,,==计算出权重值,经过⼀致性检验公式RICICR =检验后,均有0.1CR <,由此得出各层次的权向量()12,,Tn W W W W =K 。

然后后,给出建⽴绩效评价模型(其中O 是评价结果向量),应⽤模糊数学中最⼤⾪属度原则,对被评价城市交通的绩效进⾏分级评价。

接着,为了优化兰州安宁区道路交通,我们建⽴了评价城市交通的指标体系,继⽽构造模糊判断矩阵P ,计算出相应的权重值。

我们挑选了道路因素进⾏优化,以主⼲道利⽤率约束、红绿灯效率约束、公交站点数⽬约束、⾮负约束为约束条件建⽴了安宁区道路交通优化⽅案的权系数模型,最后利⽤实际测算数据给出最终优化模型,提出合理化的优化建议,希望能为更好的建设兰州交通体系作出贡献。

2023年美赛数学建模c题题目

2023年美赛数学建模c题题目

2023年美赛数学建模c题题目
2023年的美赛数学建模竞赛c题题目是一道关于城市交通规划的问题。

该问题要求参赛者考虑一个城市的交通拥堵问题,并提出解决方案。

具体来说,这个城市的道路网络非常复杂,包括主干道、支路和环路等不同类型的道路。

同时,该城市的车辆数量非常多,导致经常出现交通拥堵的情况。

为了解决这个问题,市政府决定采用一些新的交通管理措施,例如限制某些区域的车辆通行、增加公共交通工具的数量等等。

参赛者需要根据这个问题的背景和要求,建立数学模型来解决这个问题。

他们需要考虑各种因素,例如道路网络的拓扑结构、车辆的数量和类型、交通流量的变化趋势等等。

通过合理的建模和分析,他们可以得出一些有效的解决方案,帮助市政府更好地管理城市的交通系统。

总之,2023年美赛数学建模竞赛c题题目是一道具有挑战性的问题,需要参赛者具备扎实的数学基础和丰富的实践经验。

只有通过深入思考和创新思维,才能在这场比赛中获得好成绩。

数学建模城市轨道交通列车时刻表优化问题(一)

数学建模城市轨道交通列车时刻表优化问题(一)

数学建模城市轨道交通列车时刻表优化问题(一)数学建模城市轨道交通列车时刻表优化问题问题背景介绍城市轨道交通系统是现代城市中重要的公共交通工具之一。

为了提高运行效率和乘客的出行体验,优化列车时刻表成为了一个重要的问题。

数学建模可用于解决这一问题。

相关问题1.列车发车间隔优化问题–描述:如何确定最佳的列车发车间隔,以最大限度地满足乘客的运输需求,同时避免列车拥挤和延误?–解决方法:基于乘客流量统计数据和列车运行速度,建立数学模型,通过优化算法确定最优的发车间隔。

2.站点停车时间优化问题–描述:如何确定每个站点的最佳停车时间,以保证足够的时间供乘客上下车,同时最大限度地减少停车时间对整体线路运行的影响?–解决方法:基于乘客上下车速度、列车进出站时间等因素,建立数学模型,通过优化算法确定每个站点的最佳停车时间。

3.列车运行速度优化问题–描述:如何确定每个路段的最佳列车运行速度,以最大限度地提高运输效率,同时确保乘客的乘坐舒适度和安全性?–解决方法:基于路段长度、信号灯设置、列车加速度等因素,建立数学模型,通过优化算法确定每个路段的最佳列车运行速度。

4.列车时刻表调整问题–描述:如何在乘客需求变化或其他不可控因素(如天气、突发事件等)影响时,及时调整列车时刻表,以保证乘客的出行需求得到满足?–解决方法:基于实时乘客流量数据和其他变化因素,建立动态数学模型,通过优化算法调整列车时刻表。

5.乘客换乘换线问题–描述:如何在设计列车时刻表时,最大限度地减少乘客的换乘换线时间,提高整体线路运行效率?–解决方法:基于换乘站点、列车运行速度、换乘路径等因素,建立数学模型,通过优化算法确定最佳的列车时刻表,减少乘客的换乘换线时间。

6.列车故障应急处理问题–描述:如何应对列车故障等突发情况时,及时调整列车时刻表,最小化对整体线路运行的影响?–解决方法:基于实时列车运行状态数据和故障情况,建立应急调整模型,通过优化算法调整列车时刻表。

数学建模城市轨道交通列车时刻表优化问题

数学建模城市轨道交通列车时刻表优化问题

数学建模城市轨道交通列车时刻表优化问题数学建模城市轨道交通列车时刻表优化问题问题描述该问题探讨的是如何优化城市轨道交通列车的时刻表安排,以提高运输效率和乘客满意度。

相关问题1.列车间隔时间问题:如何确定列车之间的最佳间隔时间,以保证乘客能够顺利上下车,同时减少列车之间的空闲时间?2.路线选择问题:在多条轨道交通线路之间,如何选择最优的线路和站点设置,以最大程度地满足乘客的出行需求?3.列车调度问题:如何合理安排列车的开行时间和顺序,使得列车能够尽可能平均地分布在高峰和非高峰时段,从而避免交通拥堵和拥挤?4.车辆容量配比问题:如何根据不同线路的客流量和乘客出行的时间分布,合理安排不同车辆的座位和站立人数,以提高列车运输效率和乘客的舒适度?5.列车时刻表调整问题:如何根据实际运输情况和乘客反馈,对列车时刻表进行动态调整,以提高运输效率和满足乘客的出行需求?6.乘客流量预测问题:如何准确预测不同线路和站点的乘客流量,以便合理安排列车的运行计划和车辆配比?7.乘客换乘优化问题:在多条轨道交通线路的交叉站点上,如何设计合理的换乘方案,以减少乘客在换乘过程中的时间和体力消耗?8.车站人流控制问题:如何通过优化车站出入口、候车室和过道的布局,以及合理指导乘客的行为,减少车站的拥挤程度和乘客的等待时间?解决方法1.列车间隔时间问题可以采用数学模型来计算最佳的列车间隔时间,考虑乘客上下车的时间和需求,以及列车运行的速度和停车时间。

2.路线选择问题可以通过分析乘客的出行数据和交通网络结构,使用图论算法和最优化方法来确定最优的线路和站点设置方案。

3.列车调度问题可以采用动态规划算法和模拟仿真技术,根据列车的运行速度、乘客流量和出行需求等因素,优化列车的开行时间和顺序。

4.车辆容量配比问题可以通过乘客流量预测和列车座位的布局设计,确定不同线路和不同时段的车辆配比方案,以满足乘客的乘坐需求。

5.列车时刻表调整问题可以采用数据分析和机器学习方法,根据实际运输情况和乘客反馈,调整列车时刻表,以提高运输效率和乘客满意度。

2023年数学建模比赛d题

2023年数学建模比赛d题

数学建模比赛D题通常是一个比较复杂的问题,需要学生运用数学知识和建模技巧来解决。

以下是一个可能的D题示例:
题目:城市交通拥堵问题
背景:随着城市人口的增长和经济的发展,城市交通拥堵问题日益严重。

为了缓解交通拥堵,提高城市交通效率,需要对城市交通系统进行优化。

问题:
1.建立城市交通系统的数学模型,包括车辆流量、道路长度、交通信号灯等参数。

2.根据历史数据,预测未来一段时间内的交通流量和拥堵情况。

3.设计一种优化算法,通过调整交通信号灯的配时方案,以最小化交通拥堵时间和车
辆平均等待时间。

4.对优化算法进行仿真实验,验证其可行性和有效性。

要求:
1.使用数学模型对城市交通系统进行描述,包括车辆流量、道路长度、交通信号灯等
参数。

2.利用历史数据,建立预测模型,预测未来一段时间内的交通流量和拥堵情况。

3.设计一种优化算法,通过调整交通信号灯的配时方案,以最小化交通拥堵时间和车
辆平均等待时间。

4.对优化算法进行仿真实验,验证其可行性和有效性。

5.给出具体的实施方案和建议。

这个问题需要学生运用数学知识、建模技巧和计算机编程能力来解决。

他们需要建立数学模型、预测模型和优化算法,并进行仿真实验来验证其可行性和有效性。

同时,他们还需要给出具体的实施方案和建议,以帮助解决城市交通拥堵问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要近年来随着机动车辆的迅猛增长,城市道路的交通压力日渐增大,各大城市对旧城改造及城市道路建设的投入也不断扩大,交通拥挤问题却仍旧日益严重。

因此,科学全面地分析和评价城市的绩效,进而找到适合我国的城市交通规划模式,已成为我国城市交通迫切需要解决的课题。

本文通过大量查阅城市交通绩效评价指标,结合目前我国交通发展现状,以兰州为例,首先建立了绩效评价指标的层次结构模型,确定了目标层,准则层(一级指标),子准则层(二级指标)。

其次,建立评价集V=(优,良,中,差)。

对于目标层下每个一级评价指标下相对于第m 个评价等级的隶属程度由专家的百分数u 评判给出,即U =[0,100]应用模糊统计建立它们的隶属函数A(u), B(u), C(u) ,D(u),最后得出目标层的评价矩阵Ri ,(i=1,2,3,4,5)。

利用A,B 两城相互比较法,根据实际数据建立二级指标对于相应一级指标的模糊判断矩阵P i (i=1,2,3,4,5)然后,我们经过N 次试验调查,明确了各层元素相对于上层指标的重要性排序,构造模糊判断矩阵P ,利用公式1,ij ij n kj k u u u ==∑1,n i ij j w u ==∑ 1,i i n j j ww w ==∑[]R W R W R W R W R W W R W O 5544332211,,,,==计算出权重值,经过一致性检验公式RICICR =检验后,均有0.1CR <,由此得出各层次的权向量()12,,Tn W W W W =。

然后后,给出建立绩效评价模型(其中O 是评价结果向量),应用模糊数学中最大隶属度原则,对被评价城市交通的绩效进行分级评价。

接着,为了优化兰州安宁区道路交通,我们建立了评价城市交通的指标体系,继而构造模糊判断矩阵P ,计算出相应的权重值。

我们挑选了道路因素进行优化,以主干道利用率约束、红绿灯效率约束、公交站点数目约束、非负约束为约束条件建立了安宁区道路交通优化方案的权系数模型,最后利用实际测算数据给出最终优化模型,提出合理化的优化建议,希望能为更好的建设兰州交通体系作出贡献。

关键词:城市交通 层次分析 模糊综合评判 绩效评价 隶属度一、问题重述城市交通系统是城市赖以生存和发展的保证,交通的顺畅程度直接影响着城市的发展。

近年来,随着城镇化进程的不断加快和汽车工业的快速发展,近年来我国城市机动车拥有量得以大幅度增加。

尽管政府每年都要投入大量的资金进行包括道路建设在内的城市基础设施的建设,但是道路建设的速度赶不上汽车拥有量增长的速度。

长期以往,城市交通不堪重负,交通拥堵越来越严重。

交通拥堵已严重影响到城市的人居环境,也成为制约可持续发展的重要瓶颈,自然也就成了大中型城市亟待解决的共同难题。

造成交通拥堵的原因有很多,既有交通投入、道路系统的原因,也有交通结构、交通管理的原因,更有城市功能结构与布局上的原因。

如何控制兰州的交通拥堵状况成为了兰州市政府亟待解决的问题之一,本文将利用数学建模的方法对兰州交通拥堵的成因以及如何解决交通拥堵进行分析,并提出可行的建议。

1、存在的问题:(1)机动车增长速度过快,道路容量严重不足。

(2)受先地形条件限制,兰州市内4区建成区呈“哑铃”状,中心城区正好位于最窄处,路网结构不合理,支路分流循环不畅。

(3)城市道路交通发展滞后,服务水平差。

(4)在西部大发展的浪潮中,兰州市人口总量在近十年中迅速膨胀,导致了十分严重交通拥挤。

2、需解决的问题:(1)通过对交通拥堵的成因分析,进一步健全城市交通绩效评价的治标体系,建立城市交通规划和道路交通标线的优化模型。

(2)基于我们的优化模型,选定兰州市一个典型的交通线路,制定一个详细的具有可操作性的道路交通优化方案(方案至少要包含交通路口各个方向(含人行道)的通行时间分配,左、右转向设定的条件,直行、转向车道的标线设置等内容),并运用你们的评价体系评估我们的交通方案。

二、问题分析交通拥堵在我国大城市普遍存在,交通拥堵不仅影响了城市居民的出行,而且由于汽车尾气及噪音污染,影响了城市居民的生活环境。

我国城市交通问题错综复杂,解决交通拥堵问题刻不容缓,它直接关系到广大市民的切身利益,交通顺畅与否直接影响到城市功能的发挥和城市运转的效率,也影响着大气环境质量。

因此,优化城市交通规划和道路交通标线,提高交通效率,努力提高城市交通整体绩效水平至关重要。

在本文中,我们采用层次分析法从车辆因素、道路因素、人为因素、社会因素四个个方面对城市交通进行综合评估,最终得出一个综合评分。

车辆因素主要从车辆自身对交通问题影响,包括车流量,车辆运载效率等;道路因素指标目的在于衡量道路的交通运输能力,以及道路交通标线的设计;人为因素体现人为主观行动对交通的影响;社会因素从社会现象上分析对交通的影响。

利用A,B 两城市比较法,通过实际数据对比计算相似度,构建模糊矩阵得出二级指标权重向量,再利用专家打分法一级指标权重向量,综合得出应用上述评价体系和评价指标体系,可以对城市交通进行评价,以判断城市交通的现状,诊断其发展进程中的问题,为城市交通的优化提供决策参考。

考虑到用层次分析法计算各因素权重的过程中专家评分具有主观性,各指标具有离散性,因而会有误差,所以我们最后用模糊数学的知识对模型进行了优化处理,对有些变量进行连续化处理,并建立其关于上级指标的隶属函数,进而计算出隶属度,由此隶属度构成的矩阵,综合各因素的权重列向量,经过矩阵运算,得出技术效益的综合结果。

由这些因素集的综合结果构成上一层的因素集,再根据上一层的权重分配方案,采取同样的计算方法,得到最终的综合分数。

三、模型假设假设一:我们的模型只列出了16项影响城市交通绩效的指标,因为宏观因素及微观因素,影响因素远远不止这些,我们假设除本文所列项目,其他因素的影响甚微,可以忽略不计。

假设二:文中层次分析模型建构过程中涉及到了专家打分,但由于评分专家对所评方案的评分受个人因素影响,我们假设5个专家的打分是客观、公正的, 且对指标无明显偏好。

假设三:假设受评规划方案均满足城市交通规划方案的优化选择模型的基本要求。

四、符号说明1R .................................................................................... 人为因素的评价矩阵 1P .................................................................................... 人为因素的模糊判断矩阵 1W .................................................................................... 人为因素的权向量 2R .................................................................................. 道路因素的评价矩阵 2P ..................................................................................... 道路因素的模糊判断矩阵 2W ..................................................................................... 道路因素的权向量3R ..................................................................................... 车辆因素的评价矩阵3P ....................................................................................... 车辆因素的模糊判断矩阵 3W ...................................................................................... 车辆因素的权向量 4R ...................................................................................... 社会因素的评价矩阵 4P ....................................................................................... 社会因素的模糊判断矩阵 4W ....................................................................................... 社会因素的权向量 5R ....................................................................................... 功能特征的评价矩阵5P ........................................................................................ 功能特征的模糊判断矩阵5W ....................................................................................... 功能特征的权向量P ......................................................................................... 总目标的模糊判断矩阵 W ........................................................................................ 总目标的权向量 O ......................................................................................... 评价结果向量λi....................................................................................... 权系数Z ......................................................................................... 综合评价五、模型建立5.1 数学知识回顾5.1.1 层次分析法AHP(Analytic Hierarchy Process)方法[1],是由20世纪70年代由美国著名运筹学学家T.L.Satty 提出的。

相关文档
最新文档