sas在聚类分析中的应用
SAS中的聚类分析方法总结

SAS中的聚类分析方法总结(1)——聚类分析概述说起聚类分析,相信很多人并不陌生。
这篇原创博客我想简单说一下我所理解的聚类分析,欢迎各位高手不吝赐教和拍砖。
按照正常的思路,我大概会说如下几个问题:1. 什么是聚类分析?2. 聚类分析有什么用?3. 聚类分析怎么做?下面我将分聚类分析概述、聚类分析算法及sas实现、案例三部分来系统的回答这些问题。
聚类分析概述1. 聚类分析的定义中国有句俗语叫“物以类聚,人以群分”——剔除这句话的贬义色彩。
说白了就是物品根据物品的特征和功用可以分门别类,人和人会根据性格、偏好甚至利益结成不同的群体。
分门别类和结成群体之后,同类(同群)之间的物品(人)的特征尽可能相似,不同类(同群)之间的物品(人)的特征尽可能不同。
这个过程实际上就是聚类分析。
从这个过程我们可以知道如下几点:1) 聚类分析的对象是物(人),说的理论一点就是样本2) 聚类分析是根据物或者人的特征来进行聚集的,这里的特征说的理论一点就是变量。
当然特征选的不一样,聚类的结果也会不一样;3) 聚类分析中评判相似的标准非常关键。
说的理论一点也就是相似性的度量非常关键;4) 聚类分析结果的好坏没有统一的评判标准;2. 聚类分析到底有什么用?1) 说的官腔一点就是为了更好的认识事物和事情,比如我们可以把人按照地域划分为南方人和北方人,你会发现这种分法有时候也蛮有道理。
一般来说南方人习惯吃米饭,北方习惯吃面食;2) 说的实用一点,可以有效对用户进行细分,提供有针对性的产品和服务。
比如银行会将用户分成金卡用户、银卡用户和普通卡用户。
这种分法一方面能很好的节约银行的资源,另外一方面也能很好针对不同的用户实习分级服务,提高彼此的满意度。
再比如移动会开发全球通、神州行和动感地带三个套餐或者品牌,实际就是根据移动用户的行为习惯做了很好的用户细分——聚类分析;3) 上升到理论层面,聚类分析是用户细分里面最为重要的工具,而用户细分则是整个精准营销里面的基础。
SAS 聚类分析方法

SAS 聚类分析(描述算法)系统聚类法系统聚类法(Hierarchical clustering method )是目前使用最多的一种方法。
其基本思想是首先将n 个样品看成n 类(即一类包括一个样品),然后规定样品之间的距离和类与类之间的距离。
将距离最近的两类合并为一个新类,在计算新类和其他类之间的距离,再从中找出最近的两类合并,继续下去,最后所有的样品全在一类。
将上述并类过程画成聚类图,便可以决定分多少类,每类各有什么样品。
系统聚类法的步骤为:①首先各样品自成一类,这样对n 组样品就相当于有n 类;②计算各类间的距离,将其中最近的两类进行合并;③计算新类与其余各类的距离,再将距离最近的两类合并;④重复上述的步骤,直到所有的样品都聚为一类时为止。
下面我们以最短距离法为例来说明系统聚类法的过程。
最短距离法的聚类步骤如下:① 规定样品之间的距离,计算样品的两两距离,距离矩阵记为()0S ,开始视每个样品分别为一类,这时显然应有pq d q p D =),(;② 选择距离矩阵()0S 中的最小元素,不失一般性,记其为),(q p D ,则将p G 与q G 合并为一新类,记为m G ,有q p m G G G ⋃=;③ 计算新类m G 与其他各类的距离,得到新的距离矩阵记为()1S ;④ 对()1S 重复开始进行第②步,…,直到所有样本成为一类为止。
值得注意的是在整个聚类的过程中,如果在某一步的距离矩阵中最小元素不止一个时,则可以将其同时合并。
● 系统聚类法是最常用的一种聚类方法,常用的系统聚类方法有最短距离法、最长距离法、中间距离法、类平均法、重心法、Ward 最小方差法、密度估计法、两阶段密度估计法、最大似然估计法、相似分析法和可变类平均法。
● 大多数的研究表明:最好综合特性的聚类方法为类平均法或Ward 最小方差法,而最差的则为最短距离法。
Ward 最小方差法倾向于寻找观察数相同的类。
类平均法偏向寻找等方差的类。
基于SAS的Web使用日志用户聚类分析

( Hu n a n No r ma l Un i v e r s i t y , C h a n g s h a 4 1 0 0 8 1 , C h i n a )
Ab s t r a c t : Th e u s e r c l u s t e r An a l v s i s o f We b Us a g e s L o g s b a s e d o n S AS i s t h e d a t a o f We b Us a g e s L o g s f o r d a t a c o n v e r s i o n , g e t —
t i ng t he us e r t r a ns a c t i o n t a bl e w hi c h i s pr e —f or m e d a f t e r t he ha nd l i n g oft he c or r e s po nd i n g d a t a ,t he n ma k i ng t he us e r c l us t e r a na l-
类 方法与之对 应 , 如表 1 所示 。
表 1 聚 类 过 程 与 聚 类 方法 对 应 表
聚类过程 ( S T A T 模块 )
聚类方法 ( S A S )
谱系聚类
快速聚类 变量聚类 T R E E
C L U S T E R
F S A T C L U S 、 S T A N D A R D V A R C L U S 树 图形式
关键词 : S AS ; We b 使 用 日志 ; 用户聚类分析 ; 用户事务表 ; 数 字资源
中 图分 类 号 : T P 3 1 1 文献标识码 : A 文章编号 : 1 0 0 9 — 3 0 4 4 ( 2 O 1 3 ) 2 5 — 5 5 9 5 — 0 3
sas聚类分析(SAS)分解

个体与小类、小类与小类间“亲 疏程度”的度量方法
SPSS中提供了多种度量个体与小类、小类 与小类间“亲疏程度”的方法。与个体 间“亲疏程度”的测度方法类似,应首 先定义个体与小类、小类与小类的距离。 距离小的关系亲密,距离大的关系疏远。 这里的距离是在个体间距离的基础上定 义的,常见的距离有:
似程度通常可以用简单相关系数或者等 级相关系数等;一是个体间的差异程度 ,通常通过某种距离来测度。
1、定距型变量个体间距离的计算方式
欧式距离(Euclidean distance)
k
(xi yi )2 (73 66)2 (68 64)2 i1
平方欧式距离(Squared Euclidean distance ) 切比雪夫(Chebychev)距离
各变量间不应有较强的线性相关关系
学校
参加科研 人数
(人)
投入经费 (元)
立项课题 数(项)
样本的欧氏距离
元
万元
1
410
4380000
19
(1,2) 265000
81.623
2
336
1730000
21
(1,2) 218000
193.7
3
490
220000
8
(1,2)
47000
254.897
层次聚类
1 层次聚类的两种类型和两种方式 层次聚类又称系统聚类,简单地讲是指聚类过程
(1)间隔尺度。变量用连续的量来表示,如“ 各种奖金”、“各种津贴”等。
(2)有序尺度。指标用有序的等级来表示,如 文化程度分为文盲、小学、中学、中学以上 等有次序关系,但没有数量表示。
(3)名义尺度。指标用一些类来表示,这些类 之间没有等级关系也没有数量关系,如表中 的性别和职业都是名义尺度。
使用SAS进行数据分析的基础知识

使用SAS进行数据分析的基础知识一、SAS数据分析简介SAS(Statistical Analysis System)是一套全面的数据分析软件工具,它具备强大的数据处理和统计分析能力。
它适用于各种领域的数据分析,包括市场调研、金融分析、医疗研究等。
二、数据准备在进行SAS数据分析之前,首先要进行数据准备。
这包括数据的收集、整理和清洗。
收集数据可以通过调查问卷、实地观察、数据库查询等方式。
整理数据即将数据格式统一,包括去除重复数据、统一变量命名等。
清洗数据则是去除异常值、缺失值处理等。
三、SAS基础语法1. 数据集(Data set)的创建和导入SAS中的数据以数据集的形式存在,可以使用DATA步骤创建数据集,也可以从外部文件导入数据集。
导入数据可使用INFILE 语句指定文件位置,并使用INPUT语句将数据导入到数据集中。
2. 数据操作和处理SAS提供了多种数据操作和处理函数,如排序、合并、拆分等。
常用的函数有SUM、MEAN、COUNT、MAX、MIN等,它们可以对数据集中的变量进行统计和计算。
3. 数据可视化SAS提供了多种可视化方式,用于更直观地展示数据。
可以使用PROC SGPLOT语句进行绘图,如折线图、散点图、柱状图等。
还可以使用PROC TABULATE语句生成数据报表。
四、统计分析SAS强大的统计分析功能是其独特的优势之一。
以下为几种常用的统计分析方法:1. 描述统计分析描述统计分析用于对数据进行概括和描述。
可以使用PROC MEANS进行均值、中位数、标准差等统计指标的计算,使用PROC FREQ进行频数分析。
2. t检验t检验用于比较两组样本均值的差异是否显著。
可以使用PROC TTEST进行t检验分析,根据t值和显著性水平判断差异是否显著。
3. 方差分析方差分析用于比较两个或多个样本均值的差异是否显著。
可以使用PROC ANOVA进行方差分析,根据F值和显著性水平判断差异是否显著。
SAS数据分析实验报告

SAS数据分析实验报告摘要:本文使用SAS软件对一组数据集进行了分析。
通过数据清洗、数据变换、数据建模和数据评估等步骤,得出了相关的结论。
实验结果表明,使用SAS软件进行数据分析可以有效地处理和分析大型数据集,得出可靠的结论。
1.引言数据分析在各个领域中都扮演着重要的角色,可以帮助人们从大量的数据中提取有用信息。
SAS是一种常用的数据分析软件,被广泛应用于统计分析、商业决策、运营管理等领域。
本实验旨在探究如何使用SAS软件进行数据分析。
2.数据集描述本实验使用了一个包含1000个样本的数据集。
数据集包括了各个样本的性别、年龄、身高、体重等多种变量。
3.数据清洗在进行数据分析之前,首先需要对数据进行清洗。
数据清洗包括缺失值处理、异常值处理和重复值处理等步骤。
通过使用SAS软件中的相应函数和命令,我们对数据集进行了清洗,确保数据的质量和准确性。
4.数据变换在进行数据分析之前,还需要对数据进行变换。
数据变换包括数据标准化、数据离散化和数据归一化等操作。
通过使用SAS软件中的变换函数和操作符,我们对数据集进行了变换,使其符合分析的需要。
5.数据建模数据建模是数据分析的核心过程,包括回归分析、聚类分析和分类分析等。
在本实验中,我们使用SAS软件的回归、聚类和分类函数,对数据集进行了建模分析。
首先,我们进行了回归分析,通过拟合回归模型,找到了自变量对因变量的影响。
通过回归模型,我们可以预测因变量的值,并分析自变量的影响因素。
其次,我们进行了聚类分析,根据样本的特征将其分类到不同的群组中。
通过聚类分析,我们可以发现样本之间的相似性和差异性,从而做出针对性的决策。
最后,我们进行了分类分析,根据样本的特征判断其所属的类别。
通过分类分析,我们可以根据样本的特征预测其所属的类别,并进行相关的决策。
6.数据评估在进行数据分析之后,还需要对结果进行评估。
评估包括模型的拟合程度、变量的显著性和模型的稳定性等。
通过使用SAS软件的评估函数和指标,我们对数据分析的结果进行了评估。
sas使用方法范文

sas使用方法范文SAS(Statistical Analysis System)是一种统计分析软件,广泛应用于数据管理和分析。
它提供了一系列功能强大的工具和处理数据的方法。
下面将介绍SAS的使用方法,包括数据导入、数据处理、数据分析和数据可视化等。
1.数据导入:SAS可以导入多种格式的数据文件,如Excel、CSV和文本文件。
使用SAS的数据步骤(data step),可以将数据导入到SAS数据集中。
以下是一个导入Excel文件的示例代码:```data mydata;infile 'path_to_file\myfile.xlsx'dbms=xlsx replace;sheet='sheet1';getnames=yes;run;```2.数据处理:SAS提供了多种数据处理的方法。
例如,通过数据步骤可以对数据进行清洗、转换和整理。
以下是一些常用的数据处理操作:-选择变量:使用KEEP或DROP语句选择需要的变量。
-变量变换:使用COMPUTE语句创建新变量。
-数据过滤:使用WHERE语句根据条件筛选数据。
-数据合并:使用MERGE语句将多个数据集合并在一起。
3.数据分析:SAS提供了丰富的数据分析功能,可以进行统计分析、建模和预测等操作。
以下是一些常用的数据分析方法:-描述统计:使用PROCMEANS、PROCFREQ和PROCSUMMARY等过程进行数据的描述统计分析。
-方差分析:使用PROCANOVA进行方差分析。
-回归分析:使用PROCREG进行线性回归分析。
-聚类分析:使用PROCFASTCLUS进行聚类分析。
-因子分析:使用PROCFACTOR进行因子分析。
-时间序列分析:使用PROCARIMA进行时间序列分析。
4.数据可视化:SAS提供了多种方法用于数据可视化。
通过使用SAS的图形过程(PROCGPLOT和PROCSGPLOT等),可以绘制各种类型的图表,如柱状图、散点图、折线图和饼图等。
SPSS聚类分析详解

指标 地区(样品) 1
2
3
456
性能
9 1 10
928
颜色
827
946
式样
728
357
用分类法对6个样品进行分类,以估计哪些地区最有可能经销 这类新产品?
按公式计算两两样品间的相似系数,得相似矩阵
Q (Coij) s(qij)
1
2
3
4
5
6
1 1
2 0.933 1
Q=
3
0.994
2)形成一个由小到大的分析系统。 3)把整个分类系统画成一张分类图
二、聚类统计量
首先定义一些分类统计指标 —— 刻画样或指标之间 的相似程度(这些统计指标称为聚类统计量)
在市场研究中,样品 —— 用作分类的事物
指标 —— 用来作为分类依据的变量。(如: 年龄、收入、销售量)
(一)相似系数(夹角余弦)
0.47
X4
0.93
X2
0.68
X7
X5
-0.94
0.49
X8
主要城市日照时数
注:连续变量
SPSS提供不同类间距 离的测量方法
1、组间连接法 2、组内连接法 3、最近距离法 4、最远距离法 5、重心法 6、中位数法 7、Ward最小偏差平 方和法
观测量概述表
聚类步骤,与图结合看!
4、5
输入格式
55列为城市
15位
输出F及t 统计量
平均法 重心法 最小距离法
输出结果:
新类中的观测值数
观测值之间距离的均方根
类间距离除以 观测值间距离 均方根得来
类数
指出被合并的类
F、t**2峰值(起伏)越大 说明分类显著
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、CLUSTER 树法变量间聚类,本模型给出了 16 个国家在聚类过程中的具体“中 间”过程,通过树的形式形象而明确的给出了分类的具体结果。
最后对三中模型的优缺点进行对比分析,本文认为各自特点鲜明,且相互补充,而 且聚类结果和实际情况相吻合。 关键字:SAS 聚类分析 距离 VARCLUS FASTCLUS CLUSTER TREE
一、VARCLUS 变量间聚类分析,本模型主要是对变量内的联系进行聚类分析,并 给出了相关的结果:7 个分量分成 5 组,其中 m100 和 m200 分成一组,属于短跑类型; m1500 和 marathon 成为第二类,属于中长跑,而另外三个变量各成一类。
二、FASTCLUS 变量间聚类分析,本模型是对变量间进行聚类分析,得出结果如下: 1 类中仅由西沙摩亚;2 类有阿根廷、百慕大、巴西、智利、哥伦比亚、哥斯达黎加 6 个国家;3 类有库克岛,4 类有澳大利亚、加拿大、杰克斯洛法克、匈牙利、美国、墨西 哥 6 个国家;5 类有多米尼加共和国和危地马拉 2 个国家。5 类实力由强到弱的类的顺 序为 4,2,5,1,3。
3.1 SAS 简介·······································································································································1 3.2 聚类分析定义 ·······························································································································1 3.3 聚类方法分类 ·······························································································································2 3.4 距离的相关定义 ···························································································································2 3.5 相似系数 ·······································································································································3 3.6 类间距离定义 ·······························································································································4 3.7 聚类分析一般步骤························································································································4 四、数据的预处理 ······································································································································5 五、具体模型 ··············································································································································5 5.1 变量聚类分析 ································································································································5
5.1.1 用 VARCLUS 过程实现变量间聚类分析·········································································5 5.1.2 编写程序 ····························································································································6 5.1.3 输出结果 ····························································································································6 5.1.4 结果分析 ····························································································································9 5.2 FASTCLUS 变量间聚类分析 ········································································································9 5.2.1 用 FASTCLUS 进行变量间聚类分析 ················································································9 5.2.2 编写程序 ····························································································································9 5.2.3 输出结果 ··························································································································10 5.2.4 结果分析 ··························································································································10 5.3 CLUSTER 树法变量间聚类分析 ································································································11 5.3.1 CLUSTER 过程简介 ·········································································································11 5.3.2 编写程序 ··························································································································11 5.3.3 输出结果 ··························································································································11 5.3.4 结果分析 ··························································································································13 5.4 三种方法的对比分析··················································································································13 六、参考文献 ············································································································································13 七、附录····················································································································································14 7.1 题目原始数据·················································································································14 7.2 5.2.2 程序的输出结果 ···································································································14