初中七年级数学课件 多项式乘法

合集下载

《整式的乘法》第3课时《多项式乘以多项式的法则》教学课件2022-2023学年北师大版七年级数学下册

《整式的乘法》第3课时《多项式乘以多项式的法则》教学课件2022-2023学年北师大版七年级数学下册

你会计
算吗?
教学过程
新知探究
做一做
我们可以用四种方法计算长方形的面积:
方法1: + +
方法2: + + +
方法3: + + +
方法4: + + +
事实上 + + 是两个多项式相乘,你从上面的计算过程中受


C. − 或0


D. 或0
教学过程
新知应用
做一做
3.若 − + − 结果是不含 项,则、
的关系为(B )
A. 互为倒数
B. 互为相反数
C. 相等
D.不能确定
4.若 = , = , 则 − − + − 的值为(A )
北师大版数学七年级(下)
第一章 整式的乘除
4.整式的乘法
第3课时 多项式与多项式的乘法
教学过程
重点难点
1.经历探索多项式与多项式乘法的运算法则的
过程,掌握多项式与多项式乘法的运算法则.
(重点)
2.利用多项式与多项式乘法的运算法则进行运算,进
一步加强学生的运算能力.(难点)
教学过程
温故知新
1.单项式乘以单项式的法则:
项之前,所得积的项数为两个多项式的项数的积.
2.在运算过程中,不要漏乘任何一项,特别是常数项,相乘时
按一定的顺序进行,注意每项的符号,可根据“同号得正,异
号得负”来确定积中每一项的符号.
3.结果中有同类项的,一定要合并同类项,化成最简形式.
教学过程
回归课本
读一读

3.3多项式的乘法 课件10(数学浙教版七年级下册)

3.3多项式的乘法 课件10(数学浙教版七年级下册)

例2、先化简,再求值:
2 (2a-3)(3a+1)-6a(a-4),其中a= 17
练习P114练习2、3 例3、若三角形的一边长为(2a+4),这条边 上的高为(2a-1),求这个三角形的面积
课堂练习:
(1)化简:
(2x-1)(-3x) -(1-3x)(1+2x)
(2)先化简,再求值: (x+3)(x-3)-x(x-6)其中x=2
12
2
2
( 2 ) ( x 3)( 4 x) x (3 4) x 3 4 已知等式(χ+a)(χ+b)=χ +mχ+36,其中a、b、m均为 整数.你认为整数m可取哪些值?它与a、b的取值有 关吗?请至少找出5个m的值.
2
应用拓展、挑战自我:
1、 已知 ( x 2)( x b) 的积不含 x 的一次项, 求 b 的值 及化简 ( x 2)( x b)
5.3 多项式的乘法
an am
a
bn bm
b
n
m
(a b)(m n) am an bm bn
多项式与多项式相乘,先用一个多项式的 每一项乘另一个多项式的每一项,再把所 得的积相加.
例1、计算: (1) (х+у)(a+2b) (2) (3х-1)(х+3)
练习:P114练习1(四个学生板演)
( x a)( x b) x (a b) x ab
2
试一试:
( x 3)( x 4)
1 1 ( x )( x ) 2 3
练习2:下面的计算对不对?如果不对,应怎么样改正? (1)
( x 2)( x 3) x (2 3) x 2 3

单项式与多项式相乘完整版课件PPT

单项式与多项式相乘完整版课件PPT

三.选择
下列计算错误的是( D ) (A)5x(2x2-y)=10x3-5xy (B)-3xa+b •4xa-b=-12x2a (C)2a2b•4ab2=8a3b3 (D)(-xn-1y2)•(-xym)2=xnym+2
=(-xn-1y2)•(x2y2m=) -xn+1y2m+2
四:解方程
7x-(x–3)x–3x(2–x)=(2x+1)x+6
2.4(a-
4a-4b+4
b3+.13)x=(_2_x_-_y_2_)_=____6__x__2__-__3__x__y__2_____________
4.-3x(2x-5y+6z)=__-_6_x_2_+1_5_x_y_-_1_8_xz____ 5.(-2a2)2(-a-2b+c)=-_4_a_5_-_8_a4_b_+_4_a_4_c__
3.不要出现漏乘现象,运算要有顺序。
注:
单项式与多项式相乘时,分两个阶段: ①按乘法分配律把乘积写成单项式 与单项式乘积的代数和的形式; ②单项式的乘法运算。
作业:
一、教科书P104习题14.1第3(4)、4题。
二、已知 a 2 ,b 3 求
3ab(a2b ab2 ab) ab2 (2a2 3ab 2a) 的值。
想一想
如何进行单项式的乘法运算? 单项式的系数? 相同字母的幂? 只在一个单项式里含有的字母?
(系数×系数)×(同字母幂相乘)×单独的幂
计算
( 2a2b3c) (-3ab) = -6a3b4c
问题: 怎样算简便?
6(1 1 1) 236
=6×
1 2
+6×

第4讲:(七年级)单项式乘单项式与单项式乘多项式

第4讲:(七年级)单项式乘单项式与单项式乘多项式

1 3
练习:
(1) 6 x( x 3 y);
1 2 (2) 2a ( ab b ) 2
2
例2 先化简,再求值: 2a(a-b)-b(2a-b)+2ab,其中a=2,b= -3 2 2 解: 原式=2a –2ab –2ab+b +2ab 2 2 = 2a – 2ab + b
∵ a=2,b= -3 2 2 ∴原式= 2a – 2ab + b 2
七年级数学备课组
.
(3)(-3x² y)² ・
七年级数学备课组
全科王习题(第6页)
1.(2018・聊城期末)下列计算正确的是( ) A.3a² ・2a³ =6a6 B.3x² ・2x³ =6x5 C.3x² ・ 2x² =6x² D.3y² ・2y5=6y10 知识点2 单项式乘法法则的应用 2.若x3・xmy2n=x9y8则m+n= . 3.计算 (1)-2x² y・(-2xy² )2+(2xy)³ ・xy² (2)(-4ab³ )・(-2ab)-(2ab² )² ;
七年级数学备课组
全科王习题(第8页)
8.(2017・长沙中考)计算. (1)(x-2y)(x+y) (2)(x-1)(2x+1)-2(x-5)(x+2) 9.(2018・宁波中考)在矩形ABCD内将两张边长分别为 a和b(a>b)的正方形纸片(如图1-5(1)所示)按如 图(2),(3)所示的两种方式放置(图(2),(3)中 两张正方形纸片均有部分重叠),矩形中未被这两张正方 形纸片覆盖的部分用阴影表示,设图(2)中阴 影部分的面积为S1,图(3)中阴影部分的面积为S2,当AD -AB=2时,求S2-S1的值.
.
(3)(-3x² y)² ・
七年级数学备课组

乘法公式 第一课时-数学七年级下册同步教学课件(冀教版)

乘法公式 第一课时-数学七年级下册同步教学课件(冀教版)

(2)(3a-4b)(-4b-3a)=(-4b)2-(3a)2=16b 2-9a 2.
(3)
3 4
a
1 3
b
3 4
a
1 3
b
3 4
a
2
1 3
2
b
9 16
a2
1 9
b2 .
(4)
a2
1 2
b2
a2
1 2
b2
a2
2
1 2
b2
2
a4
1 4
b4 .
2 解下列方程:
(1)4x 2+x-(2x-3)(2x+3)=1 ; (2)2(x+3)(3-x )+2x+2x 2=20. 解:(1)4x 2+x-(2x-3)(2x+3)=1,
(2)你发现了什么规律?请用含有字母的式子表示出来.
解:(2)(2n-1)(2n+1)=4n 2-1(n 为正整数).
4 运用平方差公式计算:(2-1)(2+1)(22+1)(24+1).
解:(2-1)(2+1)(22+1)(24+1) =(22-1)(22+1)(24+1) =(24-1)(24+1) =28-1 =256-1 =255.
所以a 2-b 2=(a-b)(a+b)=2×16=32.
5 已知2a 2+3a-6=0,求式子3a (2a+1)-(2a+1)(2a-1)的值.
解:原式=6a 2+3a-4a 2+1=2a 2+3a+1, 因为2a 2+3a-6=0,所以2a 2+3a=6.
所以原式=7.
6 探究活动: (1)如图①,可以求出阴影
(2)395×405.
解:(1)998×1 002=(1 000-2)×(1 000+2)=1 0002-22

3.3多项式的乘法 课件6(数学浙教版七年级下册)

3.3多项式的乘法 课件6(数学浙教版七年级下册)
10a 2 b 3ab2 6a 2 b 8a 3 3ab2 4a 2 b


10 6 4a 2b 3 3ab2 8a 3 8a 3 .
∵这个代数式化简后只含字母a,不含字母b;∴这个代数式的值 只与字母a的取值有关,与字母b的取值无关。
8
2 2 3 x x 2 x 7 x 7 3x 5 1.化简:
当x=4时,原式=2×4﹣9=﹣1.
21
2 x a x b x mx 28 ,其中a、b、m均为整数, 3.已知等式
你认为正整数m可取哪些值?它与a、b的取值有关吗?请你写出 所有满足题意整数m的值。
22
4.中考链接
(2012年泰州市中考题)若代数式 x
2
3x 2可以表示为
解:原式=
x 1 x x 1x 4 x 2 x x4
2
x 1x 4 x
x x 4x 4 x 3x 4
2 2
15
本节课-----我学会了...... 使我感受最深的…… 我感到最困难的是……
16
1.多项式的乘法法则:多项式与多项式相乘,先用一个多项式的 每一项乘另一个多项式的每一项,再把所得的积相加。 a bm n am an bm bn 即, 2.多项式的乘法法则在运用时要注意的事项: (1).运用多项式的乘法法则时,常常易出现漏乘或首项乘以首项, 尾项乘以尾项的错误. (2).多项式与多项式相乘的展开式中,若有同类项的,应要 合并同类项. (3).当代入的是一个负数时,应添上括号;在运算过程中,把 带分数化为假分数来计算。 3.多项式的值与所取字母无关的意思是该多项式不含有带此字母 的项,则该字母的对应系数之和为0;

乘法公式(第2课时)(课件)七年级数学下册课件(苏科版)

乘法公式(第2课时)(课件)七年级数学下册课件(苏科版)

新知探索
借助几何图形证明:
a
a
a-b
a-b
a
b
a-b
a2-b2
b
b
(a+b)(a-b)
两个相同的梯形的面积和_________;
a2-b2
大正方形面积与小正方形的面积差_______.
(a+b)(a-b)
新知归纳
平方差公式
(a+b)(a-b)= a2-b2
文字表述:
两数和与这两数差的积,等于 这两数的平方差.
你也没有吃亏,你看如何?” 张老汉一听觉得没有吃亏,就答应了 ,回到家中,
他把这件事对邻居讲了,邻居一听,说:“张老汉你吃亏了!”,张老汉
非常吃惊.同学们,你知道为什么吗?
a米
2米
a米
a米
a2
(a-2)米

(a+2)(a-2)
新知探索
计算下列多项式的积
a2-2a+2a-4 a2-4
(1) (a+2)(a-2)=___________=______;
(2) (m+2n)(2n-m);
解:原式= (5x)2 - y2
原式=(2n+m)(2n-m)
=25x2 - y2
=(2n)2-m2
=4n2-m2
例题讲解
例1
用平方差公式计算:
(3) (3y-x)(-x-3y).
原式= (-x+3y)(-x-3y)
=(-x)2-(3y)2
= x2-9y2
完全平方公式、平方差
相同项
相反项
特征:
两个二项式
相乘
新知应用
(a+b)(a-b)= a2-b2

8.整式乘法-----多项式与多项式相乘课件数学沪科版七年级下册

8.整式乘法-----多项式与多项式相乘课件数学沪科版七年级下册
3. 积的乘方等于各因数乘方的积. (ab)n=anbn(n为正整数)
4.单项式与单项式的乘法法则
单项式相乘,把系数、同底数幂分别相乘,作为积 的因式;对于只在一个单项式里含有的字母,则连同它 的指数作为积的一个因式. 5.单项式与多项式的乘法法则
单项式与多项式相乘,用单项式和多项式的每一项 分别相乘,再把所得的积相加.
(1)(-2x-1)(3x-2);
(2)(ax+b)(cx+d).
解:(1)(-2x-1)(3x-2)
=(-2x)·3x+(-2x)·(-2)+(-1)·3x+(-1)×(-2)
=-6x2+4x-3x+2
=-6x2+x+2.
(2)(ax+b)(cx+d) =ax·cx+ax·d+b·cx+b·d
注意:多项式乘多项式的结果仍 是多项式,运算结果要化成最简
=acx2+adx+bcx+bd =acx2+(ad+bc)x+bd.
情势,不能含有同类项.
例2 计算: (1)(a+b)(a2-ab+b2);
(2)(y2+y+1)(y+2).
解:(1)(a+b)(a2-ab+b2)
=a·a2-a·ab+a·b2+b·a2-b·ab+b·b2
=a3+b3. (2)(y2+y+1)(y+2)
5. 填空: (x 2)(x 3) x2 _5_ x _6_; (x 4)(x 1) x2 _(-_3_) x _(-_4_); (x 4)(x 2) x2 _2_ x _(-_8_) ; (x 2)(x 3) x2 _(-_5_) x _6_ .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

做一做:
1). (x-12)(x+2) 2). (x+4)(x+20) 3). (xy-7)(xy-8) 4). (a2+3)(a2-5)
说能出你这节课的收获和体验让大家 与你分享吗?
(2) 2(x 8)(x 5) (2x 1)(x 2)
例3:中 a
17
例4.解方程: (x-2)(x2-6x-9)=x(x-5)(x-3)
在(ax2+bx+1)(2x2-3x-1) 的计算结果中,不含x3项 和x项,求a,b的值。
义务教育课程标准实验教科书 浙江版《数学》七年级下册
5.3多项式的乘法
合作学习: 下图是一间厨房的平面布局,此厨房的 总面积是多少?我们可以用哪几种方法 来表示?
m
窗口矮柜
m
右侧
矮柜
b
b
a
n
a
n
多项式与多项式相乘的法则: 多项式与多项式相乘,先用一个多项 式的每一项乘另一个多项式的每一项, 再把所得的积相加。
(a+n)(b+m)= ab +am +nb +nm
例1:计算
(1) ( x y)(a 2b) (2) (3x 1)( x 3)
做一做:
(1) (3x y)( x 2 y)
(2) (2x 5 y)( 2 x 1 y) 25 2
(3) (2a b)2
例2:化简
(1) (1 3x)(1 2x) 3x(2x 1)
相关文档
最新文档