选修4-5 不等式选讲第二节

合集下载

选修4-5_《不等式选讲》全册教案(K12教育文档)

选修4-5_《不等式选讲》全册教案(K12教育文档)

选修4-5_《不等式选讲》全册教案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(选修4-5_《不等式选讲》全册教案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为选修4-5_《不等式选讲》全册教案(word版可编辑修改)的全部内容。

第一讲 不等式和绝对值不等式课题:第01课时 不等式的基本性质教学目标:1.理解用两个实数差的符号来规定两个实数大小的意义,建立不等式研究的基础.2.掌握不等式的基本性质,并能加以证明;会用不等式的基本性质判断不等关系和用比较法,反证法证明简单的不等式。

教学重点:应用不等式的基本性质推理判断命题的真假;代数证明,特别是反证法。

教学难点:灵活应用不等式的基本性质。

教学过程:一、引入:不等关系是自然界中存在着的基本数学关系。

《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大"、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?"、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。

要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。

而且,不等式在数学研究中也起着相当重要的作用。

本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等.人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。

高中数学 : 选修4-5 不等式选讲

高中数学  : 选修4-5  不等式选讲

解析 原不等式等价于
x 1,
1
(x 1) (2x 2) 17

1 x 1, (x 1) (2x 2) 1

x 1, (x 1) (x 2) 1,
解得x≥2或x≤-1.
5
故原不等式的解集为{x|x≤-1或x≥2}.
考法2 与绝对值有关的恒成立、存在性等求参数范 围的问题
4.设不等式|x+1|-|x-2|>k 的解集为 R,则实数 k 的取值范围 为____________.
4-5 不等式选讲
1
聚焦核心素养
理科数学选修4-5:不 等式选讲
1.命题分析预测 从近五年的考查情况来看,选修4-5是
高考题中的选做部分,主要考查绝对值不等式的求解、
恒成立问题、存在性问题以及不等式的证明,多以解答
题的形式呈现,难度中等,分值10分.
2.学科核心素养 本章通过绝对值不等式的解法和不等 式的证明考查考生的数学运算素养,以及对分类讨论思 想和数形结合思想的应用.
上述定理还可以推广到以下两个不等式:
(1)|a1+a2+…+an|≤|a1|+|a2|+…+|an|;
(2)||a|-|b||≤|a±b|≤|a|+|b|.
2.绝对值不等式的解法
(1)含绝对值的不等式|x|<a 与|x|>a 的解法:
不等式
a>0
a=0
a<0
|x|<a
__{x_|_-__a_<__x_<_a__} _
解析
原不等式等价于
x 1, (x 1)
(x
2)
5
x 1, (x 1) (2x 2) 7

选修4—5 不等式选讲

选修4—5 不等式选讲

不等式选讲【基础知识详解】一、不等式的概念和基本性质1.两个实数大小关系的基本事实 a >b ⇔a -b >0 a =b ⇔a -b =0 a <b ⇔a -b <0 2.不等式的基本性质(1)对称性:如果a >b ,那么b <a ;如果b <a ,那么a >b . 即a >b ⇔b <a . (2)传递性:如果a >b ,b >c ,那么a >c . (3)可加性:如果a >b ,那么a +c >b +c .(4)可乘性:如果a >b ,c >0,那么ac >bc ;如果a >b ,c <0,那么ac <bc . (5)乘方:如果a >b >0,那么a n >b n (n ∈N ,n >1).(6)开方:如果a >b >0n ∈N ,n >1). 3.基本不等式 (Ⅰ)二元不等式(1)定理:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.(2)定理(基本不等式):如果a ,b >0a =b 时,等号成立.也可以表述为:两个正数的算术平均不小于(即大于或等于)它们的几何平均. (3)利用基本不等式求最值 对两个正实数x ,y ,①如果它们的和S 是定值,则当且仅当x =y 时,它们的积P 取得最大值; ②如果它们的积P 是定值,则当且仅当x =y 时,它们的和S 取得最小值.(Ⅱ)三个正数的算术—几何平均不等式(1)定理 如果a ,b ,c 均为正数,当且仅当a =b =c 时,等号成立.即三个正数的算术平均不小于它们的几何平均. (2)基本不等式的推广对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a nn当且仅当a 1=a 2=…=a n 时,等号成立.(Ⅲ)柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(3)柯西不等式的向量形式:设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.二、绝对值不等式1.绝对值三角不等式(1)性质1:|a +b |≤|a |+|b |.当且仅当0ab ≥时,等号成立; (2)性质2:|a |-|b |≤|a +b |;性质3:|a |-|b |≤|a -b |≤|a |+|b |.当且仅当0ab ≥时,左边等号成立,当且仅当0ab ≤时,右边等号成立;(3)性质4: |a -c |≤|a-b |+|b-c |,当且仅当(a-b )(b-c )≥0 2.绝对值不等式的解法(2)|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法 ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c 和|x -a |+|x -b |≤c 型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 三、证明不等式的方法 (1)比较法 ①求差比较法知道a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b ,只要证明a -b >0即可,这种方法称为求差比较法.②求商比较法由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时要证明a >b ,只要证明ab >1即可,这种方法称为求商比较法. (2)分析法从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等).这种证法称为分析法,即“执果索因”的证明方法. (3)综合法从已知条件出发,利用不等式的有关性质或定理,经过推理论证,推导出所要证明的不等式成立,即“由因寻果”的方法,这种证明不等式的方法称为综合法. (4)反证法的证明步骤第一步:作出与所证不等式相反的假设;第二步:从条件和假设出发,应用正确的推理方法,推出矛盾的结论,否定假设,从而证明原不等式成立. (5)放缩法所谓放缩法,即要把所证不等式的一边适当地放大或缩小,以利于化简,并使它与不等式的另一边的不等关系更为明显,从而得到欲证不等式成立. (6)数学归纳法设{P n }是一个与自然数相关的命题集合,如果:(1)证明起始命题P 1(或P 0)成立;(2)在假设P k 成立的前提下,推出P k +1也成立,那么可以断定{P n }对一切自然数成立.【例1】(2012·课标全国)已知函数f (x )=|x +a |+|x -2|. (1)当a =-3时,求不等式f (x )≥3的解集; (2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围. 解 (1)当a =-3时,f (x )=⎩⎪⎨⎪⎧-2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1; 当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4. 所以f (x )≥3的解集为{x |x ≤1或x ≥4}. (2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |.当x ∈[1,2]时,|x -4|-|x -2|≥|x +a | ⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a . 由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0. 故满足条件的a 的取值范围为[-3,0]. 思维升华 解绝对值不等式的基本方法:(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解. 【举一反三】 已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.( 恒成立最值解决问题)解 方法一 (1)由f (x )≤3得|x -a |≤3,解得a -3≤x ≤a +3. 又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2.(2)当a =2时,f (x )=|x -2|,设g (x )=f (x )+f (x +5), 于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.所以当x <-3时,g (x )>5;当-3≤x ≤2时,g (x )=5;当x >2时,g (x )>5. 综上可得,g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5]. 方法二 (1)同方法一.(2)当a =2时,f (x )=|x -2|.设g (x )=f (x )+f (x +5).由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立),得g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].【例2】已知3x 2+2y 2≤6,求证:2x +y ≤11.证明 由于2x +y =23(3x )+12(2y ),由柯西不等式(a 1b 1+a 2b 2)2≤(a 21+a 22)(b 21+b 22)得(2x +y )2≤[(23)2+(12)2](3x 2+2y 2)≤(43+12)×6=116×6=11,∴|2x +y |≤11,∴2x +y ≤11.【规律总结】使用柯西不等式时,关键是将已知条件通过配凑,转化为符合柯西不等式条件的式子,二维形式的柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.若3x +4y =2,试求x 2+y 2的最小值.解 由柯西不等式(32+42)·(x 2+y 2)≥(3x +4y )2,① 得25(x 2+y 2)≥4,所以x 2+y 2≥425.不等式①中当且仅当x 3=y4时等号成立,x 2+y 2取得最小值,由方程组⎩⎪⎨⎪⎧3x +4y =2,x 3=y 4,解得⎩⎨⎧x =625,y =825.因此当x =625,y =825时,x 2+y 2取得最小值,最小值为4.【例3】已知a ,b ,c ∈(0,+∞),且a +b +c =1,求证:(1)(1a -1)·(1b -1)·(1c -1)≥8;(2)a +b +c ≤ 3.证明 (1)∵a ,b ,c ∈(0,+∞),∴a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca ,(1a -1)·(1b -1)·(1c-1) =(b +c )(a +c )(a +b )abc≥2bc ·2ac ·2ab abc =8.(2)∵a ,b ,c ∈(0,+∞),∴a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca , 2(a +b +c )≥2ab +2bc +2ca ,两边同加a +b +c 得3(a +b +c )≥a +b +c +2ab +2bc +2ca =(a +b +c )2.又a +b +c =1,∴(a +b +c )2≤3, ∴a +b +c ≤ 3.思维升华 用综合法证明不等式是“由因导果”,分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3;(2) a bc + b ac + cab ≥3(a +b +c ).证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3. 即证:a 2+b 2+c 2+2(ab +bc +ca )≥3, 而ab +bc +ca =1,故需证明:a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ).即证:a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)证得. ∴原不等式成立.(2) a bc + bac+c ab =a +b +cabc. 在(1)中已证a +b +c ≥ 3. 因此要证原不等式成立,只需证明1abc≥a +b +c .即证a bc +b ac +c ab ≤1, 即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac2,b ac ≤ab +bc 2,c ab ≤bc +ac2.∴a bc +b ac +c ab ≤ab +bc +ca (a =b =c =33时等号成立). ∴原不等式成立.绝对值不等式的解法典例:(10分)解不等式|x +1|+|x -1|≥3.思维启迪 本题不等式为|x -a |+|x -b |≥c 型不等式,解此类不等式有三种方法:几何法、分区间(分类)讨论法和图象法. 规范解答解 方法一 如图所示,设数轴上与-1,1对应的点分别为A ,B ,那么A ,B 两点的距离和为2,因此区间[-1,1]上的数都不是不等式的解.设在A 点左侧有一点A 1,到A ,B 两点的距离和为3,A 1对应数轴上的x .[4分]∴-1-x +1-x =3,得x =-32.同理设B 点右侧有一点B 1到A ,B 两点距离之和为3,B 1对应数轴上的x ,∴x -1+x -(-1)=3.∴x =32.从数轴上可看到,点A 1,B 1之间的点到A ,B 的距离之和都大于3;点A 1的左边或点B 1的右边的任何点到A ,B 的距离之和都大于3.[8分] 所以原不等式的解集是⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞.[10分]方法二 当x ≤-1时,原不等式可化为-(x +1)-(x -1)≥3,解得:x ≤-32.[3分]当-1<x <1时,原不等式可以化为 x +1-(x -1)≥3,即2≥3.不成立,无解. [6分]当x ≥1时,原不等式可以化为x +1+x -1≥3.所以x ≥32.[9分] 综上,可知原不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≤-32或x ≥32.[10分]方法三 将原不等式转化为|x +1|+|x -1|-3≥0. 构造函数y =|x +1|+|x -1|-3, 即y =⎩⎪⎨⎪⎧-2x -3,x ≤-1;-1,-1<x <1;2x -3,x ≥1.[3分]作出函数的图象,如图所示:函数的零点是-32,32.从图象可知,当x ≤-32或x ≥32时,y ≥0,[8分]即|x +1|+|x -1|-3≥0.所以原不等式的解集为⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞.[10分] 温馨提醒 这三种方法是解|x +a |+|x +b |≥c 型不等式常用的方法,方法一中关键是找到特殊点,方法二中的分类讨论要遵循“不重不漏”的原则,方法三则要准确画出函数图象,并准确找出零点.方法与技巧1.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x -a |+|x -b |>m 或|x -a |+|x -b |<m (m 为正常数),利用实数绝对值的几何意义求解较简便. 2.不等式的证明方法灵活,要注意体会,要根据具体情况选择证明方法.3.柯西不等式的证明有多种方法,如数学归纳法,教材中的参数配方法(或判别式法)等,参数配方法在解决其它问题方面应用比较广泛.柯西不等式的应用比较广泛,常见的有证明不等式,求函数最值,解方程等.应用时,通过拆常数,重新排序、添项,改变结构等手段改变题设条件,以利于应用柯西不等式. 失误与防范1.理解绝对值不等式的几何意义. 2.掌握分类讨论的标准,做到不重不漏.3.利用基本不等式必须要找准“对应点”,明确“类比对象”,使其符合几个著名不等式的特征.4.注意检验等号成立的条件,特别是多次使用不等式时,必须使等号同时成立.。

专题七第2讲选修45不等式选讲课件共41张PPT

专题七第2讲选修45不等式选讲课件共41张PPT

【变式训练2】 已知函数f (x)=x+m2 +|x-m|(m>0)。 (1)当m=1时,求函数f (x)的最小值; (2)若存在x∈(0,1),使得不等式f (x)≤3成立,求实数m的取值范围。
解 (1)当m=1时,f (x)=|x+2|+|x-1|, 因为|x+2|+|x-1|≥|(x+2)-(x-1)|=3, 当且仅当(x+2)(x-1)≤0,即-2≤x≤1时等号成立, 所以f (x)的最小值为3。
方法悟通
解决不等式恒成立、能成立、恰成立问题的策略
不等式 恒成立
问题
不等式f (x)>A在区间D上恒成立,等价于在区间D 上f (x)min>A。 不等式f (x)<B在区间D上恒成立,等价于在区间D 上f (x)max<B
不等式 能成立 问题
不等式 恰成立 问题
在区间D上存在实数x使不等式f (x)>A成立,等价 于在区间D上f (x)max>A。 在区间D上存在实数x使不等式f (x)<B成立,等价 于在区间D上f (x)min<B 不等式f (x)>A在区间D上恰成立,等价于不等式f (x)>A的解集为D。 不等式f (x)<B在区间D上恰成立,等价于不等式f (x)<B的解集为D
(2)由题意得存在x∈(0,1),使得x+m2 +|x-m|≤3成立, ①当m≥1时,x+m2 +|x-m|≤3等价于m2 +m≤3,所以1≤m≤2。
②当0<m<1时,f
(x)=x+
2 m

+|x-m|= 2m2x++mm2,-0m<,x<mm≤,x<1,
则f
(x)min=
2 m

m,所以m2 +m≤3,所以1≤m≤2,与“0<m<1”矛盾,此时m无解。 综上,实数m的取值范围为[1,2]。

选修4-5 不等式选讲

选修4-5 不等式选讲

选修4-5 ⎪⎪⎪不等式选讲第一节绝对值不等式1.绝对值三角不等式定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. 定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值不等式|x |<a 与|x |>a 的解法: 不等式 a >0a =0 a <0 |x |<a {}x |-a <x <a ∅∅ |x |>a {}x |x >a 或x <-a{}x |x ∈R 且x ≠0R(2)|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法: ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .1.设a ,b 为满足ab <0的实数,那么( ) A .|a +b |>|a -b | B .|a +b |<|a -b | C .|a -b |<||a |-|b || D .|a -b |<|a |+|b | 解析:选B ∵ab <0, ∴|a -b |=|a |+|b |>|a +b |.2.若不等式|kx -4|≤2的解集为{}x |1≤x ≤3,则实数k =________.解析:由|kx-4|≤2⇔2≤kx≤6.∵不等式的解集为{}x|1≤x≤3,∴k=2.答案:23.函数y=|x-4|+|x+4|的最小值为________.解析:因为|x-4|+|x+4|≥|(x-4)-(x+4)|=8,所以所求函数的最小值为8.答案:84.不等式|x+1|-|x-2|≥1的解集是________.解析:令f(x)=|x+1|-|x-2|=⎩⎪⎨⎪⎧-3,x≤-1,2x-1,-1<x<2,3,x≥2.当-1<x<2时,由2x-1≥1,解得1≤x<2.又当x≥2时,f(x)=3>1恒成立.所以不等式的解集为{}x|x≥1.答案:{}x|x≥1考点一绝对值不等式的解法(基础送分型考点——自主练透)[考什么·怎么考]绝对值不等式的解法是每年高考的重点,既单独考查,也与函数的图象、含参问题等的综合考查,难度较小,属于低档题.(1)画出y=f(x)的图象;(2)求不等式|f(x)|>1的解集.解:(1)由题意得f (x )=⎩⎨⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知, 当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或x >5. 所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或1<x <3或x >5. 2.解下列不等式. (1)|2x +1|-2|x -1|>0; (2)|x +3|-|2x -1|<x2+1.解:(1)法一:原不等式可化为|2x +1|>2|x -1|, 两边平方得4x 2+4x +1>4(x 2-2x +1), 解得x >14,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |x >14.法二:原不等式等价于⎩⎪⎨⎪⎧x <-12,-(2x +1)+2(x -1)>0或⎩⎪⎨⎪⎧-12≤x ≤1,(2x +1)+2(x -1)>0或⎩⎪⎨⎪⎧x >1,(2x +1)-2(x -1)>0.解得x >14,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |x >14.(2)①当x <-3时,原不等式化为-(x +3)-(1-2x )<x2+1,解得x <10,∴x <-3. ②当-3≤x ≤12时,原不等式化为(x +3)-(1-2x )<x2+1,解得x <-25,∴-3≤x <-25.③当x >12时,原不等式化为(x +3)+(1-2x )<x2+1,解得x >2,∴x >2.综上可知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-25或x >2.[怎样快解·准解]绝对值不等式的常见3解法 (1)零点分段讨论法含有两个或两个以上绝对值符号的不等式,可用零点分段讨论法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组),一般步骤如下:①令每个绝对值符号里的代数式为零,并求出相应的根; ②将这些根按从小到大排序,它们把实数集分为若干个区间;③在所分的各区间上,根据绝对值的定义去掉绝对值符号,求所得的各不等式在相应区间上的解集;④这些解集的并集就是原不等式的解集. (2)利用绝对值的几何意义由于|x -a |+|x -b |与|x -a |-|x -b |分别表示数轴上与x 对应的点到与a ,b 对应的点的距离之和与距离之差,因此对形如|x -a |+|x -b |<c (c >0)或|x -a |-|x -b |>c (c >0)的不等式,利用绝对值的几何意义求解更直观.(3)数形结合法在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.[易错提醒]用零点分段法和几何意义求解绝对值不等式时,去绝对值符号的关键点是找零点,将数轴分成若干段,然后从左到右逐段讨论.考点二绝对值三角不等式的应用(重点保分型考点——师生共研)应用绝对值三角不等式证明不等式或求最值是高考的常考内容,难度适中.[典题领悟]1.若对于实数x,y有|1-x|≤2,|y+1|≤1,求|2x+3y+1|的最大值.解:因为|2x+3y+1|=|2(x-1)+3(y+1)|≤2|x-1|+3|y+1|≤7,所以|2x+3y+1|的最大值为7.2.若a≥2,x∈R,求证:|x-1+a|+|x-a|≥3.证明:因为|x-1+a|+|x-a|≥|(x-1+a)-(x-a)|=|2a-1|,又a≥2,故|2a-1|≥3,所以|x-1+a|+|x-a|≥3成立.[解题师说]证明绝对值不等式的3种主要方法(1)利用绝对值的定义去掉绝对值符号,转化为一般不等式再证明.(2)利用三角不等式||a|-|b||≤|a±b|≤|a|+|b|进行证明.(3)转化为函数问题,利用数形结合进行证明.[冲关演练]已知x,y∈R,且|x+y|≤16,|x-y|≤14,求证:|x+5y|≤1.证明:∵|x+5y|=|3(x+y)-2(x-y)|.∴由绝对值不等式的性质,得|x+5y|=|3(x+y)-2(x-y)|≤|3(x+y)|+|2(x-y)|=3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1成立.考点三 绝对值不等式的综合应用 (重点保分型考点——师生共研)(2017·全国卷Ⅲ)已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围. 解:(1)f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2; 当x >2时,由f (x )≥1,解得x >2. 所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54, 当且仅当x =32时,|x +1|-|x -2|-x 2+x =54.故m 的取值范围为⎝⎛⎦⎤-∞,54. [解题师说]设函数f (x )中含有绝对值,则 (1)f (x )>a 有解⇔f (x )max >a . (2)f (x )>a 恒成立⇔f (x )min >a .(3)f (x )>a 恰在(c ,b )上成立⇔c ,b 是方程f (x )=a 的解.[冲关演练]1.(2017·全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围. 解:(1)当a =1时,不等式f (x )≥g (x )等价于 x 2-x +|x +1|+|x -1|-4≤0. ①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1; 当x >1时,①式化为x 2+x -4≤0, 从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2.所以f (x )≥g (x )的解集包含[-1,1],等价于当x ∈[-1,1]时,f (x )≥2. 又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一, 所以f (-1)≥2且f (1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1]. 2.已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解:(1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6,得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3, 即⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x ≥3-a 2. 又⎝⎛⎭⎫⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x min =⎪⎪⎪⎪12-a 2, 所以⎪⎪⎪⎪12-a 2≥3-a 2,解得a ≥2.所以a 的取值范围是[2,+∞).1.已知函数f (x )=|x -4|+|x -a |(a ∈R)的最小值为a . (1)求实数a 的值; (2)解不等式f (x )≤5.解:(1)f (x )=|x -4|+|x -a |≥|a -4|=a , 从而解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x ≤4,2x -6,x >4.故当x ≤2时,由-2x +6≤5,得12≤x ≤2,当2<x ≤4时,显然不等式成立, 当x >4时,由2x -6≤5,得4<x ≤112,故不等式f (x )≤5的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤112.2.(2018·石家庄质检)已知函数f (x )=|x -3|+|x +m |(x ∈R). (1)当m =1时,求不等式f (x )≥6的解集;(2)若不等式f (x )≤5的解集不是空集,求实数m 的取值范围. 解:(1)当m =1时,f (x )≥6等价于⎩⎪⎨⎪⎧ x ≤-1,-(x -3)-(x +1)≥6或⎩⎪⎨⎪⎧-1<x <3,-(x -3)+(x +1)≥6 或⎩⎪⎨⎪⎧x ≥3,(x -3)+(x +1)≥6,解得x ≤-2或x ≥4,所以不等式f (x )≥6的解集为{x |x ≤-2或x ≥4}. (2)∵|x -3|+|x +m |≥|(x -3)-(x +m )|=|m +3|,∴f (x )min =|3+m |,∴|m +3|≤5, 解得-8≤m ≤2,∴实数m 的取值范围为[-8,2].3.(2018·郑州质检)已知函数f (x )=|2x +1|,g (x )=|x |+a . (1)当a =0时,解不等式f (x )≥g (x );(2)若存在x ∈R ,使f (x )≤g (x )成立,求实数a 的取值范围. 解:(1)当a =0时,由f (x )≥g (x ),得|2x +1|≥|x |, 两边平方整理得3x 2+4x +1≥0, 解得x ≤-1或x ≥-13,故原不等式的解集为(-∞,-1]∪⎣⎡⎭⎫-13,+∞. (2)由f (x )≤g (x ),得a ≥|2x +1|-|x |, 令h (x )=|2x +1|-|x |,则h (x )=⎩⎨⎧-x -1,x ≤-12,3x +1,-12<x <0,x +1,x ≥0,故h (x )min =h ⎝⎛⎭⎫-12=-12, 所以实数a 的取值范围为⎣⎡⎭⎫-12,+∞. 4.已知函数f (x )=|4x -a |+a 2-4a (a ∈R). (1)当a =1时,求不等式-2≤f (x )≤4的解集;(2)设函数g (x )=|x -1|,若对任意的x ∈R ,f (x )-4g (x )≤6恒成立,求实数a 的取值范围.解:(1)f (x )=|4x -a |+a 2-4a , 当a =1时,f (x )=|4x -1|-3.因为-2≤f (x )≤4,所以1≤|4x -1|≤7,即⎩⎪⎨⎪⎧-7≤4x -1≤7,4x -1≥1或4x -1≤-1,解得-32≤x ≤0或12≤x ≤2,因此-2≤f (x )≤4的解集为⎣⎡⎦⎤-32,0∪⎣⎡⎦⎤12,2. (2)因为f (x )-4g (x )=|4x -a |+a 2-4a -4|x -1|≤|4x -a +4-4x |+a 2-4a =a 2-4a +|4-a |,所以a 2-4a +|4-a |≤6,当a ≥4时,a 2-4a +a -4≤6,得4≤a ≤5, 当a <4时,a 2-4a +4-a ≤6,得5-332≤a <4, 所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤5-332,5.5.设函数f (x )=|x +2|-|x -1|. (1)求不等式f (x )>1的解集;(2)若关于x 的不等式f (x )+4≥|1-2m |有解,求实数m 的取值范围. 解:(1)函数f (x )可化为f (x )=⎩⎪⎨⎪⎧-3,x ≤-2,2x +1,-2<x <1,3,x ≥1,当x ≤-2时,f (x )=-3<0,不合题意;当-2<x <1时,f (x )=2x +1>1,得x >0,即0<x <1; 当x ≥1时,f (x )=3>1,即x ≥1.综上,不等式f (x )>1的解集为(0,+∞).(2)关于x 的不等式f (x )+4≥|1-2m |有解等价于(f (x )+4)max ≥|1-2m |,由(1)可知f (x )max =3(也可由|f (x )|=||x +2|-|x -1||≤|(x +2)-(x -1)|=3,得f (x )max =3), 即|1-2m |≤7,解得-3≤m ≤4. 故实数m 的取值范围为[-3,4].6.(2018·东北四市模拟)已知a >0,b >0,函数f (x )=|x +a |+|2x -b |的最小值为1. (1)证明:2a +b =2;(2)若a +2b ≥tab 恒成立,求实数t 的最大值.解:(1)证明:因为-a <b 2,所以f (x )=|x +a |+|2x -b |=⎩⎨⎧-3x -a +b ,x <-a ,-x +a +b ,-a ≤x ≤b 2,3x +a -b ,x >b2,显然f (x )在⎝⎛⎭⎫-∞,b 2上单调递减,在⎝⎛⎭⎫b 2,+∞上单调递增,所以f (x )的最小值为f ⎝⎛⎭⎫b 2=a +b2,所以a +b2=1,即2a +b =2.(2)因为a +2b ≥tab 恒成立,所以a +2bab ≥t 恒成立,a +2b ab =1b +2a =12⎝⎛⎭⎫1b +2a (2a +b ) =12⎝⎛⎭⎫5+2a b +2b a ≥12⎝⎛⎭⎫5+2 2a b ·2b a =92. 当且仅当a =b =23时,a +2b ab 取得最小值92,所以t ≤92,即实数t 的最大值为92.7.已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0, 解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪23<x <2. (2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),所以△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞). 8.已知函数f (x )=|3x +2|. (1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n (a >0)恒成立,求实数a 的取值范围.解:(1)不等式f (x )<4-|x -1|, 即|3x +2|+|x -1|<4.当x <-23时,不等式化为-3x -2-x +1<4,解得-54<x <-23;当-23≤x ≤1时,不等式化为3x +2-x +1<4,解得-23≤x <12;当x >1时,不等式化为3x +2+x -1<4,无解. 综上所述,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-54<x <12.(2)1m +1n =⎝⎛⎭⎫1m +1n (m +n )=1+1+n m +m n ≥4, 当且仅当m =n =12时等号成立.令g (x )=|x -a |-f (x )=|x -a |-|3x +2|=⎩⎪⎨⎪⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .∴x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,解得0<a ≤103,所以实数a 的取值范围是⎝⎛⎦⎤0,103. 第二节不等式的证明1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 2.比较法(1)作差法的依据是:a -b >0⇔a >b .(2)作商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( ) A .s ≥t B .s >t C .s ≤tD .s <t解析:选A ∵s -t =b 2-2b +1=(b -1)2≥0,∴s ≥t . 2.已知a ,b ∈R +,且a +b =2,则1a +1b 的最小值为( ) A .1 B .2 C .4D .8解析:选B ∵a ,b ∈R +,且a +b =2, ∴(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab≥2+2b a ·ab =4,∴1a +1b ≥4a +b =2,即1a +1b 的最小值为2(当且仅当a =b =1时,等号成立). 3.已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c 的最小值为________. 解析:把a +b +c =1代入1a +1b +1c 中 得a +b +c a +a +b +c b +a +b +cc=3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.故1a +1b +1c 的最小值为9. 答案:9考点一 比较法证明不等式 (重点保分型考点——师生共研)比较法证明不等式是高考考查的重点,主要涉及作差比较法和作商比较法,难度适中,有时难度也较大.(2016·全国卷Ⅱ)已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.解:(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1;当-12<x<12时,f(x)<2恒成立;当x≥12时,由f(x)<2,得2x<2,解得x<1.所以f(x)<2的解集M={x|-1<x<1}.(2)证明:由(1)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)(1-b2)<0.因此|a+b|<|1+ab|.[解题师说]1.作差比较法(1)作差比较法证明不等式的4步骤(2)作差比较法的应用范围当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.2.作商比较法(1)作商比较法证明不等式的一般步骤(2)作商比较法的应用范围当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.[冲关演练]1.求证:当x ∈R 时,1+2x 4≥2x 3+x 2. 证明:法一:(1+2x 4)-(2x 3+x 2) =2x 3(x -1)-(x +1)(x -1) =(x -1)(2x 3-x -1) =(x -1)(2x 3-2x +x -1) =(x -1)[2x (x 2-1)+(x -1)] =(x -1)2(2x 2+2x +1) =(x -1)2⎣⎡⎦⎤2⎝⎛⎭⎫x +122+12≥0, 所以1+2x 4≥2x 3+x 2. 法二:(1+2x 4)-(2x 3+x 2) =x 4-2x 3+x 2+x 4-2x 2+1 =(x -1)2·x 2+(x 2-1)2≥0, 所以1+2x 4≥2x 3+x 2.2.求证:当a >0,b >0时,a a b b≥(ab )+2a b.证明:∵a ab b(ab )+2a b =⎝⎛⎭⎫a b -2a b,∴当a =b 时,⎝⎛⎭⎫a b -2a b=1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,∴⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab )+2a b .考点二 综合法证明不等式 (重点保分型考点——师生共研)综合法证明不等式是每年高考的重点,主要涉及基本不等式的应用,难度适中.[典题领悟](2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.证明:(1)(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)∵(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3(a +b )24(a +b )=2+3(a +b )34,∴(a +b )3≤8,因此a +b ≤2.[解题师说]1.综合法证明不等式的方法(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键;(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.2.综合法证明时常用的不等式 (1)a 2≥0. (2)|a |≥0.(3)a 2+b 2≥2ab ,它的变形形式有a 2+b 2≥2|ab |;a 2+b 2≥-2ab ;(a +b )2≥4ab ; a 2+b 2≥12(a +b )2;a 2+b 22≥⎝⎛⎭⎫a +b 22.(4)a +b2≥ab ,它的变形形式有a +1a ≥2(a >0);ab +b a ≥2(ab >0); a b +ba≤-2(ab <0). (5)(a 2+b 2)(c 2+d 2)≥(ac +bd )2.[冲关演练]1.已知a >0,b >0,a +b =1,求证: (1)1a +1b +1ab ≥8; (2)⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. 证明:(1)∵a +b =1,a >0,b >0, ∴1a +1b +1ab =1a +1b +a +b ab =2⎝⎛⎭⎫1a +1b=2⎝ ⎛⎭⎪⎫a +b a +a +b b =2⎝⎛⎭⎫b a +a b +4 ≥4b a ·a b +4=8,当且仅当a =b =12时,等号成立, ∴1a +1b +1ab≥8. (2)∵⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1a +1b +1ab +1, 由(1)知1a +1b +1ab ≥8. ∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. 2.已知函数f (x )=2|x +1|+|x -2|. (1)求f (x )的最小值m ;(2)若a ,b ,c 均为正实数,且满足a +b +c =m ,求证:b 2a +c 2b +a 2c ≥3.解:(1)当x <-1时,f (x )=-2(x +1)-(x -2)=-3x ∈(3,+∞); 当-1≤x <2时,f (x )=2(x +1)-(x -2)=x +4∈[3,6); 当x ≥2时,f (x )=2(x +1)+(x -2)=3x ∈[6,+∞). 综上,f (x )的最小值m =3.(2)证明:因为a ,b ,c 均为正实数,且满足a +b +c =3, 所以b 2a +c 2b +a 2c +(a +b +c ) =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫c 2b +b +⎝⎛⎭⎫a2c +c ≥2⎝⎛⎭⎫b 2a ·a +c 2b ·b +a 2c ·c =2(a +b +c ), 当且仅当a =b =c =1时,取“=”, 所以b 2a +c 2b +a 2c ≥a +b +c ,即b 2a +c 2b +a 2c ≥3.考点三 分析法证明不等式 (重点保分型考点——师生共研)分析法证明不等式是高考考查的重点,常与充要条件等综合考查,难度中等及以上.[典题领悟]已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,证明:f (ab )>f (a )-f (-b ). 解:(1)由题意,|x +1|<|2x +1|-1, ①当x ≤-1时,不等式可化为-x -1<-2x -2, 解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2, 此时不等式无解;③当x ≥-12时,不等式可化为x +1<2x ,解得x >1. 综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.[解题师说]1.分析法的应用条件当所证明的不等式不能使用比较法,且和重要不等式(a 2+b 2≥2ab )、基本不等式⎝⎛⎭⎫ab ≤a +b 2,a >0,b >0没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.用分析法证“若A 则B ”这个命题的模式 为了证明命题B 为真,只需证明命题B 1为真,从而有… 只需证明命题B 2为真,从而有… ……只需证明命题A 为真,而已知A 为真,故B 必真.[冲关演练]已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab .证明:要证c -c 2-ab <a <c +c 2-ab , 即证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab , 即证(a -c )2<c 2-ab ,即证a 2-2ac <-ab .因为a >0,所以只要证a -2c <-b ,即证a +b <2c .由已知条件知,上式显然成立,所以原不等式成立.1.设a ,b ,c ∈R +,且a +b +c =1.(1)求证:2ab +bc +ca +c 22≤12; (2)求证:a 2+c 2b +b 2+a 2c +c 2+b 2a≥2. 证明:(1)因为1=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca ≥4ab +2bc +2ca +c 2,所以2ab +bc +ca +c 22=12(4ab +2bc +2ca +c 2)≤12. (2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bc a, 所以a 2+c 2b +b 2+a 2c +c 2+b 2a ≥⎝⎛⎭⎫ac b +ab c +⎝⎛⎭⎫ab c +bc a +⎝⎛⎭⎫ac b +bc a =a ⎝⎛⎭⎫c b +b c +b ⎝⎛⎭⎫a c +c a +c ⎝⎛⎭⎫a b +b a ≥2a +2b +2c =2. 2.若a >0,b >0,且1a +1b=ab . (1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.解:(1)由ab =1a +1b ≥2ab, 得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立.所以a3+b3的最小值为4 2.(2)由(1)知,2a+3b≥26ab≥4 3.由于43>6,从而不存在a,b,使得2a+3b=6.3.设a,b,c,d均为正数,且a+b=c+d,求证:(1)若ab>cd,则a+b>c+d;(2)a+b>c+d是|a-b|<|c-d|的充要条件.证明:(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd,得(a+b)2>(c+d)2.因此a+b>c+d.(2)①必要性:若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1),得a+b>c+d.②充分性:若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.4.已知定义在R上的函数f(x)=|x+1|+|x-2|的最小值为a.(1)求a的值;(2)若p,q,r是正实数,且满足p+q+r=a,求证:p2+q2+r2≥3. 解:(1)因为|x+1|+|x-2|≥|(x+1)-(x-2)|=3,当且仅当-1≤x ≤2时,等号成立,所以f (x )的最小值等于3,即a =3.(2)证明:由(1)知p +q +r =3,又因为p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9,即p 2+q 2+r 2≥3.5.已知函数f (x )=|x -1|.(1)解不等式f (2x )+f (x +4)≥8;(2)若|a |<1,|b |<1,a ≠0,求证:f (ab )|a |>f ⎝⎛⎭⎫b a . 解:(1)f (2x )+f (x +4)=|2x -1|+|x +3|=⎩⎨⎧ -3x -2,x <-3,-x +4,-3≤x <12,3x +2,x ≥12,当x <-3时,由-3x -2≥8,解得x ≤-103; 当-3≤x <12时,-x +4≥8无解; 当x ≥12时,由3x +2≥8,解得x ≥2. 所以不等式f (2x )+f (x +4)≥8的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-103或x ≥2. (2)证明:f (ab )|a |>f ⎝⎛⎭⎫b a 等价于f (ab )>|a |f ⎝⎛⎭⎫b a , 即|ab -1|>|a -b |.因为|a |<1,|b |<1,所以|ab -1|2-|a -b |2=(a 2b 2-2ab +1)-(a 2-2ab +b 2)=(a 2-1)(b 2-1)>0,所以|ab -1|>|a -b |.故所证不等式成立.6.(2018·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M .(1)求M ;(2)当x ∈M 时,证明:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2. 当x ≤2时,由f (x )=x -1≤-1,解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1,解得x ≤43,显然不成立. 故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x=-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数,∴g (x )≤g (0)=0.故x [f (x )]2-x 2f (x )≤0.7.已知a ,b 都是正实数,且a +b =2,求证:a 2a +1+b 2b +1≥1. 证明:∵a >0,b >0,a +b =2,∴a 2a +1+b 2b +1-1=a 2(b +1)+b 2(a +1)-(a +1)(b +1)(a +1)(b +1)=a 2b +a 2+b 2a +b 2-ab -a -b -1(a +1)(b +1)=a 2+b 2+ab (a +b )-ab -(a +b )-1(a +1)(b +1)=a 2+b 2+2ab -ab -3(a +1)(b +1)=(a +b )2-3-ab (a +1)(b +1)=1-ab (a +1)(b +1). ∵a +b =2≥2ab ,∴ab ≤1.∴1-ab (a +1)(b +1)≥0. ∴a 2a +1+b 2b +1≥1. 8.设函数f (x )=x -|x +2|-|x -3|-m ,若∀x ∈R ,1m-4≥f (x )恒成立. (1)求实数m 的取值范围;(2)求证:log (m +1)(m +2)>log (m +2)(m +3).解:(1)∵∀x ∈R ,1m -4≥f (x )恒成立,∴m +1m ≥x -|x +2|-|x -3|+4恒成立.令g (x )=x -|x +2|-|x -3|+4=⎩⎪⎨⎪⎧ 3x +3,x <-2,x -1,-2≤x ≤3,-x +5,x >3.∴函数g (x )在(-∞,3]上是增函数,在(3,+∞)上是减函数,∴g (x )max =g (3)=2,∴m +1m ≥g (x )max =2,即m +1m -2≥0⇒m 2-2m +1m=(m -1)2m ≥0, ∴m >0,综上,实数m 的取值范围是(0,+∞).(2)证明:由m >0,知m +3>m +2>m +1>1,即lg(m +3)>lg(m +2)>lg(m +1)>lg 1=0.∴要证log (m +1)(m +2)>log (m +2)(m +3).只需证lg (m +2)lg (m +1)>lg (m +3)lg (m +2), 即证lg(m +1)·lg(m +3)<lg 2(m +2),又lg(m +1)·lg(m +3)< ⎣⎢⎡⎦⎥⎤lg (m +1)+lg (m +3)2 2 =[lg (m +1)(m +3)]24<[lg (m 2+4m +4)]24=lg 2(m +2), ∴log (m +1)(m +2)>log (m +2)(m +3)成立.。

北师大版高中数学选修4-5《不等式选讲》全套教案

北师大版高中数学选修4-5《不等式选讲》全套教案

课 题: 第01课时 不等式的基本性质 目的要求: 重点难点: 教学过程: 一、引入:不等关系是自然界中存在着的基本数学关系。

《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。

要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。

而且,不等式在数学研究中也起着相当重要的作用。

本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。

人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。

还可从引言中实际问题出发,说明本章知识的地位和作用。

生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>ab 即可。

怎么证呢?二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。

2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。

我的课件——选修4-5不等式2


(5)a b 0 a b ,(n N , n 2);
n n
(乘方法则 )
(6)a b 0 a b (n N , n 2).
n n
(开方法则 )
自学检测2:
判断下列各命题的真假, 若为假, 举出反例; 若为真,则证明之。 若a>b,则ac 2>bc 2 (1)若 a>b,则 ac<bc; 2 2 (2)若 ac >bc ,则 a>b; 2 2 (3)若 a<b<0,则 a >ab>b ; c c (4) < ,且 c>0,则 a>b; a b b a (5)若 a<b<0,则 < ; a b a b (6)若 c>a>b>0,则 > . c-a c-b
注:一正、二定、三等。
a b c 1.已知a, b, c 0,求 b c a 的最小值。
2.已知x 0, y 0, x 2 y 1, 求xy 的最大值。
2
3.已知x 0, y 0, 且x y 1 求x y的最小值。
2
4.已知x 0, y 0, 且xy 4,
利用基本不等式求函数的 最值之要领
求最值的三个条件:
(1)正; )定; (3)相等 (2
在有些问题中,有时也会遇到相等不成 立的情况 2 例如:已知0<x< ,求函数 y sin x sin x 2
三、应用:求最大(小)值
应用基本不等式解决最值问题
1.已知a 0, b 0, 且ab 4, 求a b的最小值。
2
3 3 3 当且仅当2 x 即x 时,上式取等号 2x 4 9 33 3 ymin 3 36 2 2
2
小结:利用三个正实数的基本不等式求最 值时注意: 1、一正、二定、三相等; 2、不能直接利用定理时,注意拆项、配 项凑定值的技巧(拆项时常拆成两个相 同项)。

高考数学一轮复习选修4_5不等式选讲课件文新人教版

选修4—5
不等式选讲
-2知识梳理
双基自测
1
2
3
4
1.绝对值三角不等式
(1)定理1:若a,b是实数,则|a+b|≤
时,等号成立;
(2)性质:|a|-|b|≤|a±b|≤|a|+|b|;
(3)定理2:若a,b,c是实数,则|a-c|≤
(a-b)(b-c)≥0
时,等号成立.
5
|a|+|b|
,当且仅当_______
-22考点1
考点2
考点3
考点4
考点5
对点训练2设函数f(x)=|x+1|-m|x-2|.
(1)若m=1,求函数f(x)的值域;
(2)若m=-1,求不等式f(x)>3x的解集.
解:(1)当m=1时,f(x)=|x+1|-|x-2|.
∵||x+1|-|x-2||≤|(x+1)-(x-2)|=3,
∴-3≤|x+1|-|x-2|≤3,即函数f(x)的值域为[-3,3].
(3)柯西不等式的向量情势:设α,β是两个向量,则|α||β|≥|α·β|,当且
仅当β是零向量或存在实数k,使α=kβ时,等号成立.
-6知识梳理
双基自测
1
2
3
4
5
5.不等式证明的方法
证明不等式常用的方法有比较法、综合法、分析法等.
-7知识梳理
双基自测
1
2
3
4
5
1.下列结论正确的打“ ”,错误的打“×”.
所以|x|+|y|+|x-1|+|y-1|=2,即
|| + |-1| = 1,
|| + |-1| = 1.

(高中段)专题微课(二)选修4-5不等式选讲


(2)依题意,|2x-2|+|x+3|>1x+a 在[2,3]上恒成立, 则 3x+1-1x>a 在[2,3]上恒成立. 又因为 g(x)=3x+1-1x在[2,3]上为增函数, 所以有 3×2+1-12>a,解得 a<123. 故实数 a 的取值范围为-∞,123.
考点二 不等式的证明 [典例] (2020·全国卷Ⅲ)设 a,b,c∈R ,a+b+c=0,abc=1. (1)证明:ab+bc+ca<0; (2)用 max{a,b,c}表示 a,b,c 的最大值,证明:max{a,b,c}≥3 4.
[对点训练]
已知函数 f(x)=|x-2|-|2x-a|,a∈R .
(1)当 a=3 时,解不等式 f(x)>0; (2)当 x∈(-∞,2)时,f(x)<0 恒成立,求 a 的取值范围. 解:(1)当 a=3 时,f(x)>0 即|x-2|-|2x-3|>0,
等价于x≤32, x-1>0
或32<x<2, -3x+5>0
(2)不等式 f(x)≥x2-x+m 等价于 f(x)-x2+x≥m, 令 g(x)=f(x)-x2+x, 则 g(x)≥m 解集非空只需[g(x)]max≥m. 由(1)知 g(x)=- -xx22+ +x3- x-3, 1,x≤ -- 1<1x,<2,
-x2+x+3,x≥2. ①当 x≤-1 时,[g(x)]max=g(-1)=-3-1-1=-5; ②当-1<x<2 时,[g(x)]max=g32=-322+3×32-1=54; ③当 x≥2 时,[g(x)]max=g(2)=-22+2+3=1. 综上,[g(x)]max=54,故 m≤54. 所以实数 m 的取值范围是-∞,54.

选修4-5 第二节 不等式的证明、柯西不等式与平均值不等式1


1 |x| =1+|x|<1+|x|=2. a b ∴|x+x2|<2成立.
返回
[巧练模拟]———————(课堂突破保分题,分分必保!)
5.已知 a>0,b>0,c>0,a+b>c. a b c 求证: + > . 1+a 1+b 1+c
返回
选 修 4-5 不 等 式 选 讲
第二 节 不等 式的 证明、 柯西 不等
抓 基 础
明 考 向
式与
平均 值不
提 能 力
等式
[备考方向要明了] 考 什 么 1.了解下列柯西不等式的几种不同形式,理解它们的内何 意义,并会证明. (1)柯西不等式的向量形式:|α|· |β|≥|α·β|.
返回
考 什 么 (2)(a2+b2)(c2+d2)≥(ac+bd)2. (3) x1-x22+y1-y22+ x2-x32+y2-y32 ≥ x1-x32+y1-y32(通常称为平面三角不等式). 2.会用参数配方法讨论柯西不等式的一般情形
返回
返回
1.设 a,b 是非负实数,求证:a3+b3≥ ab(a2+b2).
证明:由 a,b 是非负实数,作差得 a3+b3- ab(a2+b2)=a2 a( a- b)+b2 b( b- a) =( a- b)(( a)5-( b)5). 当 a≥b 时, a≥ b,从而( a)5≥( b)5, 得( a- b)(( a)5-( b)5)≥0; 当 a<b 时, a< b,从而( a)5<( b)5, 得( a- b)(( a)5-( b)5)>0. 所以 a3+b3≥ ab(a2+b2).
返回
返回
一、比较法
1.求差比较法
知道a>b⇔a-b>0,a<b⇔a-b<0,因此要证明 a>b,只要证明 a-b>0 即可,这种方法称为求差 比较法.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修4-5 ⎪⎪⎪不等式选讲第二节不等式的证明1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 2.比较法(1)作差法的依据是:a -b >0⇔a >b .(2)作商法:若B >0,欲证A ≥B ,只需证AB ≥1. 3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( ) A .s ≥t B .s >t C .s ≤tD .s <t解析:选A ∵s -t =b 2-2b +1=(b -1)2≥0,∴s ≥t . 2.已知a ,b ∈R +,且a +b =2,则1a +1b 的最小值为( ) A .1 B .2 C .4D .8解析:选B ∵a ,b ∈R +,且a +b =2, ∴(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b ≥2+2b a ·ab =4,∴1a +1b ≥4a +b =2,即1a +1b 的最小值为2(当且仅当a =b =1时,等号成立). 3.已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c 的最小值为________. 解析:把a +b +c =1代入1a +1b +1c 中 得a +b +c a +a +b +c b +a +b +c c =3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.故1a +1b +1c 的最小值为9. 答案:9考点一 比较法证明不等式 (重点保分型考点——师生共研)(2016·全国卷Ⅱ)已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.解:(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2,得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)(1-b2)<0.因此|a+b|<|1+ab|.[解题师说]1.作差比较法(1)作差比较法证明不等式的4步骤(2)作差比较法的应用范围当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.2.作商比较法(1)作商比较法证明不等式的一般步骤(2)作商比较法的应用范围当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.[冲关演练]1.求证:当x∈R时,1+2x4≥2x3+x2.证明:法一:(1+2x4)-(2x3+x2)=2x3(x-1)-(x+1)(x-1)=(x-1)(2x3-x-1)=(x-1)(2x3-2x+x-1)=(x-1)[2x(x2-1)+(x-1)]=(x -1)2(2x 2+2x +1) =(x -1)2⎣⎡⎦⎤2⎝⎛⎭⎫x +122+12≥0, 所以1+2x 4≥2x 3+x 2. 法二:(1+2x 4)-(2x 3+x 2) =x 4-2x 3+x 2+x 4-2x 2+1 =(x -1)2·x 2+(x 2-1)2≥0, 所以1+2x 4≥2x 3+x 2.2.求证:当a >0,b >0时,a a b b ≥(ab )+2a b.证明:∵a ab b(ab )+2a b =⎝⎛⎭⎫a b -2a b ,∴当a =b 时,⎝⎛⎭⎫a b -2a b =1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,∴⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab )+2a b .考点二 综合法证明不等式 (重点保分型考点——师生共研)综合法证明不等式是每年高考的重点,主要涉及基本不等式的应用,难度适中.[典题领悟](2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.证明:(1)(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)∵(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3(a +b )24(a +b )=2+3(a +b )34,∴(a +b )3≤8,因此a +b ≤2.[解题师说]1.综合法证明不等式的方法(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键;(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.2.综合法证明时常用的不等式 (1)a 2≥0. (2)|a |≥0.(3)a 2+b 2≥2ab ,它的变形形式有a 2+b 2≥2|ab |;a 2+b 2≥-2ab ;(a +b )2≥4ab ; a 2+b 2≥12(a +b )2;a 2+b 22≥⎝⎛⎭⎫a +b 22.(4)a +b2≥ab ,它的变形形式有a +1a ≥2(a >0);ab +b a ≥2(ab >0); a b +ba ≤-2(ab <0).(5)(a 2+b 2)(c 2+d 2)≥(ac +bd )2.[冲关演练]1.已知a >0,b >0,a +b =1,求证: (1)1a +1b +1ab ≥8; (2)⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. 证明:(1)∵a +b =1,a >0,b >0, ∴1a +1b +1ab =1a +1b +a +b ab=2⎝⎛⎭⎫1a +1b =2⎝⎛⎭⎫a +b a +a +b b =2⎝⎛⎭⎫b a +a b +4 ≥4b a ·a b +4=8,当且仅当a =b =12时,等号成立, ∴1a +1b +1ab ≥8.(2)∵⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1a +1b +1ab +1, 由(1)知1a +1b +1ab ≥8.∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. 2.已知函数f (x )=2|x +1|+|x -2|. (1)求f (x )的最小值m ;(2)若a ,b ,c 均为正实数,且满足a +b +c =m ,求证:b 2a +c 2b +a 2c ≥3. 解:(1)当x <-1时,f (x )=-2(x +1)-(x -2)=-3x ∈(3,+∞); 当-1≤x <2时,f (x )=2(x +1)-(x -2)=x +4∈[3,6); 当x ≥2时,f (x )=2(x +1)+(x -2)=3x ∈[6,+∞). 综上,f (x )的最小值m =3.(2)证明:因为a ,b ,c 均为正实数,且满足a +b +c =3, 所以b 2a +c 2b +a 2c +(a +b +c )=⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫c 2b +b +⎝⎛⎭⎫a2c +c ≥2⎝⎛⎭⎫b 2a ·a +c 2b ·b +a 2c ·c =2(a +b +c ), 当且仅当a =b =c =1时,取“=”, 所以b 2a +c 2b +a 2c ≥a +b +c ,即b 2a +c 2b +a 2c ≥3.考点三 分析法证明不等式 (重点保分型考点——师生共研)分析法证明不等式是高考考查的重点,常与充要条件等综合考查,难度中等及以上.[典题领悟]已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,证明:f (ab )>f (a )-f (-b ). 解:(1)由题意,|x +1|<|2x +1|-1, ①当x ≤-1时,不等式可化为-x -1<-2x -2, 解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2, 此时不等式无解; ③当x ≥-12时,不等式可化为x +1<2x ,解得x >1. 综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.[解题师说]1.分析法的应用条件当所证明的不等式不能使用比较法,且和重要不等式(a 2+b 2≥2ab )、基本不等式⎝⎛⎭⎫ab ≤a +b 2,a >0,b >0没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.用分析法证“若A 则B ”这个命题的模式 为了证明命题B 为真,只需证明命题B 1为真,从而有…只需证明命题B 2为真,从而有… ……只需证明命题A 为真,而已知A 为真,故B 必真.[冲关演练]已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab . 证明:要证c -c 2-ab <a <c +c 2-ab , 即证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab , 即证(a -c )2<c 2-ab , 即证a 2-2ac <-ab .因为a >0,所以只要证a -2c <-b , 即证a +b <2c .由已知条件知,上式显然成立,所以原不等式成立.1.设a ,b ,c ∈R +,且a +b +c =1. (1)求证:2ab +bc +ca +c 22≤12;(2)求证:a 2+c 2b +b 2+a 2c +c 2+b 2a ≥2.证明:(1)因为1=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca ≥4ab +2bc +2ca +c 2, 所以2ab +bc +ca +c 22=12(4ab +2bc +2ca +c 2)≤12.(2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bca ,所以a 2+c 2b +b 2+a 2c +c 2+b 2a ≥⎝⎛⎭⎫ac b +ab c +⎝⎛⎭⎫ab c +bc a +⎝⎛⎭⎫ac b +bc a =a ⎝⎛⎭⎫c b +b c +b ⎝⎛⎭⎫a c +ca +c ⎝⎛⎭⎫a b +b a ≥2a +2b +2c =2.2.若a >0,b >0,且1a +1b =ab . (1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)由ab =1a +1b ≥2ab,得ab≥2,且当a=b=2时等号成立.故a3+b3≥2a3b3≥42,且当a=b=2时等号成立.所以a3+b3的最小值为4 2.(2)由(1)知,2a+3b≥26ab≥4 3.由于43>6,从而不存在a,b,使得2a+3b=6.3.设a,b,c,d均为正数,且a+b=c+d,求证:(1)若ab>cd,则a+b>c+d;(2)a+b>c+d是|a-b|<|c-d|的充要条件.证明:(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd,得(a+b)2>(c+d)2.因此a+b>c+d.(2)①必要性:若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1),得a+b>c+d.②充分性:若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.4.已知定义在R上的函数f(x)=|x+1|+|x-2|的最小值为a.(1)求a的值;(2)若p,q,r是正实数,且满足p+q+r=a,求证:p2+q2+r2≥3. 解:(1)因为|x+1|+|x-2|≥|(x+1)-(x-2)|=3,当且仅当-1≤x≤2时,等号成立,所以f(x)的最小值等于3,即a=3.(2)证明:由(1)知p+q+r=3,又因为p,q,r是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9,即p 2+q 2+r 2≥3. 5.已知函数f (x )=|x -1|. (1)解不等式f (2x )+f (x +4)≥8;(2)若|a |<1,|b |<1,a ≠0,求证:f (ab )|a |>f ⎝⎛⎭⎫b a .解:(1)f (2x )+f (x +4)=|2x -1|+|x +3| =⎩⎪⎨⎪⎧-3x -2,x <-3,-x +4,-3≤x <12,3x +2,x ≥12,当x <-3时,由-3x -2≥8,解得x ≤-103; 当-3≤x <12时,-x +4≥8无解;当x ≥12时,由3x +2≥8,解得x ≥2.所以不等式f (2x )+f (x +4)≥8的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-103或x ≥2. (2)证明:f (ab )|a |>f ⎝⎛⎭⎫b a 等价于f (ab )>|a |f ⎝⎛⎭⎫b a , 即|ab -1|>|a -b |. 因为|a |<1,|b |<1, 所以|ab -1|2-|a -b |2=(a 2b 2-2ab +1)-(a 2-2ab +b 2) =(a 2-1)(b 2-1)>0, 所以|ab -1|>|a -b |. 故所证不等式成立.6.(2018·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M . (1)求M ;(2)当x ∈M 时,证明:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2.当x ≤2时,由f (x )=x -1≤-1, 解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1,解得x ≤43,显然不成立. 故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x=-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数,∴g (x )≤g (0)=0.故x [f (x )]2-x 2f (x )≤0.7.已知a ,b 都是正实数,且a +b =2,求证:a 2a +1+b 2b +1≥1. 证明:∵a >0,b >0,a +b =2,∴a 2a +1+b 2b +1-1=a 2(b +1)+b 2(a +1)-(a +1)(b +1)(a +1)(b +1)=a 2b +a 2+b 2a +b 2-ab -a -b -1(a +1)(b +1)=a 2+b 2+ab (a +b )-ab -(a +b )-1(a +1)(b +1)=a 2+b 2+2ab -ab -3(a +1)(b +1)=(a +b )2-3-ab (a +1)(b +1)=1-ab (a +1)(b +1). ∵a +b =2≥2ab ,∴ab ≤1.∴1-ab (a +1)(b +1)≥0. ∴a 2a +1+b 2b +1≥1. 8.设函数f (x )=x -|x +2|-|x -3|-m ,若∀x ∈R ,1m-4≥f (x )恒成立. (1)求实数m 的取值范围;(2)求证:log (m +1)(m +2)>log (m +2)(m +3).解:(1)∵∀x ∈R ,1m -4≥f (x )恒成立,∴m +1m ≥x -|x +2|-|x -3|+4恒成立.令g (x )=x -|x +2|-|x -3|+4=⎩⎪⎨⎪⎧ 3x +3,x <-2,x -1,-2≤x ≤3,-x +5,x >3.∴函数g (x )在(-∞,3]上是增函数,在(3,+∞)上是减函数, ∴g (x )max =g (3)=2,∴m +1m ≥g (x )max =2,即m +1m -2≥0⇒m 2-2m +1m=(m -1)2m ≥0, ∴m >0,综上,实数m 的取值范围是(0,+∞).(2)证明:由m >0,知m +3>m +2>m +1>1,即lg(m +3)>lg(m +2)>lg(m +1)>lg 1=0.∴要证log (m +1)(m +2)>log (m +2)(m +3).只需证lg (m +2)lg (m +1)>lg (m +3)lg (m +2), 即证lg(m +1)·lg(m +3)<lg 2(m +2),又lg(m +1)·lg(m +3)< ⎣⎡⎦⎤lg (m +1)+lg (m +3)2 2 =[lg (m +1)(m +3)]24<[lg (m 2+4m +4)]24=lg 2(m +2), ∴log (m +1)(m +2)>log (m +2)(m +3)成立.。

相关文档
最新文档