2020年11月29日昆明高考研讨会-数学

合集下载

2020年云南省昆明市金源中学高三数学文联考试卷含解析

2020年云南省昆明市金源中学高三数学文联考试卷含解析

2020年云南省昆明市金源中学高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 不等式的解集是()A.x<3 B.x>-1 C.x<-1或x>3 D.-1<x<3参考答案:D略2. 若命题“使得”为假命题,则实数m的取值范围是( )A. B. C. D.参考答案:A略3. 定义域为上的奇函数满足,且,则()A.2 B.1 C.-1 D.-2参考答案:C4. 为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩(如图),要测算两点的距离,测量人员在岸边定出基线,测得,,就可以计算出两点的距离为A. B. C. D.参考答案:A5. 已知为抛物线的焦点,过作两条互相垂直的直线,直线与交于、两点,直线与交于、两点,则的最小值为()A.36 B.40 C.D.参考答案:A6. 已知向量满足,则向量夹角的余弦值为()A. B. C. D.参考答案:D略7. 设集合M={x|﹣1<x<1},N={x|x2≤x},则M∩N=()A.[0,1)B.(﹣1,1] C.[﹣1,1) D.(﹣1,0]参考答案:A【考点】交集及其运算.【专题】集合.【分析】求出N中不等式的解集确定出N,求出M与N的交集即可.【解答】解:由N中的不等式变形得:x(x﹣1)≤0,解得:0≤x≤1,即N=[0,1],∵M=(﹣1,1),∴M∩N=[0,1).故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.8. 下列区间中,函数,在其上为增函数的是(A) (B)(C) (D)参考答案:D9. 函数,当时,,则的最小值是()A.1 B.2 C.D.参考答案:B因为,所以依题意,由即,得所以所以,整理得又,所以所以,所以的最小值为2.10. 下列函数中,在区间(0,+∞)上为增函数的是()A.y=ln(x+2)B.y=-C.y=()xD.y=x+参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 已知等差数列{a n}满足a3+a7=10,则该数列的前9项和S9= .参考答案:45考点:等差数列的性质;等差数列的前n项和.专题:计算题.分析:由数列{a n}为等差数列,利用等差数列的性质得到a3+a7=2a5,由a3+a7的值,求出a5的值,然后利用等差数列的求和公式表示出数列的前9项和S9,利用等差数列的性质化简后,将a5的值代入即可求出值.解答:解:∵数列{a n}为等差数列,∴a3+a7=2a5,又a3+a7=10,∴2a5=10,即a5=5,则该数列的前9项和S9==9a5=45.故答案为:45点评:此题考查了等差数列的性质,以及等差数列的求和公式,熟练掌握等差数列的性质是解本题的关键.12. 设是两箱梁不同的直线,是三个不同的平面,给出下列四个命题,其中正确命题的序号是.①若则②若,则③若,则;④若,则参考答案:①②13. 表示不超过的最大整数.那么.参考答案:略14. 四个小动物换座位,开始是鼠、猴、兔、猫分别坐1,2,3,4号位子上(如下图),第一次前后排动物互换座位,第二次左右列动物互换座位,…,这样交替进行下去,那么第2012次互换座位后,小兔的座位对应的是()A.编号1 B.编号2 C.编号3 D.编号4参考答案:C15. 已知角的顶点与原点重合,始边与轴的非负半轴重合,终边在直线上,则等于参考答案:16. 已知不等式的解集为,则= 。

2020年昆明一中高考数学模拟试卷(文科)(含答案解析)

2020年昆明一中高考数学模拟试卷(文科)(含答案解析)

2020年昆明一中高考数学模拟试卷(文科)一、单项选择题(本大题共12小题,共60.0分)1. 已知集合A ={x|x 2<1},B ={x|y =ln(−x)},则A ∩B =( )A. ⌀B. {x|x <0}C. {x|−1<x <0}D. {x|0<x <1}2. 若z +2z =3−i ,则|z|=( )A. 1B. √2C. √3D. 23. 如图所示的曲线图是2020年1月25日至2020年2月12日陕西省及西安市新冠肺炎累计确诊病例的曲线图,则下列判断错误的是( )A. 1月31日陕西省新冠肺炎累计确诊病例中西安市占比超过了13B. 1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势C. 2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了97例D. 2月8日到2月10日西安市新冠肺炎累计确诊病例的增长率大于2月6日到2月8日的增长率4. 若θ∈(π4,π2),sin 2θ=4√29,则cosθ=( )A. 13B. 23C. 2√23D. 895. 已知x ,y 满足{x ≤32y ≥x3x +2y ≥63y ≤x +9,则z =2x −y 的最大值是( )A. 152B. 92C. 94D. 26. 函数f(x)=sinx(sinx +√3cosx)的最大值为( )A. 2B. 1+√3C. 32D. 17.函数y=1−1x−1的图象是()A. B.C. D.8.执行如图所示的程序框图,则输出的数的个数是()A. 7B. 6C. 5D. 49.若球O的表面积值为4π,则它的体积V=()A. 4πB. 43π C. 163π D. 34π10.在四面体ABCD中,∠ABC=∠ABD=∠ADC=π2,则下列是直角的为()A. ∠BCDB. ∠BDCC. ∠CBDD. ∠ACD11.若a≥√2,则双曲线x2a2−y23=1的离心率的取值范围是()A. [√102,+∞) B. (√102,+∞) C. (1,√102] D. (1,√102)12.函数f(x)=(1−x)|x−3|在(−∞,a]上取得最小值−1,则实数a的取值范围是()A. (−∞,2]B. [2−√2, 2]C. [2, 2+√2]D. [2,+∞)二、填空题(本大题共4小题,共20.0分)13.已知向量a⃗=(2,3),b⃗ =(−1,2),若m a⃗+b⃗ 与a⃗−2b⃗ 垂直,则m等于______ .14.已知△ABC中,a、b、c是角A、B、C所对的边,a2=b2+c2−ab,则角A等于______ .15.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的焦点为F1,F2,离心率为√3.若C上一点P满足|PF1|−|PF2|=2√3,则C的方程为______.16.已知函数f(x)=|x|+cosx,若方程f2(x)−af(x)+3=0有四个不等实根,则实数a的取值范围为________.三、解答题(本大题共7小题,共84.0分)17.已知等比数列{a n}的公比q>0,a2a3=8a1,且a4,36,2a6成等比数列.(1)求数列{a n}的通项公式;(2)记b n=2na n,求数列{b n}的前{b n}的前n项和T n.18.某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数据如表:节能意识弱节能意识强总计20至50岁45954大于50岁103646总计5545100(1)若全小区节能意识强的人共有360人,则估计这360人中,年龄大于50岁的有多少人⋅(2)按表格中的年龄段分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率.19.如图,平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,AD=a,G是EF的中点,且AF=12(1)求证平面AGC⊥平面BGC;(2)求GB与平面AGC所成角的正弦值.20.如图,已知抛物线C:x2=2py(p>0)过点(2,1),直线l过点P(0,−1)与抛物线C交于A,B两点,点A关于y轴的对称点为A′,连结A′B.(1)求抛物线C的标准方程;(2)问直线A′B 是否过定点?若是,求出定点坐标;若不是,请说明理由.21. 设函数f(x)=lnx −x +1.(1)求函数f(x)的最值;(2)证明:lnx ≤x −1.22. 在平面直角坐标系xOy 中,倾斜角为α的直线l 的参数方程为{x =tcosαy =1+tsinα(其中t 为参数).在以O 为极点、x 轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,曲线C :ρ(1+cos2θ)=λsinθ的焦点F 的极坐标为(1,π2). (Ⅰ)求常数λ的值;(Ⅱ)设l 与C 交于A 、B 两点,且|AF|=3|FB|,求α的大小.23.已知函数f(x)=|1−2x|+|1+x|.(1)解不等式f(x)≥4;(2)若关于x的不等式a2+2a−|1+x|<f(x)恒成立,求实数a的取值范围.【答案与解析】1.答案:C解析:解:∵A={x|−1<x<1},B={x|x<0};∴A∩B={x|−1<x<0}.故选:C.可求出集合A,B,然后进行交集的运算即可.考查描述法的定义,一元二次不等式的解法,对数函数的定义域,以及交集的运算.2.答案:B解析:本题考查复数的有关概念和复数的运算.z=a+bi(a,b∈R),则z=a−bi,根据复数相等的意义即可求解;解:设z=a+bi(a,b∈R),则z=a−bi,依题意知a+bi+2(a−bi)=3−i,即3a−bi=3−i,根据复数相等的意义得a=b=1,于是z=1+i,所以|z|=√2.故选B;3.答案:D解析:解:对于A,1月31日陕西省新冠肺炎累计确诊病例共有87例,其中西安32例.所以西安所占比例为3287>13,故A正确;对于B,由曲线图可知.1月25日至2月12日陕西省及西安市新冠肺炎累计确诊病例都呈递增趋势,故B正确:对于C,2月2日后到2月10日陕西省新冠肺炎累计确诊病例增加了213−116=97例,故C正确:对于D,2月8日到2月10日西安新冠肺炎累计确诊病例增加了98−8888=544,2月6日到2月8日西安新冠肺炎累计确诊病例增加了88−7474=737,显然737>544,故D 错误.故选:D .根据图表中包含的信息对照选项分析即可判断真假.本题主要考查学生的数据分析能力和图形阅读理解能力,属于基础题.4.答案:A解析:由已知利用同角三角函数基本关系式可求可得cos2θ,进而利用二倍角公式可求cosθ的值. 本题主要考查了同角三角函数基本关系式,二倍角公式在三角函数化简求值中的综合应用,属于基础题.解:由θ∈(π4,π2),sin2θ=4√29,得2θ∈(π2,π),可得cos2θ=−√1−sin 22θ=−79, 所以cosθ=√1+cos2θ2=13.故选:A .5.答案:B解析:解:作出不等式组{x ≤32y ≥x3x +2y ≥63y ≤x +9表示的平面区域,得到如图的四边形ABCD 及其内部,其中A(32,34),B(3,32),C(3,4),D(0,3)设z =F(x,y)=2x −y ,将直线l :z =2x −y 进行平移, 当l 经过点B 时,目标函数z 达到最大值∴z 最大值=F(3,32)=2×3−32=92故选:B .作出题中不等式组表示的平面区域,得如图的四边形ABCD 及其内部,再将目标函数z =2x −y 对应的直线进行平移,可得当x =3,y =32时,目标函数z 取得最大值.本题给出二元一次不等式组,求目标函数z =2x −y 的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.6.答案:C解析:解:f(x)=sinx(sinx +√3cosx)=sin 2x +√3sinxcosx =12(1−cos2x)+√32sin2x =sin(2x −π6)+12, ∴当sin(2x −π6)=1时,函数取得最大值1+12=32, 故选:C .利用三角函数的倍角公式以及三角函数的辅助角公式进行化简,结合三角函数的有界性进行求解即可.本题主要考查三角函数最值的求解,利用三角函数的倍角公式以及三角函数的辅助角公式进行化简是解决本题的关键.7.答案:B解析:解:把y =1x 的图象向右平移一个单位得到y =1x−1的图象, 把y =1x−1的图象关于x 轴对称得到y =−1x−1的图象, 把y =−1x−1的图象向上平移一个单位得到y =1−1x−1的图象. 故选:B .把函数y =1x 先向右平移一个单位,再关于x 轴对称,再向上平移一个单位. 本题考查函数图象的平移,对称,以及学生的作图能力.8.答案:A解析:解:由题意,即求n ≤100(n ∈N),满足log 2n ∈N 的n 的个数, ∴n =1,2,4,8,16,32,64, 故选:A .由题意,即求n ≤100(n ∈N),满足log 2n ∈N 的n 的个数.本题考查了程序框图中的循环结构的应用,解题的关键是由框图的结构判断出框图的计算功能9.答案:B解析:本题考查了球的表面积和体积公式的运用,属于基础题.由球O的表面积值为4π,求出半径r的值,然后求出体积.解:S球=4πr2=4π,得r=1,所以V球=43πr3=43×π×13=43π,故选B.10.答案:B解析:解:∵在四面体ABCD中,∠ABC=∠ABD=π2,∴AB⊥平面BCD,∴AB⊥CD,∵∠ADC=π2,∴CD⊥AD,∵AB∩AD=A,∴CD⊥平面ABD,∴∠BDC=π2.故选:B.在四面体ABCD中,由∠ABC=∠ABD=π2,知AB⊥平面BCD,从而得到AB⊥CD,由∠ADC=π2,知CD⊥AD,从而得到CD⊥平面ABD,所以∠BDC=π2.本题考查直角的判断,是基础题,解题时要注意直线与平面垂直的判断与应用.11.答案:C解析:解:根据题意,双曲线x2a2−y23=1中a≥√2,则c=√a2+3,则双曲线的离心率e=ca =√a2+3a=√1+3a2,又由a≥√2,则有1<e≤√102,即双曲线的离心率e的取值范围是(1,√102]故选:C.根据题意,由双曲线的标准方程可得c的值,进而由双曲线的离心率公式可得e=ca =√a2+3a=√1+3a2,结合a的范围,分析可得答案.本题考查双曲线的几何意义,关键是掌握双曲线的离心率计算公式.12.答案:C解析:解:∵函数f(x)=(1−x)|x−3|={−x 2+4x−3,x≥3x2−4x+3,x<3,其函数图象如下图所示:由函数图象可得:函数f(x)=(1−x)|x−3|在(−∞,a]上取得最小值−1,当x≥3时,f(x)=−x2+4x−3=−1,解得x=2+√2,当x<3时,f(x)=x2−4x+3=−1,解得x=2,实数a须满足2≤a≤2+√2.故实数a的集合是[2,2+√2].故选:C.由零点分段法,我们可将函数f(x)=(1−x)|x−3|的解析式化为分段函数的形式,然后根据分段函数分段处理的原则,画出函数的图象,进而结合图象数形结合,可得实数a的集合本题考查的知识点是函数的最值及其几何意义,其中根据分段函数图象分段画的原则,画出函数的图象是解答本题的关键.13.答案:65解析:解:∵向量a⃗=(2,3),b⃗ =(−1,2),∴m a⃗+b⃗ =(2m−1,3m+2)a⃗−2b⃗ =(4,−1)又∵m a⃗+b⃗ 与a⃗−2b⃗ 垂直,∴(m a⃗+b⃗ )⋅(a⃗−2b⃗ )=4(2m−1)−(3m+2)=5m−6=0,解得m=65.故答案为:65.根据平面向量的坐标运算,利用m a⃗+b⃗ 与a⃗−2b⃗ 垂直,数量积为0,求出m的值.本题考查了平面向量的数量积的应用问题,是基础题目.14.答案:π3解析:解:△ABC中,a、b、c是角A、B、C所对的边,a2=b2+c2−ab,cosA=b2+c2−a22bc =12,A是三角形内角,∴A=π3.故答案为:π3.直接利用余弦定理求出A的余弦函数值,即可求解A的大小.本题考查三角形的解法,余弦定理的应用,考查计算能力.15.答案:x23−y26=1解析:解:由双曲线的定义可知a=√3,由e=ca=√3,得c=3,则b2=c2−a2=6,所以双曲线C的方程为x23−y26=1.故答案为:x23−y26=1.根据双曲线的定义和离心率公式求出c和a,则双曲线方程可得.本题主要考查双曲线的简单性质,根据双曲线的定义求出a,b是解决本题的关键.16.答案:(2√3,4)解析:本题主要考查根的存在性的应用,利用换元法将方程进行转化是解决本题的关键.利用换元法,将方程,转化为关于t的一元二次方程,利用根与系数之间的关系即可得到结论.解:设t=f(x),则方程f2(x)−af(x)+3=0有四个不等实根,做出f(x)的图象等价为t 2−at +3=0有两个不同的解,且两个根t 1,t 2都大于1,, 即{△=a 2−12>01−a +3>0a2>1, 解得2√3<a <4,∴实数a 的取值范围为(2√3,4), 故答案为(2√3,4).17.答案:解:(1)由a 2a 3=8a 1得:a 1q 3=8 即a 4=8又因为a 4,36,2a 6成等差数列 所以a 4+2a 6=72 将a 4=8代入得:a 6=42 从而:a 1=1,q =2所以:a n =2n−1 (2)b n =2n =2n ⋅(1)n−1 T n =2×(12)0+4×(12)1+6×(12)2+⋯+2(n −1)⋅(12)n−2+2n ⋅(12)n−1……………………①12T n =2×(12)1+4×(12)2+6×(12)3+⋯+2(n −1)⋅(12)n−1+2n ⋅(12)n ……………………② ①−②得:12T n =2×(12)0+2((12)1+(12)2+⋯+(12)n−1)−2n ⋅(12)n=2+2×12×(1−(12)n−1)1−12−2n ⋅(12)n =4−(n +2)⋅(12)n−1 ∴T n =8−(n +2)⋅(12)n−2解析:(1)利用等差数列以及等比数列的通项公式列出方程组,求出数列的首项与公比,然后求解数列的通项公式.(2)化简通项公式,利用错位相减法求解数列的和即可.本题考查等差数列以及等比数列的应用,数列求和的方法,考查转化首项以及计算能力.18.答案:解:(1)全小区节能意识强的人共有 360 人,估计这 360 人中,年龄大于 50 岁的有3645×360=288人.(2)抽取节能意识强的5人中,年龄在20至50岁的有5×936+9=1人,∴年龄大于50岁的有4人,记这5人分别为a,b,c,d,e,从这5人中,任取2人,所有的可能情况有10种,分别为:{a,b},{a,c},{a,d},{a,e},{b,c},{b,d},{b,e},{c,d},{c,e},{d,e},设事件A表示“恰有 1 人年龄在 20 岁至 50 岁”,则事件A包含的基本事件有4种,分别为:{a,b},{a,c},{a,d},{a,e},∴恰有 1 人年龄在 20 岁至 50 岁的概率P(A)=410=25.解析:本题考查频数分布表的应用,考查概率的求法,古典概型等基础知识,考查运算求解能力,是基础题.(1)全小区节能意识强的人共有 360 人,由此能估计这 360 人中,年龄大于 50 岁的人数.(2)抽取节能意识强的5人中,年龄在20至50岁的有1人,年龄大于50岁的有4人,记这5人分别为a,b,c,d,e,利用列举法能求出恰有 1 人年龄在 20 岁至 50 岁的概率.19.答案:(1)证明:∵正方形ABCD,∴CB⊥AB,∵面ABCD⊥面ABEF且交于AB,CB⊂面ABCD,∴CB⊥面ABEF.∵AG,GB⊂面ABEF,∴CB⊥AG,又AD=2a,AF=a,ABEF是矩形,G是EF的中点,∴AG=BG=√2a,AB=2a,AB2=AG2+BG2,∴AG⊥BG,∵BG∩BC=B,BG,BC⊂面CBG,∴AG⊥平面CBG,而AG⊂面AGC,故平面AGC⊥平面BGC.(2)解:如图,在平面BGC内作BH⊥GC,垂足为H,由(Ⅰ)知面AGC⊥面BGC,且交于GC,则BH⊥平面AGC,∴∠BGH是GB与平面AGC所成的角.∴在Rt △CBG 中BH =BC⋅BG CG=BC⋅BG √BC 2+BG 2=2√33a ,又BG =√2a ,∴sin∠BGH =BH BG=√63.解析:(1)由面面垂直的性质证明CB ⊥AG ,用勾股定理证明AG ⊥BG ,得到AG ⊥平面CBG ,从而结论得到证明.(2)由(Ⅰ)知面AGC ⊥面BGC ,在平面BGC 内作BH ⊥GC ,垂足为H ,则BH ⊥平面AGC ,故∠BGH 是GB 与平面AGC 所成的角,解Rt △CBG ,可得GB 与平面AGC 所成角的正弦值.本题考查面面垂直的判定方法,以及求线面成的角的求法,体现转化的思想,属于基础题.20.答案:解:(1)将点(2,1)代入抛物线C 的方程,得p =2,所以抛物线C 的标准方程为x 2=4y . (2)设直线l 的方程为y =kx −1, 又设A(x 1,y 1),B(x 2,y 2),则A′(−x 1,y 1), 由{y =x 24,y =kx −1,得x 2−4kx +4=0, 则Δ=16k 2−16>0,x =4k±√16k2−162,x 1x 2=4,x 1+x 2=4k ,所以k A′B =y 2−y 1x 2−(−x 1)=x 224−x 124x1+x 2=x 2−x 14, 于是直线A′B 的方程为y −x 224=x 2−x 14(x −x 2),所以y =x 2−x 14(x −x 2)+x 224=x 2−x 14x +1,当x =0时,y =1,所以直线A′B 过定点(0,1).解析:本题考查抛物线的方程与抛物线与直线的位置关系,属于中档题. (1)将点(2,1)代入抛物线C 的方程,即可求解,(2)设直线l 的方程为y =kx −1,又设A(x 1,y 1),B(x 2,y 2),则A′(−x 1,y 1),直线方程与抛物线方程联立,求得x 1x 2=4,x 1+x 2=4k ,写出直线A′B 的方程,整理即可求解. 21.答案:解:(1)由题设,函数f (x )的定义域为(0,+∞), ,令,;当x 变化时,,f (x )的变化情况如下表:因此,当x =1,函数f (x )有极大值即为最大值,且最大值为f (1)=0,没有最小值; (2)证明:由(1)可知函数f (x )在x =1处取得最大值,且最大值为0, 即f (x )=lnx −x +1≤0⇒lnx ≤x −1,证毕.解析:本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,是一道中档题. (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可; (2)由(1)和函数的单调性证明结论即可.22.答案:解:(Ⅰ)曲线C :ρ(1+cos2θ)=λsinθ,转换为:2ρ2cos 2θ=λρsinθ, 即:x 2=λ2y ,由于:曲线C 的焦点F 的极坐标为(1,π2). 即:F(0,1), 所以:λ8=1,故:λ=8.(Ⅱ)把倾斜角为α的直线l 的参数方程为{x =tcosαy =1+tsinα(其中t 为参数)代入x 2=4y . 得到:cos 2αt 2−4sinαt −4=0. 所以:t 1+t 2=4sinαcos 2α,t 1⋅t 2=−4cos α<0, 且|AF|=3|FB|, 故:t 1=6sinαcos 2α,t 2=−2sinαcos 2α,整理得−12sin 2αcos α=−4cos α,解得:tanα=±√33,由于:0<α≤π,故:α=π6或5π6.解析:本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换一元二次方程根和系数关系式的应用,三角函数关系式的恒等变换,主要考察学生的运算能力和转换能力,属于基础题型.(Ⅰ)直接利用转换关系式,把参数方程极坐标方程和直角坐标方程之间进行转换. (Ⅱ)利用一元二次方程关系式的应用和三角函数关系式的变换的应用求出结果.23.答案:解:(1)∵f(x)=|1−2x|+|1+x|,故f(x)≥4,即|1−2x|+|1+x|≥4,∴{x <−11−2x −x −1≥4①或{−1≤x ≤121−2x +x +1≥4②或{x >122x −1+x +1≥4③,解①求得x ≤−43,解②求得x ∈⌀,解③求得x ≥43, 综上,可得不等式的解集为.(2)关于x 的不等式a 2+2a −|1+x|<f(x)恒成立,即a 2+2a <|1−2x|+|2x +2|,而|1−2x|+|2x +2|≥|1−2x +2x +2|=3, 故有a 2+2a <3,求得3<a <1,即实数a 的取值范围为(−3,1).解析:本题主要考查绝对值不等式的解法,考查恒成立问题,体现了转化、分类讨论的数学思想,属于中档题.(1)分类讨论,去掉绝对值,即可求不等式f(x)≥4的解集; (2)绝对值三角不等式的应用.。

浅析2020年全国数学高考卷Ⅲ解析几何大题的解答及启示

浅析2020年全国数学高考卷Ⅲ解析几何大题的解答及启示

设 t>0,由题意知 n>0,易得 B(5,0) ,则直线 BP 的
方程为
y
=
-
1 t
( x -5) ,从而
| BP | = n 1+t2 , | BQ | = 1+t2 .
由 | BP | = | BQ | ,得 n = 1,代入 C 的方程,解得 n = 3
或 n = -3,通过直线 BP 的方程解得 t = 2 或 t = 8. 从
虑利用向量. 解法 3 设点 Q(6,m) ,不妨设 m> 0,则 B→Q =
(1,m) ,从而 B→P = ( -m,1) ,于是 O→P = B→P-B→O = ( -m,1) -( -5,0)= (5-m,1) ,
得 P(5-m,1). 将点 P 的坐标代入椭圆 C 的方程
中,得
(5-m) 2 +16 = 25,
C
的方程为 x2 + y2 25 25
=
1,下面分析第
2)
16
小题的解答.
分析 1 可先求出点 A, P, Q 的坐标, △APQ
的面积便易求出. 设点 P,Q 的坐标,利用 BP⊥BQ,
表示出 | BP | , | BQ | ,计算出点 P,Q 的坐标.
解法 1 设 P( m,n),Q(6,t),根据对称性可
1 2
×8×1+(1+2) ×3×
1 2
-
1 2
×11×2
=
5 2
,
S = △AP2Q2
1 2
×2×1+(1+8) ×9×
1 2
-
1 2
×19×8
=
5 2

2020年高考数学一轮复习考点29等差数列及其前n项和必刷题理含解析

2020年高考数学一轮复习考点29等差数列及其前n项和必刷题理含解析

考点29 等差数列及其前n 项和1、记S n 为等差数列{a n }的前n 项和,若S 33-S 22=1,则其公差d =( )A.12 B .2 C .3 D .4【答案】B【解析】由S 33-S 22=1,得a 1+a 2+a 33-a 1+a 22=1,即a 1+d -⎝⎛⎭⎪⎫a 1+d 2=1,∴d =2.2、已知等差数列{a n }的前n 项和为S n ,a 3=3,a 5=5,则S 7的值是( ) A .30 B .29 C .28 D .27【答案】C【解析】由题意,设等差数列的公差为d ,则d =a 5-a 35-3=1,故a 4=a 3+d =4,所以S 7=7a 1+a 72=7×2a 42=7×4=28.故选C.3、已知等差数列{a n }的前n 项和为S n ,若a 3=8,S 6=54,则数列{a n }的公差为( ) A .2 B .3 C .4 D .92 【答案】A【解析】设等差数列{a n }的首项为a 1,公差为d ,则a 3=a 1+2d =8,S 6=6a 1+15d =54,解得a 1=4,d =2.故选A.4、等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8等于( ) A .18 B .12 C .9 D .6【答案】D【解析】.由题意得S 11=11a 1+a 112=112a 1+10d2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6,故选D.5、已知等差数列{a n },且3(a 3+a 5)+2(a 7+a 10+a 13)=48,则数列{a n }的前13项之和为 ( ) A .24 B .39 C .104 D .52【答案】D【解析】因为{a n }是等差数列,所以3(a 3+a 5)+2(a 7+a 10+a 13)=6a 4+6a 10=48.所以a 4+a 10=8.其前13项的和为13a 1+a 132=13a 4+a 102=13×82=52,故选D.6、在等差数列{a n }中,a 1=-2 017,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 020=( )A .2 020B .-2 020C .4 040D .-4 040【答案】C【解析】设等差数列{a n }的前n 项和为S n =An 2+Bn ,则S n n =An +B ,∴⎩⎨⎧⎭⎬⎫S n n 是等差数列.∵S 1212-S 1010=2,∴⎩⎨⎧⎭⎬⎫S n n 的公差为1,又S 11=a 11=-2 017,∴⎩⎨⎧⎭⎬⎫S n n 是以-2 017为首项,1为公差的等差数列,∴S 2 0202 020=-2 017+2019×1=2,∴S 2 020=4 040.故选C.7、设S n 是等差数列{a n }的前n 项和,公差d ≠0,若S 11=132,a 3+a k =24,则正整数k 的值为 ( ) A .9 B .10 C .11 D .12【答案】A【解析】依题意,得S 11=11a 1+a 112=11a 6=132,a 6=12,于是有a 3+a k =24=2a 6,因此3+k =2×6=12,k =9,故选A.8、已知数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)在函数y =x 2-10x 的图象上,等差数列{b n }满足b n +b n+1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( )A .S n <2T nB .b 4=0C .T 7>b 7D .T 5=T 6【答案】D【解析】因为点(n ,S n )(n ∈N *)在函数y =x 2-10x 的图象上,所以S n =n 2-10n ,所以a n =2n -11,又b n +b n +1=a n (n ∈N *),数列{b n }为等差数列,设公差为d ,所以2b 1+d =-9,2b 1+3d =-7,解得b 1=-5,d =1,所以b n =n -6,所以b 6=0,所以T 5=T 6,故选D.9、已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为( ) A .7 B .8 C .7或8 D .8或9【答案】C【解析】由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n7.该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或8.故选C.10、《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( ) A .1升 B .6766升 C.4744升 D .3733升 【答案】B【解析】设该等差数列为{a n },公差为d , 由题意得⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎪⎨⎪⎧a 1=1322,d =766.∴a 5=1322+4×766=6766.故选B.11、已知等差数列{a n }的前n 项和为S n (n ∈N *),若S 3S 5=25,则a 6a 12=( )A .4B .2 C.14 D .12【答案】D【解析】设等差数列{a n }的公差为d ,则3a 1+3d 5a 1+10d =25,可得a 1=d ,故a 6a 12=a 1+5d a 1+11d =6d 12d =12.故选D.12、下面是关于公差d >0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列; p 3:数列{a nn}是递增数列;p 4:数列{a n +3nd }是递增数列.其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 4【答案】D【解析】{a n }是等差数列,则a n =a 1+(n -1)d =dn +a 1-d ,因为d >0,所以{a n }是递增数列,故p 1正确;对p 2,举反例,令a 1=-3,a 2=-2,d =1,则a 1>2a 2,故{na n }不是递增数列,p 2不正确;a n n =d +a 1-dn,当a 1-d >0时,{a n n}递减,p 3不正确;a n +3nd =4nd +a 1-d,4d >0,{a n +3nd }是递增数列,p 4正确.故p 1,p 4是正确的,选D.13、设S n 为等差数列{a n }的前n 项和,且(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则 ( ) A .S n 的最大值是S 8 B .S n 的最小值是S 8 C .S n 的最大值是S 7 D .S n 的最小值是S 7【答案】D【解析】由条件,得S n n <S n +1n +1,即n a 1+a n 2n <n +1a 1+a n +12n +1,所以a n <a n +1.所以等差数列{a n }为递增数列.又a 8a 7<-1,所以a 8>0,a 7<0,即数列{a n }前7项均小于0,第8项大于零.所以S n 的最小值为S 7.故选D.14、数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8等于( ) A .0 B .3 C .8 D .11【答案】B【解析】∵{b n }为等差数列,设其公差为d , 由b 3=-2,b 10=12,∴7d =b 10-b 3=12-(-2)=14,∴d =2, ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6, ∴b 1+b 2+…+b 7=7b 1+7×62d=7×(-6)+21×2=0,又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3, ∴a 8-3=0,∴a 8=3.故选B.15、在等差数列{a n }中,已知a 3=5,a 7=-7,则S 10的值为( ) A .50 B .20 C .-70 D .-25【答案】D【解析】设等差数列{a n }的公差为d .∵a 7-a 3=4d =-12,∴d =-3,∴a 10=a 7+3d =-16,a 1=a 3-2d =11,∴S 10=10a 1+a 102=-25.故选D.16、如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n+1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列 C .{d n }是等差数列 D .{d 2n }是等差数列【答案】A【解析】作A 1C 1,A 2C 2,A 3C 3,…,A n C n 垂直于直线B 1B n ,垂足分别为C 1,C 2,C 3,…,C n ,则A 1C 1∥A 2C 2∥…∥A n C n .∵|A n A n +1|=|A n +1A n +2|, ∴|C n C n +1|=|C n +1C n +2|.设|A 1C 1|=a ,|A 2C 2|=b ,|B 1B 2|=c ,则|A 3C 3|=2b -a ,…,|A n C n |=(n -1)b -(n -2)a (n ≥3), ∴S n =12c [(n -1)b -(n -2)a ]=12c [(b -a )n +(2a -b )], ∴S n +1-S n =12c [(b -a )(n +1)+(2a -b )-(b -a )n -(2a -b )]=12c (b -a ),∴数列{S n }是等差数列.17、已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为________. 【答案】19. 【解析】∵a 11a 10<-1,且S n 有最大值, ∴a 10>0,a 11<0,且a 10+a 11<0, ∴S 19=19a 1+a 192=19·a 10>0,S 20=20a 1+a 202=10(a 10+a 11)<0,故使得S n >0的n 的最大值为19.18、若数列{a n }满足a 1=15,且3a n +1=3a n -2,则使a k ·a k +1<0的k 值为________. 【答案】23.【解析】因为3a n +1=3a n -2,所以a n +1-a n =-23,所以数列{a n }是首项为15,公差为-23的等差数列,所以a n =15-23·(n -1)=-23n +473,令a n =-23n +473>0,得n <23.5,所以使a k ·a k +1<0的k 值为23.19、在等差数列{a n }中,a 15=33,a 25=66,则a 35=________. 【答案】99【解析】∵a 25-a 15=10d =66-33=33,∴a 35=a 25+10d =66+33=99.20、《张丘建算经》卷上第22题为:“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.则月末日织几何?”其意思为今有女子善织布,且从第2天起,每天比前一天多织相同量的布.若第一天织5尺布,现在一个月(按30天计)共织390尺布,则该女最后一天织________尺布. 【答案】21【解析】由题意得,该女每天所织的布的尺数依次排列形成一个等差数列,设为{a n },其中a 1=5,前30项和为390,于是有305+a 302=390,解得a 30=21,即该女最后一天织21尺布.21、已知{a n }为等差数列,公差为1,且a 5是a 3与a 11的等比中项,则a 1=________. 【答案】-1【解析】因为a 5是a 3与a 11的等比中项,所以a 25=a 3·a 11,即(a 1+4d )2=(a 1+2d )·(a 1+10d ),解得a 1=-1.22、设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 【答案】1941【解析】因为{a n },{b n }为等差数列,所以a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.因为S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,所以a 9b 5+b 7+a 3b 8+b 4=1941.23、设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 【答案】130【解析】由a n =2n -10(n ∈N *),知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0,得n ≥5,∴当n ≤5时,a n ≤0;当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.24、已知等差数列{a n }的前n 项和为S n ,n ∈N *,满足a 1+a 2=10,S 5=40. (1)求数列{a n }的通项公式;(2)设b n =|13-a n |,求数列{b n }的前n 项和T n .【答案】(1) 2n +2 (2) -n 2+10n T n =⎩⎪⎨⎪⎧-n 2+10n ,n ≤5,n 2-10n +50,n ≥6.【解析】(1)设等差数列{a n }的公差为d , 由题意知,a 1+a 2=2a 1+d =10,S 5=5a 3=40,即a 3=8,所以a 1+2d =8,所以⎩⎪⎨⎪⎧a 1=4,d =2,所以a n =4+(n -1)·2=2n +2.(2)令c n =13-a n =11-2n ,b n =|c n |=|11-2n |=⎩⎪⎨⎪⎧11-2n ,n ≤5,2n -11,n ≥6,设数列{c n }的前n 项和为Q n ,则Q n =-n 2+10n . 当n ≤5时,T n =b 1+b 2+…+b n =Q n =-n 2+10n .当n ≥6时,T n =b 1+b 2+…+b n =c 1+c 2+…+c 5-(c 6+c 7+…+c n )=-Q n +2Q 5=n 2-10n +2(-52+10×5)=n 2-10n +50.∴T n =⎩⎪⎨⎪⎧-n 2+10n ,n ≤5,n 2-10n +50,n ≥6.25、记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 【答案】(1) (-2)n. (2) S n +1,S n ,S n +2成等差数列 【解析】(1)设{a n }的公比为q ,由题设可得⎩⎪⎨⎪⎧a 11+q =2,a 11+q +q2=-6.解得q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n.(2)由(1)可得S n =a 11-q n 1-q =-23+(-1)n·2n +13.由于S n +2+S n +1=-43+(-1)n·2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+-1n·2n +13=2S n,故S n +1,S n ,S n +2成等差数列.26、在公差不为0的等差数列{a n }中,a 1,a 4,a 8成等比数列. (1)若数列{a n }的前10项和为45,求数列{a n }的通项公式; (2)若b n =1a n a n +1,且数列{b n }的前n 项和为T n ,若T n =19-1n +9,求数列{a n }的公差. 【答案】(1)n +83. (2) -1或1【解析】(1)设数列{a n }的公差为d (d ≠0),由a 1,a 4,a 8成等比数列可得a 24=a 1·a 8,即(a 1+3d )2=a 1·(a 1+7d ),解得a 1=9d . 由数列{a n }的前10项和为45得10a 1+45d =45,即90d +45d =45,所以d =13,a 1=3.故数列{a n }的通项公式为a n =3+(n -1)×13=n +83.(2)因为b n =1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,所以数列{b n }的前n 项和T n =1d ⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a n -1a n +1=1d ⎝ ⎛⎭⎪⎫1a 1-1a n +1,即T n =1d ⎝ ⎛⎭⎪⎫1a 1-1a 1+nd =1d ⎝ ⎛⎭⎪⎫19d -19d +nd =1d 2⎝ ⎛⎭⎪⎫19-19+n =19-19+n, 因此1d2=1,解得d =-1或d =1.故数列{a n }的公差为-1或1.27、已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项b n =S n n,证明数列{b n }是等差数列,并求其前n 项和T n . 【答案】(1) a =2,k =10 (2)n n +32【解析】(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k k -12·d =2k +k k -12×2=k 2+k .由S k =110,得k 2+k -110=0, 解得k =10或k =-11(舍去), 故a =2,k =10. (2)由(1),得S n =n 2+2n2=n (n +1),则b n =S n n=n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n 2+n +12=n n +32.28、设等差数列{a n }的前n 项和为S n ,且a 5+a 13=34,S 3=9. (1)求数列{a n }的通项公式及前n 项和公式; (2)设数列{b n }的通项公式为b n =a na n +t,问:是否存在正整数t ,使得b 1,b 2,b m (m ≥3,m ∈N)成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由. 【答案】(1) 2n -1 n2(2) 存在正整数t ,使得b 1,b 2,b m 成等差数列【解析】(1)设{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+16d =34,3a 1+3d =9,解得a 1=1,d =2, 故a n =2n -1,S n =n 2. (2)由(1)知b n =2n -12n -1+t,要使b 1,b 2,b m 成等差数列,必须有2b 2=b 1+b m , 即2×33+t =11+t +2m -12m -1+t, 移项得2m -12m -1+t =63+t -11+t =6+6t -3-t3+t 1+t,整理得m =3+4t -1. 因为m ,t 为正整数, 所以t 只能取2,3,5.当t =2时,m =7;当t =3时,m =5; 当t =5时,m =4.所以存在正整数t ,使得b 1,b 2,b m 成等差数列.。

名师点评2020年高考数学卷(伍海军选编)

名师点评2020年高考数学卷(伍海军选编)

日期:2020年7月15日目录NO1:2020年高考数学点评!命题组专家揭秘高考数学出题思路 NO2:整体稳中有变突出核心素养——2020年高考全国I卷数学试题分析NO3:哈六中名师评析2020年高考数学试卷(全国Ⅱ卷)NO4:重视数学思维体现时代特色(全国Ⅲ卷)NO1:2020年高考数学点评!命题组专家揭秘高考数学出题思路来源:光明日报发布时间:2020-07-08 06:54:53 整理:一品高考网2020年高考数学试题落实立德树人根本任务,贯彻德智体美劳全面发展教育方针,坚持素养导向、能力为重的命题原则,体现了高考数学的科学选拔和育人导向作用。

试题重视数学本质,突出理性思维、数学应用、数学探究、数学文化的引领作用,突出对关键能力的考查。

试题展现了我国社会主义建设成就与科学防疫的成果,紧密联系社会实际,设计真实的问题情境,具有鲜明的时代特色。

试卷体现了基础性、综合性、应用性和创新性的考查要求,难度设计科学合理,很好把握了稳定与创新、稳定与改革的关系,对协同推进高考综合改革、引导中学数学教学都将起到积极的作用。

发挥学科特色,“战疫”科学入题揭示病毒传播规律,体现科学防控。

用数学模型揭示病毒传播规律,如新高考Ⅰ卷(供山东省使用)第6题,基于新冠肺炎疫情初始阶段累计感染病例数的数学模型的研究成果,考查了相关的数学知识和从资料中提取信息的能力,突出数学和数学模型的应用;全国Ⅲ卷文、理科第4题以新冠肺炎疫情传播的动态研究为背景,选择适合学生知识水平的Logistic 模型作为试题命制的基础,考查学生对指数函数基本知识的理解和掌握,以及使用数学模型解决实际问题的能力。

展现中国抗疫成果。

全国疫情防控进入常态化后,各地有序推进复工复产复学。

新高考Ⅱ卷(供海南省使用)第9题以各地有序推动复工复产为背景,取材于某地的复工复产指数数据,考查学生解读统计图以及提取信息的能力。

体现志愿精神。

如全国Ⅱ卷理科第3题(文科第4题)是以志愿者参加某超市配货工作为背景设计的数学问题,考查学生对基本知识的掌握程度及运用所学知识解决实际问题的能力。

2020年云南省昆明市永定中学高三数学理联考试卷含解析

2020年云南省昆明市永定中学高三数学理联考试卷含解析

2020年云南省昆明市永定中学高三数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若抛物线的焦点与双曲线的右焦点重合,则该抛物线的准线方程为()A. B. C. D.参考答案:B考点:抛物线的焦点,双曲线的焦点,抛物线的准线方程2. i表示虚数单位,则复数=()A.B.﹣C.D.﹣参考答案:D【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解: =,故选:D.3. 已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图1,则该几何体的体积是()图1A.8 B. C. D.参考答案:C略4. 为了解学生在课外活动方面的支出情况,抽取了n个同学进行调查,结果显示这些学生的支出金额(单位:元)都在[10,50],其中支出金额在[30,50]的学生有17人,频率分布直方图如图所示,则n=()A.180 B.160 C.150 D.200参考答案:A对应的概率为,所以,选A.5. .已知抛物线有相同的焦点F,点A是两曲线的交点,且AF⊥轴,则双曲线的离心率为().A.B. C.D.参考答案:B6. 下列说法正确的是( )A.a2>b2是a>b的必要条件B.“若a∈(0,1),则关于x的不等式ax2+2ax+1>0解集为R”的逆命题为真C.“若a,b不都是偶数,则a+b不是偶数”的否命题为假D.“已知a,b∈R,若a+b≠3,则a≠2或b≠1”的逆否命题为真参考答案:D【考点】命题的真假判断与应用.【专题】综合题;简易逻辑.【分析】对4个选项分别进行判断,即可得出结论.【解答】解:A,当a=﹣2,b=1时,a2>b2成立,但a>b不成立,即“a2>b2”是“a>b”的不充分条件;当a=1,b=﹣1时,a>b成立,但a2>b2不成立,即“a2>b2”是“a>b”的不必要条件,故“a2>b2”是“a>b”的既不充分也不必要条件,故不正确;B,由命题p:不等式ax2+2ax+1>0的解集为R可得a>0 且 4a2﹣4a<0,或者a=0,解得0≤a<1,故不正确;C,命题“若a,b不都是偶数,则a+b不是偶数”的否命题为:若a,b都是偶数,则a+b 是偶数,正确;D,“若a+b≠3,则a≠1或b≠2”的逆否命题是:“若a=1且b=2,则a+b=3”是真命题,正确.故选:D.【点评】本题考查命题真假的判断,四种命题的关系,以及原命题与它的逆否命题真假性相同的应用,属于中档题.7. 已知是虚数单位,则复数参考答案:8. 的展开式中常数项是()A.-15 B.5 C.10 D.15参考答案:B9. 下列命题中,真命题是()参考答案:C略10. 已知函数,则大小关系为A. B. C. D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.例如y=|x|是[﹣2,2]上的平均值函数,0就是它的均值点.若函数f(x)=x2﹣mx ﹣1是[﹣1,1]上的“平均值函数”,则实数m的取值范围是.参考答案:(0,2)【考点】31:函数的概念及其构成要素.【分析】函数f(x)=x2﹣mx﹣1是区间[﹣1,1]上的平均值函数,故有x2﹣mx﹣1=在(﹣1,1)内有实数根,求出方程的根,让其在(﹣1,1)内,即可求出实数m的取值范围.【解答】解:∵函数f(x)=x2﹣mx﹣1是区间[﹣1,1]上的平均值函数,∴关于x的方程x2﹣mx﹣1=在(﹣1,1)内有实数根.即x2﹣mx﹣1=﹣m在(﹣1,1)内有实数根.即x2﹣mx+m﹣1=0,解得x=m﹣1,x=1.又1?(﹣1,1)∴x=m﹣1必为均值点,即﹣1<m﹣1<1?0<m<2.∴所求实数m的取值范围是(0,2).故答案为:(0,2)12. 等比数列{a n}的公比大于1,a5﹣a1=15,a4﹣a2=6,则a3= .参考答案:4【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】根据等比数列的通项公式为a n=a1q n﹣1求出a1和q得到通项公式即可求出a3.【解答】解:∵等比数列的通项公式为a n=a1q n﹣1由a5﹣a1=15,a4﹣a2=6得:a1q4﹣a1=15,a1q3﹣a1q=6解得:q=2或q=则a3=a1q2=4或﹣4∵等比数列{a n}的公比大于1,则a3=a1q2=4故答案为4【点评】考查学生利用等比数列性质的能力.13. 在△ABC中,过中线AD的中点E任作一直线分别交边AB,AC于M、N两点,设则的最小值是_________参考答案:略14. 某大厦的一部电梯从底层出发后只能在第6,7,8层停靠,若该电梯在底层有5个乘客,且每位乘客在这三层的每一层下电梯的概率为,用表示5位乘客在第8层下电梯的人数,则随机变量的期望 ______.参考答案:略15. 三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为.参考答案:【考点】异面直线及其所成的角.【分析】先选一组基底,再利用向量加法和减法的三角形法则和平行四边形法则将两条异面直线的方向向量用基底表示,最后利用夹角公式求异面直线AB1与BC1所成角的余弦值即可【解答】解:如图,设=,,,棱长均为1,则=, =, =∵,∴=()?()=﹣++﹣+=﹣++=﹣1++1=1||===||===∴cos<,>===∴异面直线AB1与BC1所成角的余弦值为16.在的展开式中,若偶数项系数和为128,则展开式中x4项的系数为__________(用数字作答)。

调整后数学各年级第一学期课时计划2024

调整后数学各年级第一学期课时计划2024

历城区小学数学北片协作组一年级上学期课时支配2024.9留意:(1)尽量根据规定课时支配,遇到我们的教材整合须要调整的内容以教材整合为准。

(2)每周以规定的课时数为准支配。

(3)一册中有61个课时,就要有61个教学设计。

练习课也要备。

例几例几的内容不必出现在课题上,可以放在教学内容中。

写在这里主要是提示备课老师明确备课的课时范围。

(4)练习课在完成指定内容后可适当添加内容。

历城区小学数学北片协作组二年级上学期课时支配2024.9留意:(1)尽量根据规定课时支配,遇到我们的教材整合须要调整的内容以教材整合为准。

(2)每周以规定的课时数为准支配。

(3)一册中有60个课时,就要有60个教学设计。

练习课也要备。

例几例几的内容不必出现在课题上,可以放在教学内容中。

写在这里主要是提示备课老师明确备课的课时范围。

(4)练习课在完成指定内容后可适当添加内容。

历城区小学数学北片协作组三年级上学期课时支配2024.9留意:(1)尽量根据规定课时支配,遇到我们的教材整合须要调整的内容以教材整合为准。

(2)每周以规定的课时数为准支配。

(3)一册中有61个课时,就要有61个教学设计。

练习课也要备。

例几例几的内容不必出现在课题上,可以放在教学内容中。

写在这里主要是提示备课老师明确备课的课时范围。

(4)练习课在完成指定内容后可适当添加内容。

历城区小学数学北片协作组四年级上学期课时支配2024.9留意:(1)尽量根据规定课时支配,遇到我们的教材整合须要调整的内容以教材整合为准。

(2)每周以规定的课时数为准支配。

(3)一册中有59个课时,就要有59个教学设计。

练习课也要备。

例几例几的内容不必出现在课题上,可以放在教学内容中。

写在这里主要是提示备课老师明确备课的课时范围。

(4)练习课在完成指定内容后可适当添加内容。

历城区小学数学北片协作组五年级上学期课时支配2024.9留意:(1)尽量根据规定课时支配,遇到我们的教材整合须要调整的内容以教材整合为准。

云南省昆明市云南民族中学西南名校2020届高三数学第二次月考试题 文 答案

云南省昆明市云南民族中学西南名校2020届高三数学第二次月考试题 文 答案

1云南民族中学2020届高考适应性月考卷(二)文科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 DABCBDABCCAD【解析】1.由{123}A =,,,{|21}B y y x x A ==+∈,,∴{357}B =,,,因此{12357}A B =U ,,,,,故选D .2.1i (1i)2CA CB BA =+=-++--=-u u u r u u u r u u u r,故选A .3.若+=0a b ,则=-a b ,所以∥a b ,若∥a b ,则+=0a b 不一定成立,故前者是后者的必要不充分条件,故选B .4.由题意知前5个个体的编号为08,02,14,07,01,故选C .5.设等比数列{}n a 的公比为q ,由题意知235444(1)a a a a =-=,则244440a a -+=,解得42a =,又114a =,所以3418a q a ==,即2q =,所以2112a a q ==,故选B .6.由三视图知,该几何体是四棱锥,底面是直角梯形,且1(12)232S =+⨯=底,∴133V x =g3=,解得3x =,故选D .7.设(31)P ,,圆心(22)C ,,则||2PC =(31)P ,且与PC 垂直,所以最短弦长为2222(2)22-=A . 8.若输入20N =,则2i =,0T =,20102N i ==是整数,满足条件,011T =+=,213i =+=,5i ≥不成立,循环;203N i =不是整数,不满足条件,314i =+=,5i ≥不成立,循环;2054N i ==是整数,满足条件,112T =+=,415i =+=,5i ≥成立,输出2T =,故选B .9.如图1所示,将直三棱柱111ABC A B C -补充为长方体,则该长方222(23)(3)14++=,设长方体的外接球的半径为R ,则24R =,2R =,所以该长方体的外接球的体积3432ππ33V R ==,故选C .10.根据函数图象可知,当0x <时,切线的斜率小于0,且逐渐减小,当0x >时,切线的斜图12率大于0,且逐渐增大,故选C .11.由题意(0)A a -,,(0)F c ,,2c a M ⎛- ⎝⎭,由双曲线的定义可得22c a cc a a a c+=--,∴22340c ac a --=,∴2340e e --=,∴4e =,故选A .12.∵()f x 在区间123⎡⎤⎢⎥⎣⎦,上是增函数, ∴1()20f x x a x '=+-≥在123⎡⎤⎢⎥⎣⎦,上恒成立,即12a x x -+≥在123⎡⎤⎢⎥⎣⎦,上恒成立,∵1x x -+在123⎡⎤⎢⎥⎣⎦,上是减函数,∴1x x -+的最大值83=,∴823a ≥,即43a ≥,故选D .二、填空题(本大题共4小题,每小题5分,共20分)【解析】13.由(34)=-,a ,(02)=,b ,所以||5=a ,||2=b ,4cos 5θ=,因为[0π]θ∈,,所以3sin 5θ=,所以3||||||sin 5265θ⨯==⨯⨯=a b a b .14.分类讨论,当0a >时,作图可得2a =;当0a ≤时,无解.15.设第n 年开始超过200万元, 则2015130(112%)200n -⨯+>,化为(2015)lg1.12n ->lg2lg1.3-,0.300.112015 3.80.05n -->=,取2019n =,因此开始超过200万元的年份是2019年. 16.由正弦定理得24sin sin sin30AB BC C A ===︒,∵5π6A B +=,∴4sin AC B +=+514sin π4sincos 10sin 62A B B B B B B B ⎫⎛⎫=+-=++=+⎪ ⎪⎪⎝⎭⎭)B ϕ=+,∴AC 的最大值为三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)317.(本小题满分12分)解:(1)设{}n a 的公比为q , 由题设可得121(1)2(1)6a q a q q +=⎧⎪⎨++=-⎪⎩,,解得2q =-,12a =-,故{}n a 的通项公式为(2)n n a =-.…………………………………………(6分)(2)由(1)可得11(1)22(1)133n n n n a q S q +-==-+--, 由于3221422(1)33n n n n n S S ++++-+=-+- 1222(1)233n n n S +⎡⎤=-+-=⎢⎥⎣⎦, 故1n S +,n S ,2n S +成等差数列. ………………………………………………(12分)18.(本小题满分12分)解:(1)设各组的频率为(123456)i f i =,,,,,,依题意,前三组的频率成等比数列,后四组的频率成等差数列, 故10.150.20.03f =⨯=,20.450.20.09f =⨯=,22310.27f f f ==, 所以由36()41(0.030.09)2f f +⨯=-+, 得60.17f =,所以视力在5.0以下的频率为10.170.83-=,故全年级视力在5.0以下的人数约为10000.83830⨯=.………………………………………………………(8分)(2)2K 的观测值2100(4118329) 4.110 3.84150507327k ⨯⨯-⨯=≈>⨯⨯⨯,因此能在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系.………………………………………………………(12分)419.(本小题满分12分)如图2,取BC 的中点D ,连接AD ,1B D ,1C D . (1)证明:∵11B C BC ∥,112BC B C =, ∴四边形11BDC B ,11CDB C 是平行四边形, ∴11C D B B ∥,11CC B D ∥, 在正方形11ABB A 中,11//BB AA , ∴11C D AA ∥,∴四边形11ADC A 为平行四边形, ∴11AD AC ∥,∵1B D AD D =I ,∴平面1ADB ∥平面11A C C , 又1AB ⊂平面1ADB ,∴1AB ∥平面11A C C . …………………………………(6分)(2)解:在正方形11ABB A 中,12A B =, 又1A BC △是等边三角形,∴12A C BC == ∴22211AC AA A C +=,222AB AC BC +=, 于是1AA AC ⊥,AC AB ⊥,又1AA AB ⊥,∴1AA ⊥平面ABC ,∴1AA CD ⊥, 又CD AD ⊥,1AD AA A =I , ∴CD ⊥平面11ADC A ,于是多面体111ABC A B C -是由直三棱柱111ABD A B C -和四棱锥11C ADC A -组成的. 又直三棱柱111ABD A B C -的体积为1221124=,四棱锥11C ADC A -的体积为1221136=,故多面体111ABC A B C -的体积为1154612+=.………………………………(12分)20.(本小题满分12分)解:(1)∵2263P ⎛ ⎝⎭,是抛物线E :22(0)y px p =>上一点, ∴2p =,即抛物线E 的方程为24y x =,(10)F ,,图25∴221a b -=.又∵2263P ⎛ ⎝⎭,在椭圆C :22221x y a b +=上,∴2248193a b+=,结合221a b -=知23b =(舍负),24a =, ∴椭圆C 的方程为22143x y +=,抛物线E 的方程为24y x =.…………………………………………(5分)(2)如图3,由题意可知直线l 1的斜率存在,设直线l 1的方程为(1)y k x =-, 11()A x y ,,22()B x y ,,33()C x y ,,44()D x y ,.①当0k =时,||4AB =,直线l 2的方程为1x =,||4CD =, 故1||||82ACBD S AB CD ==g g 四边形; ②当0k ≠时,直线l 2的方程为1(1)y x k =--,由22(1)143y k x x y =-⎧⎪⎨+=⎪⎩,,得2222(34)84120k x k x k +-+-=,∴2122834k x x k +=+,212241234k x x k -=+.由弦长公式知2222121212212(1)||1|(1)[()4]43k AB k x x k x x x x k ++-=++-=+,同理可得2||4(1)CD k =+. ∴2222221112(1)24(1)||||4(1)224343ACBDk k S AB CD k k k ++==+=++g g g g 四边形. 令21t k =+,(1)t ∈+∞,, 则2222424244141124ACBDt S t t t t ===-⎛⎫---+ ⎪⎝⎭四边形, 当(1)t ∈+∞,时,1(01)t ∈,,21243t ⎛⎫--+< ⎪⎝⎭,2483ACBD S >=四边形.综上所述,四边形ACBD 面积的最小值为8.…………………………(12分)图3621.(本小题满分12分)解:(1)当2a =时,2()(2)e x f x x x =-+, 2()(2)e x f x x '=-+.当()0f x '>时,2(2)e 0x x -+>,注意到e 0x >, 所以220x -+>,解得x << 所以函数()f x的单调递增区间为(;同理可得,函数()f x的单调递减区间为(-∞,和)+∞.………………………………………………………………(4分)(2)因为函数()f x 在(11)-,上单调递增, 所以()0f x '≥在(11)-,上恒成立. 又2()[(2)]e x f x x a x a '=-+-+,即2[(2)]e 0x x a x a -+-+≥,注意到e 0x >, 因此2(2)0x a x a -+-+≥在(11)-,上恒成立,也就是221111x x a x x x +=+-++≥在(11)-,上恒成立. 设111y x x =+-+,则2110(1)y x '=+>+,即111y x x =+-+在(11)-,上单调递增, 则1311112y <+-=+,故32a ≥. …………………………………………(12分)22.(本小题满分10分)【选修4−4:坐标系与参数方程】解:(1)利用22cos sin 1ϕϕ+=,把圆C 的参数方程1cos sin x y ϕϕ=+⎧⎨=⎩,,(ϕ为参数)化为22(1)1x y -+=,∴22cos 0ρρθ-=,即2cos ρθ=. ………………………………………(5分)(2)设11()ρθ,为点P 的极坐标,由1112cos π3ρθθ=⎧⎪⎨=⎪⎩,,解得111π.3ρθ=⎧⎪⎨=⎪⎩,7设22()ρθ,为点Q的极坐标,由2222(sin )π3ρθθθ⎧=⎪⎨=⎪⎩,解得223π.3ρθ=⎧⎪⎨=⎪⎩, ∵12θθ=,∴12||||2PQ ρρ=-=.……………………………………………………(10分)23.(本小题满分10分)【选修4−5:不等式选讲】解:(1)当1a =时,230()||2|1|201321x x f x x x x x x x -<⎧⎪=+-=-⎨⎪->⎩,,,≤≤,,,当0x <时,由238x -≤,得20x -<≤; 当01x ≤≤时,由28x -≤,得01x ≤≤; 当1x >时,由328x -≤,得1013x <≤, 综上所述,不等式()8f x ≤的解集为1023⎡⎤-⎢⎥⎣⎦,.…………………………………………………………………(5分)(2)∵230()||2||2032a x x f x x x a a x x a x a x a -<⎧⎪=+-=-⎨⎪->⎩,,,≤≤,,,则()f x 在()a -∞,上单调递减,在()a +∞,上单调递增, ∴当x a =时,()f x 取最小值a , 若()6f x ≥恒成立,则6a ≥, ∴实数a 的取值范围为[6)+∞,.…………………………………………(10分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档