函数单调性 11刘文兵
高三数学第一轮复习教案第11课时—函数的单调性

第二章 函数——第11课时:函数的单调性一.课题:函数的单调性二.教学目标:理解函数单调性的定义,会用函数单调性解决一些问题.三.教学重点:函数单调性的判断和函数单调性的应用.四.教学过程:(一)主要知识:1.函数单调性的定义;2.判断函数的单调性的方法;求函数的单调区间;3.复合函数单调性的判断.(二)主要方法:1.讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集;2.判断函数的单调性的方法有:(1)用定义;(2)用已知函数的单调性;(3)利用函数的导数.3.注意函数的单调性的应用;4.注意分类讨论与数形结合的应用.(三)例题分析:例1.(1)求函数20.7log (32)y x x =-+的单调区间;(2)已知2()82,f x x x =+-若2()(2)g x f x =-试确定()g x 的单调区间和单调性.解:(1)单调增区间为:(2,),+∞单调减区间为(,1)-∞,(2)222()82(2)(2)g x x x =+---4228x x =-++,3()44g x x x '=-+,令 ()0g x '>,得1x <-或01x <<,令 ()0g x '<,1x >或10x -<<∴单调增区间为(,1),(0,1)-∞-;单调减区间为(1,),(1,0)+∞-. 例2.设0a >,()x xe af x a e =+是R 上的偶函数. (1)求a 的值;(2)证明()f x 在(0,)+∞上为增函数.解:(1)依题意,对一切x R ∈,有()()f x f x -=,即1x x x xe a ae ae a e +=+ ∴11()()x x a e a e --0=对一切x R ∈成立,则10a a-=,∴1a =±,∵0a >,∴1a =. (2)设120x x <<,则12121211()()x x x x f x f x e e e e -=-+- 2121121122111()(1)(1)x x x x x x x x x x x e e e e e e e+-++-=--=-, 由12210,0,0x x x x >>->,得21120,10x x x x e -+>->,2110x x e +-<,∴12()()0f x f x -<,即12()()f x f x <,∴()f x 在(0,)+∞上为增函数.第二章 函数——第11课时:函数的单调性例3.(1)(《高考A 计划》考点11“智能训练第9题”)若()f x 为奇函数,且在(,0)-∞上是减函数,又(2)0f -=,则()0x f x ⋅<的解集为(,2)(2,)-∞-+∞.例4.(《高考A 计划》考点10智能训练14)已知函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x 都有1212()()()f x x f x f x ⋅=+,且当1x >时()0,(2)1f x f >=,(1)求证:()f x 是偶函数;(2)()f x 在(0,)+∞上是增函数;(3)解不等式2(21)2f x -<. 解:(1)令121x x ==,得(1)2(1)f f =,∴(1)0f =,令121x x ==-,得∴(1)0f -=, ∴()(1)(1)()()f x f x f f x f x -=-⋅=-+=,∴()f x 是偶函数.(2)设210x x >>,则221111()()()()x f x f x f x f x x -=⋅-221111()()()()x x f x f f x f x x =+-= ∵210x x >>,∴211x x >,∴21()x f x 0>,即21()()0f x f x ->,∴21()()f x f x > ∴()f x 在(0,)+∞上是增函数.(3)(2)1f =,∴(4)(2)(2)2f f f =+=,∵()f x 是偶函数∴不等式2(21)2f x -<可化为2(|21|)(4)f x f -<,又∵函数在(0,)+∞上是增函数,∴2|21|4x -<,解得:x <<即不等式的解集为(. 例5.函数9()log (8)a f x x x=+-在[1,)+∞上是增函数,求a 的取值范围. 分析:由函数9()log (8)a f x x x=+-在[1,)+∞上是增函数可以得到两个信息:①对任意的121,x x ≤<总有12()()f x f x <;②当1x ≥时,80a x x+->恒成立. 解:∵函数9()log (8)a f x x x=+-在[1,)+∞上是增函数,∴对任意的121,x x ≤<有12()()f x f x <,即919212log (8)log (8)a a x x x x +-<+-,得121288a a x x x x +-<+-,即1212()(1)0a x x x x -+<, ∵120x x -<,∴1210,a x x +> 121,a x x >- 12a x x >-, ∵211x x >≥,∴要使12a x x >-恒成立,只要1a ≥; 又∵函数9()log (8)a f x x x =+-在[1,)+∞上是增函数,∴180a +->,即9a <,综上a 的取值范围为[1,9)-.另解:(用导数求解)令()8a g x x x =+-,函数9()log (8)a f x x x=+-在[1,)+∞上是增函数,第二章 函数——第11课时:函数的单调性 ∴()8a g x x x =+-在[1,)+∞上是增函数,2()1a g x x'=+, ∴180a +->,且210a x +≥在[1,)+∞上恒成立,得19a -≤<. (四)巩固练习:1.《高考A 计划》考点11,智能训练10;2.已知)(x f 是R 上的奇函数,且在),0(+∞上是增函数,则)(x f 在)0,(-∞上的单调性为 .五.课后作业:《高考A 计划》考点1,智能训练4,5, 7,8,12,13,15. 经典语录1、最疼的疼是原谅,最黑的黑是背叛。
高中数学 1.3.1函数的单调性全册精品教案 新人教A版必修1

1.3.1函数的单调性〔一〕教学目标1.知识与技能〔1〕理解函数单调性的定义、明确增函数、减函数的图象特征.〔2〕能利用函数图象划分函数的单调区间,并能利用定义进行证明.2.过程与方法由一元一次函数、一元二次函数的图象,让学生从图象获得“上升〞“下降〞的整体认识. 利用函数对应的表格,用自然语言描述图象特征“上升〞“下降〞最后运用数学符号将自然语言的描述提升到形式化的定义,从而构造函数单调性的概念.3.情感、态度与价格观在形与数的结合中感知数学的内在美,在图形语言、自然语言、数学语言的转化中感知数学的严谨美.〔二〕教学重点和难点重点:理解增函数、减函数的概念;难点:单调性概念的形成与应用.〔三〕教学方法讨论式教学法. 在老师的引导下,学生在回顾旧知,细心观察、认真分析、严谨论证的学习过程中生疑与析疑,合作与交流,归纳与总结的过程中获得新知,从而形成概念,掌握方法.〔四〕教学过程教学环节教学内容师生互动设计意图提出问题观察一次函数f (x) = x的图象:函数f (x) = x的图象特征由左到右是上升的. 师:引导学生观察图象的升降.生:看图. 并说出自己对图象的直观认识.师:函数值是由自变量的增大而增大,或由自变量的增大而减小,这种变化规律即函数的单调性.在函数图象的观察中获取函数单调性的直观认识.引入深题观察二次函数f (x) = x2的图象:函数f (x) = x2在y轴左侧是下降的,在y轴右侧是上升的.列表:x …–4–3–2–1f (x)=x216 9 4 1 0师:不同函数,其图象上升、下降规律不同. 且同一函数在不同区间上的变化规律也不同. 这是“形〞的方面,从“数〞的方面如何反映.生:函数作图时列表描点过程中,从列表的数据变化可知自变量由– 4到0变化,函数值随着变小;而自变量由0到4变化,函数值随着自变量的变大而变大.师:表格数值变化的一般规随是:自变量x增大,函数值y也增大,函数图象上升,称函数为增函数;自变量x增大,函数值y反而减少,函数图象下降. 称函数为减函数.体会同一函数在不同区间上的变化差异.引导学生从“形变〞过渡到“数变〞. 从定性分析到定量分析.O xyyx11O1 2 3 4 …1 4 9 16 …x∈(–∞,0]时,x增大,f (x)减少,图象下降.x∈(0,+∞)时,x增大,f (x)也增大,图象上升.形成概念函数单调性的概念一般地,设函数f(x)的定义域为I:如果对于定义域I内的某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f (x1)<f (x2),那么就说函数f (x)在区间D上是增函数〔increasingfunction〕;如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f (x2),那么就说函数f(x)在区间D上是减函数〔decreasingfunction〕.师:增函数、减函数的函数值随自变量的变化而变化怎么用数学符号表示呢?师生合作:对于函数f (x) = x2在区间(0,+∞)上. 任取x1、x2. 假设x1<x2,那么f (x1)<f (x2),即x12<x22.师:称f(x) = x2在(0,+∞)上为增函数.由实例探究规律从而获得定义的数学符号表示.应用举例例1 如图是定义在区间[–5,5]上的函数y = f (x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?训练题1:〔1〕请根据以下图描述某装配线的师:投影例1.生:合作交流完成例1.师:引导学生完成教材P36练习的第1题、第2题.师:投影训练题1生:学生通过合作交流自主完成.例1[解]:y= f (x)的单调区间有[–5,–2〕,[–2,1〕,[1,3〕,[3,5]. 其中y = f (x) 在区间[–5,–2〕,[1,3〕上是减函数,在区间[–2,1〕,[3,5]上是增函数.掌握利用图象划分函数单调区间的方法.掌握单调性证明步骤及原理.内化定义,强化划分单调区间的方法.xx1 x2Oyf (x1) f (x2)y=f (x)xx1 x2Oyf (x1)f (x2)y=f (x)生产率与生产线上工人数量间的关系.〔2〕整个上午〔8∶00~12∶00〕天气越来越暖,中午时分〔12∶00~13∶00〕一场暴风雨使天气骤然凉爽了许多. 暴风雨过后,天气转暖,直到太阳落山〔18∶00〕才又开始转凉. 画出这一天8∶00~20∶00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间. 〔3〕根据以下图说出函数单调区间,以及在每一单调区间上,函数是增函数还是减函数. 例 2 物理学中的玻意耳定律kp V =(k 为正常数) 告诉我们,对于一定量的气体,当其体积V 减小时,压强p 将增大. 试用函数的单调性证明之. 训练题2:证明函数f (x ) = –2x +1在R 上是减函数. 训练题 1 答案:〔1〕在一定范围内,生产效率随着工人数的增加而提高,当工人数达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率又随着工人的增加而降低. 由此可见,并非是工人越多,生产效率就越高. 〔2〕 增区间为[8,12],[13,18];减区间为:[12,13],[18,20]. 〔3〕函数在[–1,0]上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]是增函数. 师:打出例2,请学生阐明应用定义证明〔判定〕并总结证明单调性的基本步骤. 生:学生代表板书证明过程,教师点评. 例 2 分析:按题意,只要证明函数kp V =在区间〔0,+∞〕上是减函数即可. 证明:根据单调性的定义,设V 1,V 2是定义域〔0,+∞〕上的任意两个实数,且V 1<V 2,即 21121212()()V V k k p V p V k V V V V --=-=. 由V 1,V 2∈(0,+∞),得V 1V 2>0. 由V 1<V 2,得V 2 – V 1>0. 又k >0,于是 p (V 1) – p (V 2)>0, 即 p (V 1) >p (V 2).所以,函数kp V=,V (0,+∞)是减函数,也就是说,当体积V 减小时,压强p 将增大.师:投影训练题2 生:自主完成强化记题步骤与格式.训练题2 证明:任取x 1,x 2∈R ,且x 1<x 2,因为f (x 1) – f (x 2) =2 (x 2 –x 1)>0,即f (x 1)>f (x 2),所以f (x ) = –2x +1在R 上是减函数.归纳 小结1°体会函数单调性概念的形成过程.2°单调性定义.3°利用图象划分单调区间. 4°利用定义证明单调性步骤.师生合作:回顾单调性概念的形式与发展.师:阐述单调性的意义与作用.反思回顾整理知识,提升能力.课后 练习1.3第一课时 习案学生独立完成巩固知识 培养能力备选例题:例1 证明函数f (x ) =3x +2在R 上是增函数. [证明]设任意x 1、x 2R ,且x 1<x 2,那么f (x 1) – f (x 2) = (3x 1 +2) – (3x 2 +2) = 3(x 1–x 2).由x 1<x 2得x 1 –x 2<0. ∴f (x 1) – f (x 2)<0,即f (x 1)<f (x 2). ∴f (x ) =3x +2在R 上是增函数.例2 证明函数f (x ) =1x在〔0,+∞〕上是减函数. [证明]设任意x 1、x 2(0,+ ∞)且x 1<x 2, 那么f (x 1) – f (x 2) =21121211x x x x x x --=, 由x 1,x 2(0,+∞)得,x 1x 2>0,又x 1<x 2,得x 2 – x 1>0,∴f (x 1) – f (x 2) >0,即f (x 1)<f (x 2). ∴f (x ) =1x在〔0,+∞〕上是减函数.。
高三数学 第11课时 函数的单调性教案 教案

课题:函数的单调性教学目标:理解函数单调性的定义,会用函数单调性解决一些问题. 教学重点:函数单调性的判断和函数单调性的应用. (一) 主要知识:1.函数单调性的定义:①如果函数()x f 对区间D 内的任意21,x x ,当21x x <时都有()()21x f x f <,则()x f 在D 内是增函数;当21x x <时都有()()21x f x f >,则()x f 在D 内时减函数。
②设函数()y f x =在某区间D 内可导,若()0f x '>,则()y f x =为x D ∈的增函数;若()0f x '<,则()y f x =为x D ∈的减函数.2.单调性的定义①的等价形式:设[]b a x x ,,21∈,那么()()()x f x x x f x f ⇔>--02121在[],a b 是增函数; ()()()x f x x x f x f ⇔<--02121在[],a b 是减函数; ()()()12120x x f x f x --<⎡⎤⎣⎦()f x ⇔在[],a b 是减函数。
3.复合函数单调性的判断.4.函数单调性的应用.利用定义都是充要性命题.即若()f x 在区间D 上递增(递减)且1212()()f x f x x x <⇔<(1x 2,x D ∈);若()f x 在区间D 上递递减且1212()()f x f x x x <⇔>.(1x 2,x D ∈). ①比较函数值的大小②可用来解不等式.③求函数的值域或最值等 (二)主要方法:1.讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集;2.判断函数的单调性的方法有:()1用定义;()2用已知函数的单调性;()3利用函数的导数;()4如果()f x 在区间D 上是增(减)函数,那么()f x 在D 的任一非空子区间上也是增(减)函数()5图象法;()6复合函数的单调性结论:“同增异减”()7奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性.()8 互为反函数的两个函数具有相同的单调性.(9)在公共定义域内,增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数;增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数。
吉林省东北师范大学附属中学高中数学 11.3.3.1函数的单调性与导数教案 新人教A版选修11

吉林省东北师范大学附属中学2014-2015学年高中数学 1-1.3.3.1函数的单调性与导数教案 新人教A 版选修1-1教学目标:1.了解可导函数的单调性与其导数的关系;2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次; 教学重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间 教学难点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间 教学过程:一.创设情景函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用.二.新课讲授1.问题:图 3.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(1) 运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.2.函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系.如图3.3-3,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数()f x 在0x 附近单调递增;在1x x =处,'0()0f x <,切线是“左上右下”式的, 这时,函数()f x 在1x 附近单调递减.结论:函数的单调性与导数的关系在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增;如果'()0f x <,那么函数()y f x =在这个区间内单调递减.说明:(1)特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常函数.3.求解函数()y f x =单调区间的步骤:(1)确定函数()y f x =的定义域;(2)求导数''()y f x =;(3)解不等式'()0f x >,解集在定义域内的部分为增区间;(4)解不等式'()0f x <,解集在定义域内的部分为减区间.三.典例分析例1.已知导函数'()f x 的下列信息:当14x <<时,'()0f x >;当4x >,或1x <时,'()0f x <;当4x =,或1x =时,'()0f x =试画出函数()y f x =图像的大致形状.解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增;当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减;当4x =,或1x =时,'()0f x =,这两点比较特殊,我们把它称为“临界点”.综上,函数()y f x =图像的大致形状如图3.3-4所示.例2.判断下列函数的单调性,并求出单调区间.(1)3()3f x x x =+; (2)2()23f x x x =--(3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+解:(1)因为3()3f x x x =+,所以,'22()333(1)0f x x x =+=+>因此,3()3f x x x =+在R 上单调递增,如图3.3-5(1)所示.(2)因为2()23f x x x =--,所以, ()'()2221f x x x =-=-当'()0f x >,即1x >时,函数2()23f x x x =--单调递增;当'()0f x <,即1x <时,函数2()23f x x x =--单调递减;函数2()23f x x x =--的图像如图3.3-5(2)所示.(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-<因此,函数()sin f x x x =-在(0,)π单调递减,如图3.3-5(3)所示.(4)因为32()23241f x x x x =+-+,所以 .当'()0f x >,即 时,函数2()23f x x x =-- ; 当'()0f x <,即 时,函数2()23f x x x =-- ; 函数32()23241f x x x x =+-+的图像如图3.3-5(4)所示.注:(3)、(4)生练例3 如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图像. 分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A )符合上述变化情况.同理可知其它三种容器的情况.解:()()()()()()()()1,2,3,4B A D C →→→→思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.如图3.3-7所示,函数()y f x =在()0,b 或(),0a 内的图像“陡峭”,在(),b +∞或(),a -∞内的图像“平缓”.例4 求证:函数3223121y x x x =+-+在区间()2,1-内是减函数. 证明:因为()()()'22661262612y x x x x x x =+-=+-=-+当()2,1x ∈-即21x -<<时,'0y <,所以函数3223121y x x x =+-+在区间()2,1-内是减函数.说明:证明可导函数()f x 在(),a b 内的单调性步骤:(1)求导函数()'fx ; (2)判断()'f x 在(),a b 内的符号;(3)做出结论:()'0fx >为增函数,()'0f x <为减函数. 例5 已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围.四.课堂练习1.求下列函数的单调区间1.f (x )=2x 3-6x 2+72.f (x )=x 1+2x3. f (x )=sin x , x ]2,0[π∈4. y=xlnx 2.课本 练习五.回顾总结(1)函数的单调性与导数的关系(2)求解函数()y f x =单调区间(3)证明可导函数()f x 在(),a b 内的单调性六.布置作业。
高中数学 函数的单调性教案 新人教A版选修2-2

课 题: 函数的单调性教学目的:1.正确理解利用导数判断函数的单调性的原理;2.掌握利用导数判断函数单调性的方法 教学重点:利用导数判断函数单调性 教学难点:利用导数判断函数单调性 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 内容分析:以前,我们用定义来判断函数的单调性. 对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有f (x 1)<f (x 2),那么函数f (x )就是区间I 上的增函数. 对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有f (x 1)>f (x 2),那么函数f (x )就是区间I 上的减函数.在函数y=f(x)比较复杂的情况下,比较f(x 1)与f(x 2)的大小并不很容易. 如果利用导数来判断函数的单调性就比较简单 教学过程:一、复习引入:1. 常见函数的导数公式:0'=C ; 1)'(-=n n nx x ; x x cos )'(sin =; x x sin )'(cos -=x x 1)'(ln =; e xx a a log 1)'(log =; xx e e =)'( ; a a a x x ln )'(= 2.法则1 '''[()()]()()f x g x f x g x ±=±.法则2 [()()]'()()()'()f x g x f x g x f x g x '=+, [()]'(cf x cf x '=法则3 '2()'()()()'()(()0)()()f x f x g x f x g x g x g x g x ⎛⎫-=≠ ⎪⎝⎭二、讲解新课:1. 函数的导数与函数的单调性的关系:我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数.从函数342+-=x x y 的图像可以看到:y =f (x )=x 2-4x +3 切线的斜率 f ′(x )(2,+∞)增函数正>0321f x () = x 2-4⋅x ()+3xOyB A在区间(2,+∞)内,切线的斜率为正,函数y=f(x)的值随着x 的增大而增大,即/y >0时,函数y=f(x) 在区间(2,+∞)内为增函数;在区间(-∞,2)内,切线的斜率为负,函数y=f(x)的值随着x 的增大而减小,即/y<0时,函数y=f(x) 在区间(-∞,2)内为减函数.定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y >0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内/y <0,那么函数y=f(x) 在为这个区间内的减函数2.用导数求函数单调区间的步骤:①求函数f (x )的导数f ′(x ).②令f ′(x )>0解不等式,得x 的范围就是递增区间. ③令f ′(x )<0解不等式,得x 的范围,就是递减区间. 三、讲解范例:例1确定函数f (x )=x 2-2x +4在哪个区间内是增函数,哪个区间内是减函数.解:f ′(x )=(x 2-2x +4)′=2x -2. 令2x -2>0,解得x >1.∴当x ∈(1,+∞)时,f ′(x )>0,f (x )是增函数.令2x -2<0,解得x <1.∴当x ∈(-∞,1)时,f ′(x )<0,f (x )是减函数例2确定函数f (x )=2x 3-6x 2+7在哪个区间内是增函数, 哪个区间内是减函数.解:f ′(x )=(2x 3-6x 2+7)′=6x 2-12x令6x 2-12x >0,解得x >2或x <0 ∴当x ∈(-∞,0)时,f ′(x )>0,f (x )是增函数. 当x ∈(2,+∞)时,f ′(x )>0,f (x )是增函数.令6x 2-12x <0,解得0<x <2.∴当x ∈(0,2)时,f ′(x )<0,f (x )是减函数.例3证明函数f (x )=x1在(0,+∞)上是减函数. 证法一:(用以前学的方法证)任取两个数x 1,x 2∈(0,+∞)设x 1<x 2.f (x 1)-f (x 2)=21122111x x x x x x -=- ∵x 1>0,x 2>0,∴x 1x 2>0 ∵x 1<x 2,∴x 2-x 1>0, ∴2112x x x x ->0∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2) ∴f (x )=x1在(0,+∞)上是减函数. 证法二:(用导数方法证) ∵/()f x =(x 1)′=(-1)·x -2=-21x ,x >0, ∴x 2>0,∴-21x<0. ∴/()0f x <, ∴f (x )=21x 在(0,+∞)上是减函数. 点评:比较一下两种方法,用求导证明是不是更简捷一些.如果是更复杂一些的函数,用导数的符号判别函数的增减性更能显示出它的优越性.例4确定函数[]()sin (0,2)f x x x π=∈的单调减区间例5已知函数y =x +x1,试讨论出此函数的单调区间. 解:y ′=(x +x1)′ =1-1·x -2=222)1)(1(1xx x x x -+=- 令2)1)(1(xx x -+>0. 解得x >1或x <-1.∴y =x +x1的单调增区间是(-∞,-1)和(1,+∞). 令2)1)(1(xx x -+<0,解得-1<x <0或0<x <1.∴y =x +x1的单调减区间是(-1,0)和(0,1) 四、课堂练习:1.确定下列函数的单调区间(1)y =x 3-9x 2+24x (2)y =x -x 3(1)解:y ′=(x 3-9x 2+24x )′=3x 2-18x +24=3(x -2)(x -4) 令3(x -2)(x -4)>0,解得x >4或x <2.∴y =x 3-9x 2+24x 的单调增区间是(4,+∞)和(-∞,2)令3(x -2)(x -4)<0,解得2<x <4.∴y =x 3-9x 2+24x 的单调减区间是(2,4)(2)解:y ′=(x -x 3)′=1-3x 2=-3(x 2-31)=-3(x +33)(x -33) 令-3(x +33)(x -33)>0,解得-33<x <33. ∴y =x -x 3的单调增区间是(-33,33). 令-3(x +33)(x -33)<0,解得x >33或x <-33. ∴y =x -x 3的单调减区间是(-∞,-33)和(33,+∞) 2.讨论二次函数y =ax 2+bx +c (a >0)的单调区间.解:y ′=(ax 2+bx +c )′=2ax +b, 令2ax +b >0,解得x >-ab2∴y =ax 2+bx +c (a >0)的单调增区间是(-ab2,+∞) 令2ax +b <0,解得x <-ab2.∴y =ax 2+bx +c (a >0)的单调减区间是(-∞,-ab 2)3.求下列函数的单调区间(1)y =xx 2+ (2)y =92-x x(3)y =x +x(1)解:y ′=(x x 2+)′=2222xx x x -=-- ∵当x ≠0时,-22x<0,∴y ′<0.∴y =xx 2+的单调减区间是(-∞,0)与(0,+∞) (2)解:y ′=(92-x x )′222)9(29-⋅--=x x x x 222222)9(9)9(9-+-=---=x x x x 当x ≠±3时,-222)9(9-+x x <0,∴y ′<0. ∴y =92-x x的单调减区间是(-∞,-3),(-3,3)与(3,+∞).(3)解:y ′=(x +x )′12112121+=+=-xx .当x >0时x21+1>0,∴y ′>0. ∴y =x +x 的单调增区间是(0,+∞) 五、小结 :f (x )在某区间内可导,可以根据/()f x >0或/()f x <0求函数的单调区间,或判断函数的单调性,或证明不等式.以及当/()f x =0在某个区间上,那么f(x )在这个区间上是常数函数六、课后作业:。
2019-2020学年人教A版数学必修第一册培优教程课件:第3章 函数的概念与性质 3.2 3.2.

=f(x)的单调区间.
第五页,编辑于星期六:二十三点 十五分。
【新知拓展】 1.单调性是函数的局部性质,但在其单调区间上是整体性质,因此对 x1,x2 有下列要求: (1)属于同一个区间 D; (2)任意性,即 x1,x2 是定义域中某一区间 D 上的任意两个值,不能用特 殊值代替; (3)有大小,即确定的任意两值 x1,x2 必须区分大小,一般令 x1<x2. 2.并非所有的函数都具有单调性.如 f(x)=01,,xx是是奇偶数数,, 它的定义域为 N,但不具有单调性.
由图象知函数的单调区间为(-∞,-3],[3,+∞). 其中,单调递减区间为(-∞,-3],单调递增区间为[3,+∞).
答案
第二十一页,编辑于星期六:二十三点 十五分。
金版点睛 常用画图象求单调区间
(1) 对 于函数 y=kx+bk≠0,y=ax2+bx+ca≠0,y=kxk≠0 单 调区 间的确定,常借助于函数图象直接写出.
第二页,编辑于星期六:二十三点 十五分。
核心概念掌握
第三页,编辑于星期六:二十三点 十五分。
【知识导学】
知识点一
函数的单调性及其符号表达
(1)函数单调性的概念
_□0_1_函__数__值__随__自__变_量__的__增__大__而_增__大__(_或_减 __小__)_的__性_质______叫做函数的单调性.
第1课时 函数的单调性
第一页,编辑于星期六:二十三点 十五分。
(教师独具内容) 课程标准:1.理解函数的单调性和单调区间的概念.2.会划分函数的单调 区间,判断函数的单调性,会用符号语言表达函数的单调性.3.会用定义证明 函数的单调性. 教学重点:1.函数单调性的定义及其几何特征.2.用定义证明函数的单调 性. 教学难点:用定义证明函数的单调性.
人教A版(2019)高中数学必修第一册3.2.1函数的单调性 教案

3.2.1 函数的单调性教学目标:1.知识与技能:使学生从形与数两方面理解函数的单调性概念,初步掌握利用函数图象和单调性定义判断、证明函数的单调性的方法,了解函数单调区间的概念。
2.过程与方法:通过对函数单调性定义的探究,渗透数形结合的数学思想方法,培养学生的观察、归纳、抽象思维能力。
3.情感态度与价值观:在参与的过程中体验成功的喜悦,感受学习数学的乐趣。
教学重点:函数单调性的概念、判断及证明.教学难点:归纳函数单调性的定义以及根据定义证明函数的单调性.教学过程:一、创设情境,引入课题归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.〖设计意图〗由旧知情境引入新课,激发兴趣.对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是系统地学习这块内容.1.借助图象,直观感知问题1:函数2)(x x f =的定义域是什么?问题2:函数2)(x x f =的升降趋势是什么?在 y 轴左侧呈“下降”趋势在 y 轴右侧呈“上升”趋势问题3:随着自变量x 的变化,函数值f (x )大小有什么变化? 函数2)(x x f =在区间0+∞(,)上,()f x 的值随x 的增大而增大函数2)(x x f =在区间-0∞(,) 上,()f x 的值随x 的增大而减小 2()0,)()f x x x f x =+∞问题4:怎么用准确的数学符号语言描述函数在区间[上随着的增大,增大?任意的x 1,x 2∈(0+∞,),当x 1<x 2时,都有()()21x f x f <。
〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识.学生由数迁移到形较为困难,教师直接给出2()0,)f x x =+∞在区间[上的符号语言。
函数()f x ⊆的定义域为I ,区间D I单调递增:∀x 1,x 2∈D ,当x 1<x 2时,则()()12f x f x <增函数:特别地,函数()f x 在I 上单调递增,我们称它为增函数。
高中数学必修第一册人教A版3.2.1《函数的单调性》名师课件

减函数
如果对于定义域内某个区间内的 任意 两个自变量的值1, 2,
当1 < 2时,都有 1 > 2 , 那么就说()在区间D上是减函数。
如果函数 = ()在区间上是增函数或是减
函数,那么就说函数 = ()在这一区间具有(严
格的)单调性,区间叫做 = ()的单调区间.
典例讲授
例2.根据定义,研究函数 = + ( ≠ )的单调性
思路 根据函数单调性的定义,需要考察当 < 时, < 还是 >
分析 .根据实数大小关系的基本事实,只要考察 − 与0的大小关系.
解析
函数 = + ( ≠ )的定义域是R.∀, ∈ ,且 < ,
1 −2
< 0;③
1 −2
1 − 2
< 0;⑤ 1 − 2 1 − 2
>0;
>0;
⑥ 1 − 2 1 − 2 < 0.
能判断 在[, ]上为增函数的是函数的是①③⑤
;为减函数的是②④⑥
.
分析
由增函数、减函数的定义及不等式的性质,只要能判定对任意的
探究新知
视察() = 和() = 的图象的变化趋势
思考:() = ||
和 = −各
有怎样的单调性?
1、从左至右图象一直上升
−∞, +∞
2、在区间 ________上,随着的增
大()的值随着增大.
(-∞,0]
1、在 轴左侧是降落的,在区间 ______上,
()的值随着的增大而减小.
则 1 − 2 =
1
12 −1
1− 2ຫໍສະໝຸດ −1=22 −12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《函数的单调性》教学设计
一、教材分析
函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.从函数单调性知识本身来讲.
学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性.高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础.
根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:
1、知识与技能使学生理解函数单调性的概念,初步掌握判
别函数单调性的方法;
2、过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.
3、情感态度与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.
根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的.因此,本节课的学习难点是函数单调性的概念形成.
二、教法学法
为了实现本节课的教学目标,在教法上我采取了:
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.
2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.
在学法上我重视了:
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.
三、教学过程
函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.
(一)创设情境,提出问题
(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:
[教师活动]引导学生观察图象,提出问题:
问题1:说出气温在哪些时段内是逐步升高的或下降的?
问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?
[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.
(二)探究发现建构概念
[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答.[教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,f(t1)=1,t2=10时,f(t2)= 4”这一情形进行描述.引导学生回答:对于自变量8<10,对应的函数值有1<4.举几个例子表述一下.然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征.
在学生对于单调增函数的特征有一定直观认识时,进一步提出:
问题3:对于任意的t1、t2∈[4,16]时,当t1< t2时,是否都有f(t1)<f(t2)呢?
[学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.
[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得
出关键词“区间内”、“任意”、“当时,都有”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:
问题4:类比单调增函数概念,你能给出单调减函数的概念吗?
最后完成单调性和单调区间概念的整体表述.
[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点.
(三)自我尝试运用概念
1.为了理解函数单调性的概念,及时地进行运用是十分必要的.
[教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明.
[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对
于(2),学生容易举出具体函数如:,,,并画出函数的草图,根据函数的图象说出函数的单调区间.
[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问
题时可能出现的错误,如:在叙述函数的单调区间时写成并集.
[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.
2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?
[教师活动]问题6:证明在区间(0,+ ∞)上是单调减函数.
[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较
与的大小、不会正确表述、变形不到位或根本不会变形等困难.
[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式.
[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断.
[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.
(四)回顾反思深化概念
[教师活动]给出一组题:
1、定义在R上的单调函数满足,那么函数是R上的单调增函数还是单调减函数?
2、若定义在R上的单调减函数满足,你能确定实数的取值范围吗?
[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.
[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.
[教师活动]作业布置:
(1)阅读课本P34-35例2
(2)书面作业:
必做:教材 P43 1、7、11
选做:二次函数在[0,+∞)是增函数,满足条件的实数的值唯
探究:函数在定义域内是增函数,函数有两个单调减区间,由这两个基本函数
构成的函数的单调性如何?请证明你得到的结论.
[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯.基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层.学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.
四、教学评价
学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础.。