分式乘除乘方混合运算.
1.2.2分式的乘方及乘除混合运算

gn
(n为正整数)
合作学习
一、知识点一:分式的乘方
例1.P10例3(1)(2)
1
x2 y
3
2
-
3xy 2 4z
2
练一练
注意:做乘方运算要先确定符号.
判断下列各式是否成立,并改正.
1
b3 2a
2
b5 2a2
;
解:(1)不成立,改正:
b3 2a
2
b6 4a2
;
2
3b 2a
2
9b2 4a2
知识回顾1:乘方的意义
an=a·a·a·…·a (n个a相乘)
知识回顾2:幂的运算
1、同底数幂相乘: am·an=am+n
2、幂的乘方: (am)n=amn
3、积的乘方: (ab)m=ambm
f g
自主学习
1、分式的乘方法则?用式子怎样表示?
分式的乘方是把分子、分母各自乘方.
(f ) n fn
g
的运算过程对吗?然后请你给他提出恰当的建议!
4
2 4x
x2
(
x
3)
•
x x
2 3
(2
2 x)2
(x
3) •
x x
2 3
2 x2
拓展提升
1、已知 x 4 (y 5)2 0,试求
( y x)2 •
xy
y x x2 4xy 4y2
( x y )2 x 2y
的值.
1
9
2.先化简 a2 4 ( a 1)2 a2 1 ,然后选取一个
;
(2)不成立,改正: -23ab
2
9b2 ; 4a2
3
2019秋人教版八年级数学上册教案:第15章5课题:分式的乘方及乘除、乘方混合运算

1.理论介绍:首先,我们要了解分式乘方及乘除的基本概念。分式乘方是指分式的指数运算,它是我们解决实际问题时的一个重要工具。分式的乘除法则则是进行相关运算的基础,对于简化计算过程和提高解题效率具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何使用分式乘方及乘除法则来解决实际问题,以及这些规则如何帮助我们简化计算步骤。
(1)分式乘法法则;
(2)分式除法法则。
3.乘方混合运算:学会将分式的乘方与乘除进行混合运算,并能正确求解。
(1)乘方与乘法的混合运算;
(2)乘方与除法的混合运算。
4.应用练习:通过典型例题和练习题,巩固所学知识,提高解题能力。
二、核心素养目标
1.培养学生逻辑推理能力:通过分式的乘方及乘除、乘方混合运算的学习,使学生能够运用逻辑思维分析问题,推导出正确的运算步骤,提升推理能力。
-同底数分式乘方的运算,如(a/b)^n的简化方法;
-不同底数分式乘方的运算,如(a/b)^m * (c/d)^n的计算方法。
(2)分式乘除运算的符号处理:学生在进行分式乘除运算时,容易出错,特别是符号的处理。
-分式乘法中,符号变化的处理,如负数与正数相乘的结果;
-分式除法中,符号变化的处理,如负数与正数相除的结果。
其次,在新课讲授环节,我发现学生们对于分式乘方法则和分式乘除法则的理解程度不一。在讲解过程中,我尽量用简单的语言和具体的例子来说明,但仍有部分学生显得有些困惑。为了帮助这部分学生更好地掌握知识,我考虑在课后增加一些针对性的练习题,并对他们进行个别辅导。
在实践活动环节,学生们分组讨论和实验操作的表现让我印象深刻。他们能够积极思考、主动参与,这让我深感欣慰。但同时,我也注意到有些小组在讨论时,个别成员参与度不高。针对这个问题,我打算在以后的教学中,加强对小组讨论的引导,确保每个学生都能积极参与其中。
人教版八年级上册1.分式的乘方及乘方与乘除的混合运算

2.运算中的注意事项.
数的乘方的运算方法,然后采用类比的方法让学生得出分 1第2分课式时的乘分除式(的2课乘时方)及乘方与乘除的混合运算
教2.材运第算14中6的页注习意题事15项. .
本例题是本节课运算题目的拓展,对于(1)指数为字母, 不过方法不变;(2)(3)是较复杂的乘除乘方混合运算,要进 一步让学生熟悉运算顺序,注意做题步骤.
教学设计
四、巩固练习 教材第139页练习第1,2题. 五、课堂小结 1.分式的乘方法则. 2.运算中的注意事项. 六、布置作业 教材第146页习题15.2第3题.
分第式2课的时除法分法式则的:乘分方式及除乘以方分与式乘,除把的除混式合的运分算子、分母颠倒位置后,与被除式相乘. 1第.2课分式时的分乘式除的法乘法方则. 及乘方与乘除的混合运算 第2课时 分式的乘方及乘方与乘除的混合运算 教分材式第 的1乘3法9页法练则习:第分1式,乘2题分.式,用分子的积作为积的分子,用分母的积作为积的分母. 第2课时 分式的乘方及乘方与乘除的混合运算
2x 3 x 教材第139页练习第1,2题. 解: ÷ · 2.理解分式乘方的原理,掌握乘方的规律,并能运2用乘方规律进行分式的乘方运算. 5x-3 25x -9 5x+3 1.分式的乘除法法则.
第1 2分课式时的分乘除式(的2课乘时方)及乘方与乘除的混合运算2
2x 25x -9 x 教材第139页练习第1,2题. = · · 第2课时 分式的乘方及乘方与乘除的混合运算 5x-3 3 5x+3 1.分式的乘除法法则.
(3)确定分式的符号,然后约分;
15.2.2分式的乘除和乘方

特别提醒
解本题的注意事项:
(1)正确理解分式乘方的意义.
(2) 能通过变式训练 , 熟练掌握分式乘方运算的方法
和技巧.
课堂小结
请大家回顾本节课学习的内容 , 谈谈 你有哪些收获?
再见
2 2
智能抢答
1 x÷y· =x吗?为什么? y
答:不等于.
x 1 1 1 因为x÷y· =x·y· = 2 . y y y
例题解析
3ab 5xy 7xy 例2.计算: 2x y 21ab 5xy 7xy 2x y 21ab 10ab
2
3ab 5xy 10ab 2x y 21ab 7xy 25ab 49x y
3 2 3 2 4 2 2
3
ab c a c ab bc
3 9 4 4 6 4 2 4
4
ab c
3 6
3
智能抢答
x 4 x ( 3 ) 的结果为 12 正确吗?为什么? y y
答:不正确.符号错误,正确的是:
2 8
x 4 x ( 3 ) 12 . y y
2
8
思维提示
知识应用
一.分式的乘除混合运算
x 3 x 4 x 4x 4 例1. x 2 x 9 x 6x 9
2 2 2 2
【思维点拨】分式的乘除混合运算可化除为乘, 统一成乘法运算.
x 3 解:原式= x 2 x x (x 2)(x 2) (x 3) (x 3)(x 3) (x 2) 3 2
3 2 3 2 2 2
4
【思维提示】 (1)先确定符号,再根据乘方的法则运算. (2)先乘方,再进行分式的乘除运算.
八年级上册数学15.2.1第2课时分式的乘方及乘除混合运算级

乘方
(x - y)2 x2 y2
(x2
y2)
(x
x3 - y)3
除法变乘法
(x - y)2 (x y)( x y) x3
x2 y2
(x - y)3
分解因式
x2 xy y2 .
乘法、约分
探索新知
知识点2 分式的乘方
含有乘方的分式乘除混合运算的步骤 (1)先算分式的乘方; (2)除法变乘法; (3)若分子或分母为多项式,要分解因式; (4)进行乘法运算,约分得到结果.
第十五章 分式
15.2.1 分式的乘除
第2课时 分式的乘方及乘除混合运算
学习目标-新课导入-探索新知-课堂小结-课堂练习
人教版·八年级上册
学习目标
1.进一步熟练分式的乘除法则,会进行乘、除法的混合运算.(重点) 2.了解并掌握分式的乘方法则.(重点) 3.能熟练运用分式的乘方法则进行计算,会进行含乘方的分式的乘 除混合运算.(难点)
(x
3)(x
3)
1.
课堂练习
7.(1)化简:a a
2 2
-
4 a
(
a -1 a2
)2
a a2
2 1 2a
.
解:原式 (a 2)(a 2) a(a 1)
a 12 a 22
a(a 2) (a 1)(a 1)
a a
2 1
.
1
(2)当a=5时,其结果为 2 .
(3)请你选择一个你喜欢的数作为a的值,则a不可以取 0,±1,-.2
(2)( 3xy 2 )3; 4z
解:(1)
( 2a2b )2 3c
( 2a 2b) 2 (3c)2
4a4b2 9c2
;
15.2.4分式的加减乘除乘方混合运算

思维训练
1.老师布置了一道计算题:计算 (a 2 a2
b2 - b2
a a
b) b
2ab
÷(a - b)(a b)2 -(a+b)的值,其中a=2 014,
b=2 015.小明把a,b错抄成a=2 015,b=2 014,但老师 发现他的答案还是正确的,你认为这是怎么回事?说说 你的理由.
知识运用
解:(1)原式=
a-1-1 (a-2)2 a-1 (a 1)(a-1)
a a
-2 1
(a
1)(a (a 2)2
1)
a a
1 2
当a=-2时,原式=
-2 1 -2-2
1 4
.
(2)原式=
x2 1
xx 1
1 x 1
x 1x 1 x x 1x 1
(1)写出第n个式子. (2)利用(1)中的规律计算:
1 x(x
1) + (x
1 1)(x
2)
+…+ (x
1 2014)(x
2015)
.
智能解答
解:(1)
1 n(n
1) =
1 n
-
n
1
1
(n为正整数)
(2)
1 x(x
1) + (x
1 1)(x
2) +…
+ (x
1 2014)(x
2015)
=
1 x
-
x
1
1+
x
1
1-
沪教版七年级 分式的四则运算,带答案

分式的四则运算课时目标1.理解通分的意义,理解最简公分母的意义.2.理解分式乘、除法,乘方的法则,会进行分式乘除运算. 3.明确分式混合运算的顺序,熟练地进行分式的混合运算.知识精要1. 分式的乘除法法则a bcdacbd⋅=;abcdabdcadbc÷=⋅=当分子、分母是多项式时,则先分解因式,看能否约分,然后再相乘.2. 分式的加减法(1)同分母的分式加减法法则:acbca bc±=±.(2)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减. 3. 通分:根据分式的基本性质把几个异分母的分式分别化成与原来的分式相等的同分母的分式的过程.4. 求最简公分母的法则(1)取各分母系数的最小公倍数;(2)凡出现的字母(或含有字母的式子)为底的幂的因式都要取;(3)相同字母(或含有字母的式子)的幂的因式取指数最高的.5. 分式加减法的注意事项(1)通分的过程中必须保证化成的分式与其原来的分式相等,分式的分子、分母同时乘的整式是最简公分母除以分母所得的商;(2)通分后,当分式的分子是多项式时,应先添括号,再去括号合并同类项,从而避免符号错误.(3)分式的分子相加减后,若结果为多项式,应先考虑因式分解后与分母约分,将结果化为最简分式或整式.6. 分式乘方的法则:()a b a bn nn =(n 为正整数)注意:①分式的乘方,必须把分式加上括号.②在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算 乘、除,有多项式时应先分解因式,再约分.热身练习1. (-2b a)2n的值是( )A .222n n b a +B .-222n n b a +C .42n n b aD .-42nn b a2. 计算(2x y)2·(2y x )3÷ (-y x )4得( )A .x 5B .x 5yC .y 5D .x 153.计算(2x y )·(y x )÷(-y x )的结果是( )A .2x yB .-2x y C .x y D .-x y4.(-2b m)2n +1的值是( )A .2321n n b m ++B .-2321n n b m ++C .4221n n b m ++D .-4221n n b m ++5.化简:(3x y z )2·(xz y )·(2yzx )3等于( )A .232y z xB .xy 4z 2C .xy 4z 4D .y 5z6.计算(1) 322)23(c ab - (2)43222)()()(xym m y x xy m ÷-⋅-(3) 22222)(b a b a b a b a +-÷+- (4))4(3)98(23232b x b a xy y x ab -÷-⋅(5)22)2(4422-++---x x x x x x (6)6554651651222222-+-+-++--++x x x x x x x x x (7)()()222624x x x ---+ (8)223y xy xy xy x y x +-+++(9)545422++-+x x x (10)()2222222222945929y x xyy x y y x y x y x --+--+--精讲名题例1. 223342222333243)125()25(])4()8()4()2([xy y x xy y x y x xy --÷---⨯--例2. ()242223232222222+++++--+-a a a a a a a a例3. 计算:xx xx x x x x x x x 4122121035632222-+-++---+++例4. 已知0a b c ++=,求111111()()()a b c b c a c b a+++++的值例5.已知6112=++a a a ,试求1242++a a a 的值 例6. 1814121111842+-+-+-+--x x x x x例7. 计算 45342312+++++-++-++x x x x x x x x巩固练习类型一:分式的乘除运算(1)2222294255)23(m x m y x y x x m --⋅++- (2)xx x x x x x -++⋅+÷+--36)3(446222类型二:分式的加减运算(1) 2221311a a a a a ---+-- (2) 232a b c a b c b ca b c b c a c a b-+-+--++--+--(3)2422---x x x (4)22211y x xy x y x -+--+(5)224--+a a (6) 222244242x y y x y x y y x -+-++ (7) 已知y x a x y -=,y xb x y+=,求22a b -类型三:分式的混合运算(1)222244232n mn m n mn m n m n m +-+-+-- (2) 4222xx x x x x ⎛⎫+÷ ⎪-+-⎝⎭(3)245(3)33x x x x -÷----- (4)111111--++x x(5)2222222265232y x y x y xy x y x y xy x y xy x -+⋅---÷+++-(6)已知:,02=-y x 求()()323322y x y x y x y x +-÷+-类型四:化简求值类型题(1)13)11132(22--÷-+----x x x x x x x .其中x =2(2)232282x x x x x +-++÷(2x x -·41x x ++).其中x =-45.(3)当1x =时,226336x x x x x x --+⋅-+-的值为多少?类型五:分式的拆分 1.设n 为自然数,计算:)1(1431321211+++⨯+⨯+⨯n n .2.计算:)100)(99(1)2)(1(1)1(1++++++++x x x x x x .自我测试一、选择题2. 下列分式是最简分式的( ) A .ba a 232 B .aa a 32- C .22b a b a ++ D .222b a ab a --3. 化简)2()242(2+÷-+-m mm m 的结果是( )A .0B .1C .-1D .(m +2)24. 已知2111=-b a ,则b a ab -的值是( )A .21B .21- C .2 D .-25. 化简(x y -y x ) ÷x yx -的结果是( )A .1yB .x y y +C .x y y -D .y二、填空题6. 如果分式23273x x --的值为0,则x 的值应为 .7. 化简: aa 12-÷(1+a 1)= .8. 化简:4)222(2-÷--+x x x x x x 的结果为 .9. 若x 2-3x +1=0,则2421x x x ++的值为_________.10.化简12-a ·442++a a ÷2+a +12-a ,其结果是________.三、计算题 11. 计算(1) 22399xx x --- (2) x x x x x x x x x x 23832372325322222--+--+++--+ (3)()()3232x y xy y x yx -+- (4))50153050152(5015222+-++---+-x x x x x x x x(5)aaa a a a -÷+--36)33( (6)5132651813261522-+÷----⨯-+-x x x x x x x x12.化简求值 (1)aa -+-21442,并求时原式的值.(2)先化简,再求值:1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a .(3)按下列程序计算:答案平方−→−-−→−÷−→−+−→−−→−n n n n 填表并请将题中计算程序用代数式表达出来,并化简. 输入n 3… 输出答案 11分式的四则运算课时目标1.理解通分的意义,理解最简公分母的意义.2.理解分式乘、除法,乘方的法则,会进行分式乘除运算. 3.明确分式混合运算的顺序,熟练地进行分式的混合运算.知识精要1. 分式的乘除法法则a b c d ac bd ⋅=;a b c d a b d c adbc÷=⋅= 当分子、分母是多项式时,则先分解因式,看能否约分,然后再相乘. 2. 分式的加减法(1)同分母的分式加减法法则:a cbc a bc±=±.(2)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减. 3. 通分:根据分式的基本性质把几个异分母的分式分别化成与原来的分式相等 的同分母的分式的过程. 4. 求最简公分母的法则(1)取各分母系数的最小公倍数;(2)凡出现的字母(或含有字母的式子)为底的幂的因式都要取; (3)相同字母(或含有字母的式子)的幂的因式取指数最高的. 5. 分式加减法的注意事项(1)通分的过程中必须保证化成的分式与其原来的分式相等,分式的分子、 分母同时乘的整式是最简公分母除以分母所得的商;(2)通分后,当分式的分子是多项式时,应先添括号,再去括号合并同类项, 从而避免符号错误.(3)分式的分子相加减后,若结果为多项式,应先考虑因式分解后与分母约分, 将结果化为最简分式或整式.6. 分式乘方的法则:()a b a bn nn =(n 为正整数)注意:①分式的乘方,必须把分式加上括号.②在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算 乘、除,有多项式时应先分解因式,再约分.热身练习1. (-2b a)2n的值是( C )A .222n n b a +B .-222n n b a +C .42n n b aD .-42nn b a2. 计算(2x y)2·(2y x )3÷ (-y x )4得( A )A .x 5B .x 5yC .y 5D .x 153.计算(2x y )·(y x )÷(-y x )的结果是( B )A .2x yB .-2x y C .x y D .-x y4.(-2b m)2n +1的值是( D )A .2321n n b m ++B .-2321n n b m ++C .4221n n b m ++D .-4221n n b m ++5.化简:(3x y z )2·(xz y )·(2yzx )3等于( B )A .232y z xB .xy 4z 2C .xy 4z 4D .y 5z6.计算(1) 322)23(c ab - (2)43222)()()(x ym m y x xy m ÷-⋅-解: 原式=663827c b a - 解:原式=338ym x -(3) 22222)(b a b a b a b a +-÷+- (4))4(3)98(23232b x b a xy y x ab -÷-⋅ 解:原式=))(()(223b a b a b a +-+ 解:原式=32916ax b(5)22)2(4422-++---x xx x x x (6)6554651651222222-+-+-++--++x x x x x x x x x解:原式=21-+x x 解:原式=64+-x x (7)()()222624x x x ---+ (8)223y xy x y xy x y x +-+++ 解:原式=21-x 解:原式=xy x y -3(9)545422++-+x x x (10)()2222222222945929y x xyy x y y x y x y x --+--+-- 解:原式=)1)(5(24-+-x x x 解:原式=0精讲名题例1. 223342222333243)125()25(])4()8()4()2([xy y x xy y x y x xy --÷---⨯-- 解:原式=)55()2222(426912624242669661244yx y x y x y x y x y x -÷⋅=)1()(51022y x y x -⋅=361yx -例2. ()242223232222222+++++--+-a a a a a a a a 解:原式=326322=++a a例3. 计算:x x xx x x x x x x x 4122121035632222-+-++---+++解:原式=)2)(2(12)1)(2()1()2)(5()1)(5(2-++-+---+++x x x xx x x x x x x=)2)(2(122121-+++---+x x x x x x =)2)(2(126-++x x x=26-x例4. 已知0a b c ++=,求111111()()()a b c b c a c b a+++++的值解:由已知得:a c b b c a c b a -=+-=+-=+,,∴原式=a cb c c b a b c a b a +++++ =acb c b a b c a +++++ =-3例5.已知6112=++a a a ,试求1242++a a a 的值 解:由已知得:612=++a a a ,即611=++aa 51=+∴a a 232)1(1222=-+=+∴aa a a2411122224=++=++∴a a a a a 2411242=++∴a a a例6. 1814121111842+-+-+-+--x x x x x 解:原式=181412128422+-+-+--x x x x =181414844+-+--x x x =181888+--x x =11616-x例7. 计算 45342312+++++-++-++x x x x x x x x 解:原式=411311211111++++--+--++x x x x =41312111+++-+-+x x x x =)3)(2(52)4)(1(52+++-+++x x x x x x=24503510104234+++++x x x x x巩固练习类型一:分式的乘除运算(1)2222294255)23(m x m y x y x x m --⋅++- (2)xx x x x x x --+⋅+÷+--36)3(446222解:原式=)23(5--x m y x 解:原式=22--x类型二:分式的加减运算(1) 2221311a a a a a ---+-- (2) 232a b c a b c b c a b c b c a c a b-+-+--++--+-- 解:原式=2- 解:原式=0(3)2422---x x x (4)22211y x xy x y x -+--+ 解:原式=2+x 解:原式=yx +2(5)224--+a a (6) 222244242x y y x y x y y x -+-++ 解:原式=242++-a a 解:原式=yx x 22+(7) 已知y x a x y -=,y xb x y+=,求22a b - 解:原式=4)2(2))((-=-⋅=-+yxx y b a b a类型三:分式的混合运算(1)222244232n mn m n mn m n m n m +-+-+-- (2) 4222xx x x x x ⎛⎫+÷ ⎪-+-⎝⎭ 解:原式=nm nm 222-- 解:原式=)2(2+x x(3)245(3)33x x x x -÷----- (4)111111--++x x 解:原式=22+-x 解:原式=)2)(1()1)(2(-+-+x x x x(5)2222222265232y x yx y xy x y x y xy x y xy x -+⋅---÷+++- 解:原式=yx yx 26+-(6)已知:,02=-y x 求()()323322y x y x y x y x +-÷+- 解:原式=))(()())(()(223334y xy x y x y x y x y x y x +--+=+-+又x y 2=,代入得: 原式=-9类型四:化简求值类型题(1)13)11132(22--÷-+----x x x x x x x .其中x =2解:原式=34--x , 当x =2时,原式=4.(2)232282x x x x x +-++÷(2x x -·41x x ++).其中x =-45.解:原式=11+x , 当x =-45时,原式=5.(3)当1x =时,226336x x x x x x --+⋅-+-的值为多少? 解:原式=22-+x x , 当1x =时,原式=-3.类型五:分式的拆分1.设n 为自然数,计算:)1(1431321211+++⨯+⨯+⨯n n . 解:原式=11141313121211+-++-+-+-n n =111+-n =1+n n3.计算:)100)(99(1)2)(1(1)1(1++++++++x x x x x x . 解:原式=100199********+-++++-+++-x x x x x x =10011+-x x =)100(100+x x 自我测试一、选择题A. a +bB. a -bC. a 2-b 2D. 12. 下列分式是最简分式的( C )A .b a a232 B .a a a 32- C .22b a b a ++ D .222b a ab a -- 3. 化简)2()242(2+÷-+-m mm m 的结果是( B ) A .0B .1C .-1D .(m +2)2 4. 已知2111=-b a ,则b a ab -的值是( D ) A .21 B .21- C .2 D .-2 5. 化简(x y -y x ) ÷x y x -的结果是( B ) A . 1y B . x yy + C . x yy - D .y二、填空题6. 如果分式23273x x --的值为0,则x 的值应为 -3 . 7. 化简: aa 12-÷(1+a 1)= a -1 . 8. 化简:4)222(2-÷--+x x x x x x 的结果为 x -6 .10.化简122-+a a ·4412++-a a a ÷21+a +122-a ,其结果是11-a . 三、计算题11. 计算(1) 22399x x x --- (2)x x x x x x x x x x 23832372325322222--+--+++--+ 解:原式=31+-x 解:原式=(3)()()3232x y xy y x yx -+- (4))50153050152(5015222+-++---+-x x x x x x x x 解:原式=2)(y x xy - 解:原式=53-x (5)aa a a a a -÷+--36)33( (6)5132651813261522-+÷----⨯-+-x x x x x x x x 解:原式=aa a a a a a a 633633-⋅+--⋅- 解:原式=252-x =)3(6361+-+-a a =31+-a12.化简求值 (1)aa -+-21442,并求3-=a 时原式的值. 解:原式=21+-a 当3-=a 时,原式=1.(2)先化简,再求值:1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . 解:原式=22--a a由已知得:02=-a a∴原式=-2(3)按下列程序计算:答案平方−→−-−→−÷−→−+−→−−→−n n n n 填表并请将题中计算程序用代数式表达出来,并化简. 输入n3 … 输出答案 1 1解:12=-+n nn n。
八年级-人教版-数学-上册-第4课时-分式的混合运算

算乘方,除法变乘法.
=
1 a
1 9a
约分,做乘法
= 8.
9a
异分母分式相加减
归纳
式与数的混合运算有相同的运算顺序,即先算乘方,再算乘除, 最后算加减.
有括号时,按照小括号、中括号、大括号的顺序,先做括号内 的运算,再做括号外的运算.
在运算的过程中,我们也可以适当地运用一些运算律,从而达 到简化运算的目的.
例3
先化简,再求值:
x2
x2 1 2x 1
x
1
x x
1 ,其中
1
x=-2.
分析:先根据分式的运算法则进行化简,再代入求值.
解:
x2 1
x 1
x2
2x
1
x
1
x
1
=
(x
1)(x 1) (x 1)2
(x
1)
x x
1 1
=1-(x-1) =2-x.
当x=-2时,原式=2-(-2)=4.
结果要化成最简分式或整式
例2 计算:
(1)
m
2
2
5 m
2m 4 3m
;
(2)
x x2
2 2x
x2
x 1 4x
4
x
x
4.
将其分母视为 1,然后进行通分.
解:(1)
m
2
2
5
m
2m 4 3m
= (m 2)(2 m) 5 2m 4
2m
3m
= 9 m2 2(m 2) = (3 m)(3 m) 2(2 m)
b d b c bc
3.分式的乘方法则: 分式乘方要把分子、分母分别乘方.
上述法则可以用式子表示为