数学建模之中国人口增长的预测和人口结构的简析

合集下载

中国人口增长预测模型

中国人口增长预测模型

中国人口增长猜测模型随着时间的推移,人口数量的变化对于一个国家的进步和社会经济的稳定至关重要。

在中国这样人口浩繁的国家,准确地猜测人口的增长是制定各种政策和规划的基础。

为了更好地满足人民的需求并提供适当的资源,许多探究者和政府部门一直致力于开发和改进中国的人口增长猜测模型。

人口增长猜测是一项复杂的任务,因为涉及到多个变量和互相之间的干系。

为了更好地理解中国人口增长模型,我们将从几个重要的方面入手进行分析。

起首,人口自然增长率是一个重要的参考指标。

自然增长率是指在没有移民和移民的状况下,人口数量因诞生和死亡而增长的程度。

中国的人口自然增长率一直保持在较高水平,这在一定程度上反映了人口结构的变化和诞生率的变化。

通过分析历史数据和趋势,我们可以计算出过去几年甚至几十年的自然增长率,并将其作为人口增长模型的参考指标。

其次,男女比例也是人口增长猜测的重要因素之一。

在过去的几十年里,中国一直面临着男女比例失衡的问题,男性人口相对过多。

这种不平衡的状况在人口增长模型中需要得到充分的思量,因为它直接影响到将来人口的调整和平衡。

除此之外,人口迁移的影响也不行轻忽。

城市化进程加快,许多农村人口涌向城市寻求更好的生活和就业机会。

这种人口迁移对人口增长模型产生了直接的影响,特殊是对城市人口的增长速度和浓度产生了重要的影响。

最后,经济进步也与人口增长密切相关。

经济的快速进步会增进人口的增长,因为更多的人可以获得更好的生活条件和医疗保健。

然而,在人口增长模型中,也需要思量到经济进步对资源分配和环境压力的影响,以确保人口的增长是可持续的。

基于以上几个方面的因素和变量,探究者们提出了许多不同的人口增长猜测模型。

其中一种常用的模型是基于历史数据建立的趋势模型。

通过对历史数据的分析,我们可以发现一些规律和趋势,并将其应用于将来的猜测。

这种猜测方法相对简易,但有时会受到外界因素的干扰。

另一种常用的猜测模型是基于数学和统计分析的模型,如人口增长速度模型和人口结构模型。

数学建模之中国人口增长的预测和人口结构的简析

数学建模之中国人口增长的预测和人口结构的简析

数学建模之中国人口增长的预测和人口结构的简析随着社会经济的发展,人口增长一直是一个备受关注的问题。

数学建模是研究人口增长和人口结构的重要方法之一、本文将对中国人口增长的预测和人口结构进行简析,并利用数学建模方法进行预测分析。

首先,中国人口增长的情况是众所周知的。

随着中国的经济快速发展,人民生活水平的提高,医疗水平的提高以及计划生育政策的实施,中国的人口增长率逐渐放缓。

根据国家统计数据,自2024年以来,中国的总人口增长率一直在下降,其中在2024年总人口为14亿人,增长率仅为0.35%。

根据这一趋势,可以推断出未来的人口增长率可能会进一步下降。

在进行人口增长预测时,可以运用数学建模方法中的指数增长模型。

指数增长模型是描述人口增长的一种常用方法,其基本形式为:N(t)=N0*e^(r*t)其中,N(t)表示时间t时刻的人口数量,N0表示初始人口数量,r表示人口增长率,e表示自然对数的底数。

利用指数增长模型可以对未来的人口增长进行预测。

但要注意的是,由于人口增长受到多种因素的影响,例如政策调整、经济发展、文化变迁等,所以对于人口的精确预测是一项复杂而困难的任务。

因此,在进行人口预测时,应结合实际情况,综合考虑人口增长的多个因素。

另外,人口结构是指人口在不同年龄段的分布情况。

人口结构反映了一个地区或国家的经济、社会、教育等方面的发展状况。

中国的人口结构表现为老龄化趋势和少子化现象。

根据国家统计数据,中国的老龄化人口比例逐年提高,同时生育率呈下降趋势。

这种人口结构的变化将对中国的社会、经济等多个方面产生深远的影响。

为了分析人口结构的变化,可以利用数学建模中的人口金字塔。

人口金字塔以年龄为横轴,人口数量为纵轴,通过金字塔的形状和比例来反映人口的结构情况。

通过观察人口金字塔的变化,可以了解人口的年龄分布情况,判断人口的变化趋势,为相关政策和规划提供依据。

总之,中国人口增长的预测和人口结构的分析是一个复杂的问题,数学建模可以提供一种客观、科学的方法来分析这些问题。

中国人口增长预测数学建模 (2)

中国人口增长预测数学建模 (2)

中国人口增长预测数学建模引言中国作为世界上人口最多的国家之一,人口增长一直是一个备受关注的问题。

人口数量的增长对于国家的经济、社会、环境等方面都有着重要的影响。

因此,预测中国人口的增长趋势对于未来的发展规划具有重要意义。

本文将介绍一种基于数学建模的方法,用于预测中国人口的增长情况。

方法数据收集为了进行人口增长预测的数学建模,我们需要收集一系列历史人口数据。

这些数据可以从各种统计年鉴、人口普查、政府发布的数据等渠道获取。

通常,我们需要收集的数据包括中国的总人口数量、出生率、死亡率、迁入率和迁出率等。

建立数学模型基于收集到的数据,我们可以建立一个数学模型来描述中国人口的增长情况。

常用的数学模型包括指数增长模型、Logistic增长模型等。

在本文中,我们以Logistic增长模型为例。

Logistic增长模型基于以下假设: 1. 人口增长率与当前人口数量成正比; 2. 当人口数量接近一定的上限时,人口增长率会逐渐减小。

Logistic增长模型的公式可以表示为:dP/dt = r*P*(1-P/K)其中,P表示人口数量,t表示时间,r表示人口增长率,K表示人口的上限。

参数估计为了应用Logistic增长模型进行人口预测,我们需要估计模型中的参数。

参数估计可以通过拟合历史数据来完成。

常用的参数估计方法包括最小二乘法、最大似然估计等。

模型验证一旦完成参数估计,我们可以使用模型预测未来的人口变化情况。

为了验证模型的准确性,我们可以将预测结果与实际观测数据进行比较。

如果预测结果与实际观测数据较为接近,说明模型具有较好的预测能力。

预测未来人口增长利用建立的数学模型和参数估计,我们可以进行未来人口增长的预测。

通过不同的假设和参数值,我们可以探讨不同因素对人口增长的影响。

例如,我们可以考虑不同的出生率和死亡率情况下的人口增长,或者研究不同人口政策下的人口增长趋势。

结论本文介绍了一种基于数学建模的方法,用于预测中国人口的增长情况。

毕业设计_数学建模论文中国人口增长预测

毕业设计_数学建模论文中国人口增长预测

中国人口增长预测摘要本文从中国人口的实际情况和人口增长的特点出发,根据题目和中国统计年鉴中的相关数据,建立了两个关于中国人口增长的数学模型,并对中国人口做出了分析和预测。

模型一:利用中国统计年鉴中 2000—2005 年人口的数据,运用灰色理论的基本原理建立 GM(1,1) 模型。

该模型利用离散数据列进行生态处理,建立动态的微分方程,对我国近5年、10年、20年的总人口分别进行了预测。

又根据中国人口城乡分布不同且总趋势也不同的特点,把全国人口分为城市人口、城镇人口、乡村人口三部分分别进行灰色预测。

结果表明,该模型较好的反映并预测中国人口短中期和长期的变化情况。

模型二:按人口年龄结构特征,将人口分为幼年(0—14岁)男女、中年(15—49岁)男女、老年(50岁以上)男女。

各年龄段的人口变化是由出生率、死亡率和转化为其他年龄段的转化人数决定的。

根据各年龄段人口数量变化特点,对各年龄段转化人数引入转化因子,改进马尔萨斯模型,附带出生率、死亡率、生育率、出生性别比率等约束条件,建立了新的具有年龄结构的人口增长模型。

结合我国人口的特点,运用已知数据和利用微分方程的数值解,预测出男性和女性幼年、中年、老年的人口数量。

可反映中国不同年龄结构的人口分布情况。

关键词:灰色预测;小误差频率;微分方程组;人口模型;转移因子一.问题重述中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。

因此人口预测的科学性、准确性是至关重要的。

英国人口学家马尔萨斯的人口指数增长模型和荷兰生物学家的Logistic模型都是经典的人口预测模型。

但是,影响中国人口的因素较多,人口结构较复杂,这些模型对人口预测很粗略,甚至是不准确的。

因此,我们要根据我国具体的人口结构现状(如老龄化进程加速)、人口的分布现状(如乡村人口城镇化)、人口比率现状(如出生人口性别比持续升高)等特点,来较准确、较具体地对中国人口进行预测,建立人口增长的数学模型,由此对中国人口中短期和长期增长趋势做出预测。

人口增长的预测(数学建模论文

人口增长的预测(数学建模论文

关键字:人口数平衡点方程模型运动预测曲线稳定增长人口一题目:请在人口增长的简单模型的基础上。

" (1)找到现有的描述人口增长,与控制人口增长的模型;" (2)深入分析现有的数学模型,并通过计算机进行仿真验证;" (3)选择一个你们认为较好的数学模型,并应用该模型对未来20年的某一地区或国家的人口作出有关预测;" (4)就人口增长模型给报刊写一篇文章,对控制人口的策略进行论述。

二摘要:本次建模是依照已知普查数据,利用Logistic模型,对中国人口的增长进行预测。

首先假设人口增长符合Logistic模型,即引入常数,用来表示自然环境条件所能容许的最大人口数。

并假设净增长率为,即净增长率随着人口数N(t)增长而减小,当N(t) 时,净增长率趋于零。

按照这个假设,。

用参数=3.0,r=0.0386, =1908, =14.5。

画出N=N(t)的图像,作为人口增长模型的一种近似。

做微分方程解的定性分析,求出N=N(t)的驻点和拐点,按照函数作图方法列出定性分析表,作出相轨迹的运动图。

当初始人口<时,方程的解单调递增到地趋向,这意味着如果使用Logistic模型描述人口增长,则人口发展地总趋势是渐增到最大人口数,因此可作为人口的预测值,也称谓平衡点。

用导数做稳定分析,为判断平衡点是否为稳定,可在平面上绘制f(x)的图象,然后像函数绘图那样,用导数进行定性分析,通过图看出人口数N(t)按时间是递增的,当人口数未达到饱和状态的时候,将逐渐地趋向,这意味着是稳定的平衡点。

按该模型,未来人口的数量将随着时间的演化,从初始状态出发达到极限状态,这样就给出了人口的未来预测。

三问题的提出1. Malthus模型英国统计学家Malthus(1766-1834)发现人口增长率是一个常数。

设t时刻人口为N(t),因为人口总数很大,可近似把N(t)当作连续变量处理。

Malthus的假设是:在人口的自然增长过程中,净相对增长率(出生率减去死亡率)是常数,即单位时间内人口的增长量与人口总数成正比。

中国人口增长预测-数学建模

中国人口增长预测-数学建模

中国人口增长的预测和人口的结构分析摘要本文是在已知国家政策和人口数据的前提下对未来人口的发展进行预测和评估,选择了两种模型分别对人口发展的短期和长期进行预测。

模型一中我们在人口阻滞增长模型logistic模型的基础上进行改进,弥补了logistic原始模型仅仅能表示环境对人口发展趋势影响的缺陷,加入了社会因素的影响作为改进,保证了logistic改进模型的有效性和短期预测的正确性。

多次运用拟合的方法(非线性单元拟合,线性多元拟合)对数据进行整合,得到的改进模型对短期预测具有极高的准确性,证明了我们的修正方式与模型改进具有一定的正确性。

模型二中我们分别考虑了城、乡、镇人口的发展情况,利用不同年龄段存活率和死亡率的不同,采用迭代的方式也就是Leslie矩阵的方式对人口发展进行预测,迭代的方式不同于拟合,具有逐步递进的准确性,在参数正确的前提下,能够保证每一年得到的人口都有正确性,同时我们分男女两方面来考虑模型,不仅仅用静态的男女比例来估算人口总数,具有更高的准确性。

然而Leslie模型涉及的参数较多,如果采用动态模型的方式,计算量过大,我们首先用均值的方式对模型进行简化,同样得到迭代矩阵后的人口数值,发展趋势与预测相同,能够很好的预测中国人口的长期发展,同时,由于Leslie矩阵涉及多个参数,所以我们用最终的结果来表征老龄化程度,城乡比,抚养比等多个评价社会发展的参数,得到了较好的估计值,使模型在估算人口的基础上得到了推广和应用。

通过logistic改进模型和Leslie模型我们分别对中国人口发展进行短期和中长期预测,均能得到很好的效果,说明了我们的模型在适用范围内的准确性和实用性。

关键词:人口发展预测;logistic模型改进;参数拟合;Leslie迭代模型;一、问题重述中国是世界上人口最多的发展中国家, 人口问题始终是制约我国发展的关键因素之一,人口众多、资源相对不足、环境承载能力较弱是中国现阶段的基本国情,短时间内难以改变。

数学建模之中国人口增长的预测和人口结构的简析

数学建模之中国人口增长的预测和人口结构的简析

中国人口增长的预测和人口结构的简析摘要本文根据过去数十年的人口数据,通过建立不同的数学模型,对中国人口的增长进行了短期和中长期的预测。

模型一:从中国统计年鉴—2008,查找得到2000-2007年的人口数据,然后用灰色模型进行人口的短期(2008-2017)预测。

这里,我们采用两种算法进行人口总数的预测。

一种是用灰色模型分别对城镇人口和乡村人口进行人口预测,然后求加和得到总的人口数;另一种是用灰色模型对实际的总人口数进行预测,预测未来10年的总人口数。

通过比较相对误差率知道第二种方法预测得到的数据误差较小,故采用第二种方法预测的未来10年的人口数为:模型二:对于中长期的预测我们采用Leslie模型进行预测。

我们利用题中所提供的人口数据的比例,将人分为6种类型,在考虑年龄结构的基础上,对各类人中的女性人数分别进行预测,然后根据男女的性别比例,求出男性的人口数,再将预测得到的各类人数进行汇总加和,最终得到总的人口数。

由于我们是根据年龄结构进行的预测,所以可以对人口进行简单的分析,得到老龄化变化趋势,乡镇市的人口所占比例的变化等。

关键词:人口预测;灰色模型;分类计算;Leslie模型一、模型假设模型一的假设:1、不考虑国际迁移,认为国家内部迁移不改变人口总量;2、不考虑自然灾害、疾病等因素对人口数量的影响;3、文中短期预测到2017年4、大面积自然灾害、疾病的发生以及人们的生育观念等因素会对当年的生育率和人口数量产生影响,认为这些因素在预测误差允许的范围内.模型二的假设:1、每一年龄组的女性在每一个时间段内有相同的生育率和死亡率;2、在预测的时间段内男女的性别比例保持现状不变;3、不考虑人口的迁入和迁出;4、不考虑空间等自然因素的影响,不考虑自然灾害对人口数量的影响。

二、问题分析中国是一个人口大国,随着经济的不断发展,生产力达到较高的水平,现在的问题已不是仅仅满足个人的需要,而是要考虑社会的需要。

中国未富先老,对经济的发展产生很大的影响。

数学建模预测中国人口增长

数学建模预测中国人口增长

数学建模预测中国人口增长并就“全面二胎”政策对未来几年人口影响做出思考一、摘要日益增长的人口数量导致了资源短缺,环境恶化。

通过对1900年到2017年的全国人口数量的统计数据,结合所学知识,建立数学模型logistic模型。

模型通过假设条件,根据假设建立合理的模型,以及MATLAB对数据的处理,并且运用数据拟合求模型的解r,最后通过的的r预测中国未来几年内的人口变化规律,从而可以合理的有计划的利用资源,使环境和资源实现可持续发展。

另外,全面二胎政策2016年正式实施,对于人口结构有问题中国,全面二胎政策将可能对人口模式造成怎样的影响。

通过查阅大量文献资料,对二胎政策的影响做出思考。

关键词:人口模型中国人口数量全面二胎政策二、问题的提出人口问题是当今世界的三大问题之一,人口的剧烈增长导致资源日益短缺,环境日益恶化,认识和了解人口数量的变化规律,做出较准确的估测,从而有效地控制人口增长以及合理有效地开发能源和环境保护,通过1900年到2017年的人口数据变化的规律,对2018年到2023年全国人口数量做出合理的预测。

三、问题分析通过对数据的观察,运用MATLAB的画图功能,可以看出随着时间增长,人口数量也在急剧增长,而且图像与指数模型吻合,所以不妨假设人口模型符合指数模型,建立第一个数学模型。

但是通过对指数模型和实际数据的比对,发现指数模型在1978年到2003年间与实际较符合,但是2005到2018期间误差越来越大,通过对指数的性质可以了解到,当自变量无穷大时,函数趋于去穷大,这与事实相悖,因为现实资源是有限的,当人口到达某一数值后,由于各种资源、环x,境因素的限制,人口数量将达到某一稳定值,所以,不妨假设最大人口数为m当人口数达到最大的时候,增长率为0,建立logistic阻滞增长数学模型。

四、模型假设与简化1 假设:表中所给出的数据是中国人口的真实值。

2 假设:一些大型自然灾害不考虑在内,如战争,地震等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国人口增长的预测和人口结构的简析
摘要
本文根据过去数十年的人口数据,通过建立不同的数学模型,对中国人口的增长进行了短期和中长期的预测。

模型一:从中国统计年鉴—2008,查找得到2000-2007年的人口数据,然后用灰色模型进行人口的短期(2008-2017)预测。

这里,我们采用两种算法进行人口总数的预测。

一种是用灰色模型分别对城镇人口和乡村人口进行人口预测,然后求加和得到总的人口数;另一种是用灰色模型对实际的总人口数进行预测,预测未来10年的总人口数。

通过比较相对误差率知道第二种方法预测得到的数据误差较小,故采用第二种方法预测的未来10年的人口数为:
模型二:对于中长期的预测我们采用Leslie模型进行预测。

我们利用题中所提供的人口数据的比例,将人分为6种类型,在考虑年龄结构的基础上,对各类人中的女性人数分别进行预测,然后根据男女的性别比例,求出男性的人口数,再将预测得到的各类人数进行汇总加和,最终得到总的人口数。

由于我们是根据年龄结构进行的预测,所以可以对人口进行简单的分析,得到老龄化变化趋势,乡镇市的人口所占比例的变化等。

关键词:人口预测;灰色模型;分类计算;Leslie模型
一、模型假设
模型一的假设:
1、不考虑国际迁移,认为国家内部迁移不改变人口总量;
2、不考虑自然灾害、疾病等因素对人口数量的影响;
3、文中短期预测到2017年
4、大面积自然灾害、疾病的发生以及人们的生育观念等因素会对当年的生育率和人口数量产生影响,认为这些因素在预测误差允许的范围内.
模型二的假设:
1、每一年龄组的女性在每一个时间段内有相同的生育率和死亡率;
2、在预测的时间段内男女的性别比例保持现状不变;
3、不考虑人口的迁入和迁出;
4、不考虑空间等自然因素的影响,不考虑自然灾害对人口数量的影响。

二、问题分析
中国是一个人口大国,随着经济的不断发展,生产力达到较高的水平,现在的问题已不是仅仅满足个人的需要,而是要考虑社会的需要。

中国未富先老,对经济的发展产生很大的影响。

当今面临的问题是如何很好的预测出未来人口的变化趋
势,并根据趋势制定出合理可行的人口规划方案,以缓解人口对经济的影响。

所以准确的预测出人口的发展趋势势在必行。

(1)短期人口预测:根据获得的历年的人口数据,利用灰色模型预测出未来10年人口的增长趋势。

(2)中长期人口的预测和分析:将人口分为6大类,利用Leslie模型分别预测出各类人未来70年的人口数,并根据获得的数据,对人口的老龄化等进行简单的分析。

三、模型建立与求解
模型一、中国人口总数的短期(2008-2017)预测
采用灰色模型预测短期人口数。

灰色模型是用时间数据序列建立系统的动态模型,把2000-2007年人口数据(这些数据是一组离散的原始数据),经7次累加生成规律性强的累加生成序列,可以弱化原始人口数据的离散型。

然后对累加生成序列建模,最后进行7次累减还原成预测值。

从中国统计年鉴-2008查得2000-2007年我国的人口数据如下:
表1 2000年到2007年人口数据
2007 59379 72750 132129
下面,我们采用两种方法进行人口的短期预测。

一种是,我们用灰色模型分别预测出2008-2017年城镇人口和乡村人口,然后加和得到总的预测人口数;另一种是,我们根据总的人口数用灰色模型预测出未来十年的人口数。

最后,我们将这两种方法得到的值分别求与实际值的相对误差,采纳误差较小的一种方法的预测值。

方法一:
由表得知,2000年到2007年城镇人口的原始数据为
=[45906,48064,50212,52376,54283,56212,57706,59379]
一次累加公式为
经过累加得到累加生成序列为
=[45906,93970,144182,196558,250841,307053,364759,424138] 定义累加矩阵为
常数项
=[48064,50212,52376,54283,56212,57706,59379]
按最小二乘法原理解方程组 B*a=Y


=1377631.7233e
-1329567.7233
同理,用灰色模型得到乡村人口预测为
=[80837,79563,78241,76851,75705,74544,73742,72750]
=[80837,160400,238641,315492,391197,465741,539483,612233]
=[79563,78241,76851,75705,74544,73742,72750]
=-5330296.3333e
+5411133.3333
得到的总人口预测为
X=1377631.7233e
-5330296.3333e
+4081565.61
方法二:
用灰色模型得到总人口人口预测为
=[126743,127627,128453,129227,129988,130756,131448,132129]
=[126743,254370,382823,512050,642038,772794,904242,1036371] =[127627,128453,129227,129988,130756,131448,132129]
=21954329.207e
21827586.207 (*)
根据灰色模型推导出的公式(*)我们得到两种方法下预测出的人口数据如下:(源程序见最后附页)
表2 城镇+乡村预测得到的数据及数据分析表
用matlab作出曲线如下:
图1 城镇+乡村总人数随时间的变化关系图
由上表中我们可以看到,用灰色模型预测到的城镇人口数与乡村人口数之和与实际人口之间的相对误差大都小于0.2%,即与实际人口非常接近;从图线中也可以看出拟合曲线得到的数据与实际数据十分接近,从而也可以说明我们预测得到的2008-2017年的人口数比较符合现实。

然后,我们又在实际总人口的前提下用灰色模型进行预测,得到的结果如下表所示(源程序见最后附
页):
表3 根据历年总人口数得到的数据及数据分析表
年份总人口实际人口相对误差
2001 127705.1 127627 0.00061191
2002 128447.9 128453 0.000039703
2003 129195.1 129227 -0.000246848
2004 129946.6 129988 -0.000318418
2005 130702.5 130756 -0.000409238
2006 131462.8 131448 0.00011234
2007 132227.5 132129 0.000745229 2008 132996.6
2009 133770.2
2010 134548.4
2011 135331
2012 136118.2
2013 136910
2014 137706.4
2015 138507.4
2016 139313.1
2017 140123.4
同样,根据得到的公式及数据作出总人口随时间变化曲线如下图:图2 根据总人口预测的人口数随时间的变化关系图
从上表中可以看出,根据实际总人口数用灰色模型预测得到的人口数据相对误差均小于0.1%,也就是说比用灰色模型分别预测城镇和乡村得到的人口数更贴近实际。

所以选用方法二预测得到的人口数据较好。

模型二、中国人口中长期(2006-2074)增长预测和简单分析
采用Leslie模型进行中长期的人口预测。

“种群是直接通过雌性个体的生长的繁殖而增长的,所以用雌性个体数量的变化为研究对象比较方便。

”[1]所以,只预测女性的人口数量,然后根据过去几年的男女性别比预测出未来的性别比,进而推算出男性人口的数量,最后给出人口的总数量。

1. 我们在考虑人口预测时只从女性考虑,并将所给的6类人按年龄每五年为一个年龄段划分为20个年龄组。

每5年观察一次人口数,即时间间隔与年龄段等长。

相关文档
最新文档