线性非局部Drude模型的一种解耦格式的稳定性和收敛性分析
Drude模型简介

Drude模型简介•最简单的金属模型–只考虑到电子的运动学特性•最成功的金属模型之一–为什么这么简单的模型会获得巨大的成功?•在量子力学与原子物理学诞生之前–1897年,J.J. Thomson发现电子–1900年,Drude提出金属的电导和热导理论,Annalen de Physik1, 566 (1900), ibid. 3, 369 (1900).电导率电子气模型虽然金属中至少有两种带电粒子,离子与电子,Drude 假定参与导电作的仅是其中的一种。
传导电子的来源:价电子与芯电子。
Drude模型的基本假设忽略电子与电子之间的相互作用(独立电子近似),忽略电子与离子之间的相互作用(自由电子近似),电子只受到均匀外电场的作用;(Kinetic theory) 电子受到的碰撞是瞬时的,来自电子与杂质原子之间的散射;电子在单位时间内散射的几率是1/τ,τ是电子驰豫时间(relaxation time / life time);电子在各种散射下达到热力学平衡,即,电子在碰撞之后的状态是随机的,由热力学平衡决定其分布。
=frequency) (cyclotron 为回旋频率令mceHc ω1nec仅依赖于载流子密度和电荷电导的实部和虚部?Drude模型的推广•经典力学→量子力学:Sommerfeld模型•自由电子近似→考虑电子-离子的相互作用:能带理论•独立电子近似→电子-电子相互作用:金属的Fermi-Liquid理论•电子气的局域热平衡(local thermal equilibrium)→小尺度、非平衡特性:介观物理(mesoscopic physics)。
11.2-11.3 李雅普诺夫稳定性的基本定理

于零;
P为不定的充分必要条件是的对角线元素有正有负。
定理11-3中的合同变换 (congruence transformation) 是指对 对称矩阵的同样序号的行和列同时作同样的初等变换。 上述三种判别实对称矩阵P的定号性的方法, 各有千秋。但 总的说来, 基于Sylvester定理的方法计算量较大,若将该方法推广
态方程的特征值, 根据特征值在复平面的分布来分析稳定性。
值得指出的区别是: 经典控制理论讨论在有界输入下的输出稳定性问题, 而Lyapunov方法讨论状态稳定性问题。 由于Lyapunov第一法需要求解线性化后系统的特征值, 因此该方法也仅能适用于非线性定常系统或线性定常系 统,但是不能推广用于时变系统。
( x1 2x2 )2 ( x1 2x2 )2
函数的定号性是一个相对概念, 与其函数定义域有关。
2 对 x 与 x 组成的 2 维空间为非负定的, 但是 如, 函数 2 x2 1 2
对于 1 维空间 x2 则为正定的。
(2) 二次型函数和对称矩阵的正定性
二次型函数 (quadratic function) 是一类特殊形式函数。 设V(x)为关于 n 维变量向量 x 的实二次型函数, 则其可以 表示为
由Lyapunov第一法的结论可知,该方法能解决部分 弱非线性系统的稳定性判定问题,但对强非线性系 统的稳定性判定则无能为力,而且该方法不易推广 到时变系统。
下面我们讨论对所有动态系统的状态方程的稳
定性分析都适用的Lyapunov第二法。 Lyapunov's second method
Lyapunov第二法又称为直接法(direct method) 。 它是在用能量观点分析稳定性的基础上建立起来的。
非线性随机分数阶积分微分方程半隐式欧拉解的收敛性和稳定性

2021年第42卷第1期中北大学学报(自然科学版)V o l.42 N o.12021 (总第195期)J O U R N A LO FN O R T HU N I V E R S I T YO FC H I N A(N A T U R A LS C I E N C EE D I T I O N)(S u m N o.195)文章编号:1673-3193(2021)01-0006-07非线性随机分数阶积分微分方程半隐式欧拉解的收敛性和稳定性李晓卫,贾宏恩,郭平(太原理工大学数学学院,山西太原030024)摘要:主要对非线性随机分数阶积分微分方程半隐式欧拉方法的收敛性进行了针对性研究,证明了此类半隐式欧拉方法具有强一阶收敛性.此外,在精确解满足均方稳定性的前提下,研究了非线性随机分数阶积分微分方程半隐式欧拉解的均方稳定性,最后利用数值算例验证了数值解的收敛性.关键词:随机分数阶积分微分方程;半隐式欧拉方法;收敛性;均方稳定性中图分类号: O242.28文献标识码:A d o i:10.3969/j.i s s n.1673-3193.2021.01.002C o n v e r g e n c e a n dS t a b i l i t y o f S e m i-I m p l i c i t E u l e r-M a r u y a m aS o l u t i o n f o rN o n l i n e a r S t o c h a s t i cF r a c t i o n a lI n t e g r o-D i f f e r e n t i a l E q u a t i o n sL IX i a o-w e i,J I A H o n g-e n,G U OP i n g(S c h o o l o fM a t h e m a t i c a l S c i e n c e s,T a i y u a nU n i v e r s i t y o f T e c h n o l o g y,T a i y u a n030024,C h i n a)A b s t r a c t:T h i s p a p e r i sm a i n l y c o n c e r n e dw i t h t h e c o n v e r g e n c e a n a l y s i s o f t h e s e m i-i m p l i c i tE u l e r-M a-r u y a m a(E M)m e t h o df o r t h en o n l i n e a rS F I D E s.I t i s p r o v e dt h a t t h es e m i-i m p l i c i tE M s o l u t i o no f S F I D E s s h a r e s s t r o n g f i r s t o r d e r s h a r p c o n v e r g e n c e.F u r t h e r m o r e,o n t h e p r e m i s e t h a t t h e e x a c t s o l u-t i o n s a t i s f i e s t h em e a n-s q u a r e s t a b i l i t y,w e r e s e a r c h e d t h em e a n-s q u a r e s t a b i l i t y o f t h e s e m i-i m p l i c i t E M s o l u t i o n o f t h e n o n l i n e a r S F I D E s.A t l a s t,s o m e n u m e r i c a l e x a m p l e sw e r e p r e s e n t e d t o d e m o n s t r a t e t h e c o n v e r g e n c e o f t h e n u m e r i c a l s o l u t i o n s.K e y w o r d s:s t o c h a s t i c f r a c t i o n a l i n t e g r a l d i f f e r e n t i a l e q u a t i o n;s e m i-i m p l i c i tE u l e r-M a r u y a m am e t h o d;c o n v e r g e n c e;m e a n-s q u a r e s t a b i l i t y0引言积分微分方程是现代数学的重要分支,是人们解决各种实际问题的有效工具,它广泛应用于几何㊁力学㊁物理㊁电子技术㊁自动控制㊁航天㊁生命科学等领域,如反应堆动力学[1]㊁种群动态[2]和分层介质中的波传播[3],并且随着现实生活中的许多随机因素(如噪声等)被考虑进来,随机积分微分方程引起了国内外众多学者的关注与研究.在现有研究中,随机积分微分方程被应用于随机力驱动的粘弹性结构构件的力学行为[4]㊁期权定价[5]及人口增长模型中[6].此外,一些学者证明了随机积分微分方程解的存在性㊁唯一性和稳定性[7-10].但在许多情况下,随机积分微分方程的精确解很难找到,因此,寻找求解此类方程近似解的数值方法引起了许多学者的关注.如,对于具有乘性噪声的随机微分方程,T o c i n oA等[11]提出了一种二阶显式R u n g e K u t t a格式,对于具有恒收稿日期:2020-04-26作者简介:李晓卫(1995-),女,硕士生,主要从事计算数学的研究.定扩散系数的标量方程,还得到了两种三阶R u n g e K u t t a格式;B a b u s k a I等[12]采用蒙特卡罗G a l e r k i n法和随机G a l e r k i n有限元方法求解随机扩散和载荷系数的随机线性椭圆偏微分方程,当采用少量随机参数描述噪声时,随机G a l e r k i n法为首选方法;M a l e k n e j a dK等[13]利用块脉冲函数求解随机沃尔泰拉积分方程,得到了精度较高的近似解.随着分数阶微积分的发展,分数阶积分微分方程出现在信号处理的统计力学领域[14-16].目前,越来越多的研究者对随机分数阶积分微分方程进行了深入研究,探讨了此类方程解的存在性㊁唯一性和稳定性[17-18].而且,研究人员还研究了一些数值格式,并对这些数值格式的性质进行了探讨,如利用谱配置方法㊁欧拉方法以及径向基方法求解该类方程,并讨论了这些方法的性质[19-21].此外,F a e d o-G a l e r k i n方法㊁L e g e n d r e小波方法以及对应的收敛性也被研究和证明[22-23].半隐式欧拉格式已被用于多种方程中,如随机受电弓方程和随机微分延迟方程[24-25],其精确解的稳定性已被证明[26].本文主要目的是给出随机分数阶积分微分方程的半隐式欧拉格式的收敛性分析和相应离散数值解的稳定性分析.本文给出了一些必要的符号与准备,以及与原始方程对应的随机沃尔泰拉积分方程;分析了随机分数阶积分微分方程的半隐式欧拉格式的收敛性与收敛阶;给出了半隐式欧拉格式数值解的稳定性;最后通过数值算例验证了本文的理论分析.1符号与准备工作在本文中,设(Ω,F,P)为具有满足一般条件的σ域F t t⩾0的完备概率空间,㊃为R d空间上的欧拉范数.如果A为向量或矩阵,其转置表示为A T,且若A为矩阵,其F范数用A= t r a c e(A T)A来表示.如果Z为集合,其指标函数用I Z来表示,即当xɪZ时,I Z x=1;否则,值为0.设T>0,L10,T;R n表示一族所有R n值可测的F t适应过程f={f(t)}0ɤtɤT使得ʏT0f(t)d t<ɕ成立;设L2(0,T;R nˑm)表示一族所有(nˑm)矩阵值可测的F t适应过程{f(t)}0ɤtɤT使得ʏT0f(t)2d t<ɕ成立.考虑以下d维非线性随机分数阶积分微分方程Dαy(t)=Ø(t)+ʏt0k1(t,s,y(s))d s+ʏt0k2(t,s,y(s))d W(s),tɪ[0,T],y(0)=y0,(1)式中:Dα为α(αɪ(0,1])阶C a p u t o分数阶导数;ØɪC([0,T];R d);设Q=(t,s)ʒ0ɤsɤtɤT, k1ɪL1(QˑR d;R d),k2ɪL2(QˑR d;R dˑr);W(t)表示定义在完备概率空间上的r维标准布朗运动; y0为F0可测R d值的随机变量使得E y02<ɕ成立.定义1对函数fʒ[0,+ɕ)ңR d的α阶R i e m a n n-L i o u v i l e分数阶积分算子定义如下Iαf(t)=1Γ(α)ʏt0(t-τ)α-1f(τ)dτ,α>0且I0f(t)=f(t),其中Γ(α)为G a m m a函数,Γ(α)ʉʏ+ɕ0e-t tα-1d t定义2对于函数fɪCγ([0,+ɕ))的α阶C a p u t o导数可以记作Dαf(t)=1Γ(γ-α)ʏt0f(γ)(τ)(t-τ)α+1-γdτ,式中:γ-1<α<γ,γɪN+.由富比尼定理,式(1)可转化为以下随机沃尔泰拉积分方程(这两个方程的具体转化可参考文献[18])y(t)=Φ(t)+ʏt0K1(t,s,y(s))d s+ʏt0K2(t,s,y(s))d W(s),(2)其中tɪ[0,T],y(0)=y0,Φ(t)=y0+1Γ(α)ʏt0(t-τ)α-1Ø(τ)dτ, K i(t,s,y(s))=1Γ(α)ʏt s(t-τ)α-1k i(τ,s,y(s))dτ,i=1,2.假设1对于任意(t,s)ɪQ,k1(t,s,0)与k2(t,s,0)是连续有界的函数,且存在正常数l i, i=1, ,4,使得Ø,k j满足如下条件Ø(t1)-Ø(t2)ɤl1t1-t2,k j(t1,s,y)-k j(t2,s,y)ɤl2(1+|y|)t1-t2, k j(t,s1,y)-k j(t,s2,y)ɤl3(1+|y|)s1-s2, k j(t,s,y1)-k j(t,s,y2)ɤl4y1-y22,7(总第195期)非线性随机分数阶积分微分方程半隐式欧拉解的收敛性和稳定性(李晓卫等)对任意t,t1,t2,s,s1,s2ɪ[0,T],y,y1,y2ɪR d, j=1,2均成立.在假设1的条件下,得到以下定理[18].定理1存在正常数L i,i=1, ,5,使得Φ(t),K j(j=1,2)满足以下条件Φ(t1)-Φ(t2)ɤL1t1-t2,K j(t1,s,y)-K j(t2,s,y)ɤL2(1+|y|)t1-t2, K j(t,s1,y)-K j(t,s2,y)ɤL3(1+|y|)s1-s2,K j(t,s,y)2ɤL4(1+y2)t-s2, K j(t,s,y1)-K j(t,s,y2)ɤL5y1-y2,对任意t1,t2ɪ[0,T],s1,s2ɪ[0,T],t,sɪ[0, T],yɪR d均成立.下文中C代表一个任意的正常数.2半隐式欧拉格式的收敛性与收敛阶精确解的存在性㊁唯一性和稳定性已在一些文献中有研究[18].本节讨论半隐式欧拉方法的收敛性与收敛阶.首先,将整个时间区间分割为N个小区间,对于Nȡ1,令h=T/N,t n=n h,对于n=0,1, 2, ,N,当t=t n+1时,y(t n+1)=Φ(t n+1)+ʏt n+10K1(t n+1,s,y(s))d s+ʏt n+10K2(t n+1,s,y(s))d W(s)=Φ(t n+1)+ðn i=0ʏt i+1t i K1(t n+1,s,y(s))d s+ðn i=0ʏt i+1t i K2(t n+1,s,y(s))d W(s)ʈΦ(t n+1)+hðn i=0K1(t n+1,t i,y(t i+1))+ðn i=0K2(t n+1,t i,y(t i))ΔW i,因此,定义Y n+1=Φ(t n+1)+hðn i=0K1t n+1,t i,Y i+1+ðn i=0K2t n+1,t i,Y iΔW i.(3)对n=0,1,2, ,N-1及Y0=y(0)=y0,当sɪ[t n,t n+1)时,定义s=t n以及Y1(t)=ðN n=0Y n I[t n,t n+1)(t),(4)^Y1(t)=ðN n=0Y n+1I[t n,t n+1)(t),(5)则得到以下半隐式欧拉格式Y(t)=Φ(t)+ʏt0K1(t,s,^Y1(s))d s+ʏt0K2(t,s,Y1(s))d W(s).(6)引理1假定假设1满足,那么存在一个常数C>0以及h1=13T3L4>0,使得对于h<h1有E(|Y n+12)ɤC,E(Y(t)2)ɤC.证明由式(3)和基本不等式,有Y n+12ɤ3Φ(t n+1)2+3h2ðn i=0K1t n+1,t i,Y i+12+3ðn i=0K2t n+1,t i,Y iΔW i2.对上述不等式两端同时取期望,有E|Y n+1|2ɤ3EΦ(t n+1)2+3h2Eðn i=0K1t n+1,t i,Y i+12+3Eðn i=0K2t n+1,t i,Y iΔW i2ɤ6EΦ(t n+1)-Φ(0)2+Φ(0)2+3n+1h2ðn i=0E K1t n+1,t i,Y i+12+3ðn i=0E|K2t n+1,t i,Y iΔW i|2ɤ6EΦ(t n+1)-Φ(0)2+Φ(0)2+3n+1h2L4ðn i=0E((1+Y i+12)|t n+1-t i|2)+ 3h L4T2ðn i=0(1+E|Y i|2)ɤ6L21T2+ 6E y02+3h L4T3ðn i=0(1+E|Y i+1|2)+3h L4T2ðn i=0(1+E|Y i|2),则得到1+E(|Y n+1|2)ɤ6L21T2+6E y02+11-3T3L4h+ 3T3L4h+3T2L4h1-3T3L4hðn i=0(1+E|Y i|2).由离散G r o n w a l l不等式1+E(|Y n+1|2)ɤ6L21T2+6E y02+11-3T3L4h e3T3L4n h+3T2L4n h1-3T3L4hɤ6L21T2+6E y02+11-3T3L4h e3T4L4+3T3L41-3T3L4hʒ=C,及Y(t)的连续性,得到8中北大学学报(自然科学版)2021年第1期E Y(t)2ɤC.引理2假定满足假设1,在h<m i n(1,h1)的情况下,存在一个与h无关的正常数C,使得E Y(t)-^Y1(t)2ɤC h2,E Y(t)-Y1(t)2ɤC h2.证明对于任意的tɪ[0,T],存在一个整数n使得tɪ[t n,t n+1),由式(4)~式(6),得到Y(t)-Y1(t)=Y(t)-Y n=Φ(t)-Φt n+ʏt n0K1t,s,^Y1(s)-K1t n,s,^Y1(s)d s+ʏt t n K1t,s,^Y1(s)d s+ʏt n0K2(t,s,Y1(s))-K2(t n,s,Y1(s))d W(s)+ʏt t n K2(t,s,Y1(s))d W(s).再由基本不等式,C a u c h y-S c h w a r t z不等式和I tô等距,得E Y(t)-Y1(t)2ɤ5EΦ(t)-Φt n2+ 5T Eʏt n0K1t,s,^Y1(s)-K1(t n,s,^Y(s))2d s+ 5h Eʏt t n K1t,s,^Y1(s)2d s+ 5Eʏt n0K2(t,s,Y1(s))-K2(t n,s,Y1(s))2d s+ 5Eʏt t n K2t,s,Y1(s)2d sɤ5L21t-t n2+ 10T Eʏt n0L221+^Y1(s)2t-t n2d s+ 5h Eʏt t n L41+^Y1(s)2t-s2d s+ 10Eʏt n0L221+Y1(s)2t-t n2d s+ 5Eʏt t n L41+Y1(s)2t-s2d sɤ5L21h2+10T h2L22Eʏt n01+^Y1(s)2d s+ 5h3L4Eʏt t n1+^Y1(s)2d s+ 10L22h2Eʏt n01+Y1(s)2d s+ 5L4h2Eʏt t n1+Y1(s)2d sɤ5L21h2+10T h2L22ʏt n01+E^Y1(s)2d s+ 5h3L4ʏt t n1+E(^Y1(s)2)d s+ 10L22h2ʏt n01+E Y1(s)2d s+5L4h2ʏt t n1+E(Y1(s)2)d sɤC h2.同理,Y(t)-^Y1(t)=Y(t)-Y n+1=Φ(t)-Φ(t n+1)+ʏt0K1t,s,^Y1(s)-K1t n+1,s,^Y1(s)d s-ʏt n+1t K1t n+1,s,^Y1(s)d s+ʏt0K2(t,s,Y1(s))-K2(t n+1,s,Y1(s))d W(s)-ʏt n+1t K2t n+1,s,Y1(s)d W(s).再由基本不等式,C a u c h y-S c h w a r t z不等式和I tô等距,得E Y(t)-^Y1(t)2ɤ5EΦ(t)-Φ(t n+1)2+ 5T Eʏt0K1t,s,^Y1(s)-K1(t n+1,s,^Y1(s))2d s+ 5h Eʏt n+1t K1t n+1,s,^Y1(s)2d s+ 5Eʏt0K2(t,s,Y1(s))-K2(t n+1,s,Y1(s))2d s+ 5Eʏt n+1t K2t n+1,s,Y1(s)2d sɤ5L21t-t n+12+10T Eʏt0L221+^Y1(s)2t-t n+12d s+ 5h Eʏt n+1t L41+^Y1(s)2t n+1-s2d s+ 10Eʏt0L221+Y1(s)2t-t n+12d s+ 5Eʏt n+1t L41+Y1(s)2t n+1-s2d sɤ5L21h2+10T h2L22ʏt01+E(^Y1(s)2)d s+ 5h3L4ʏt n+1t1+E^Y1(s)2d s+ 10L22h2ʏt01+E(Y1(s)2)d s+ 5L4h2ʏt n+1t1+E(Y1(s)2d sɤ5L21h2+C T2h2L22+C L4h4+C L22h2T+C L4h3ɤC h2.定理2在引理1的假设下,存在一个与h无关的正常数M使得E(|y(t)-Y(t)|2)ɤM h2,对任何tɪ[0,T]均成立.证明用式(2)减去式(6),并由基本不等式, C a u c h y-S c h w a r t z不等式和I tô等距,得E y(t)-Y(t)2ɤ9(总第195期)非线性随机分数阶积分微分方程半隐式欧拉解的收敛性和稳定性(李晓卫等)6Eʏt0[K1(t,s,y(s))-K1(t,s,Y(s))]d s2+ʏt0[K1(t,s,Y(s))-K1(t,s,Y(s))d s2+ʏt0[K1(t,s,Y(s))-K1(t,s,^Y1(s))]d s2+ʏt0[K2(t,s,y(s))-K2(t,s,Y(s))]d W(s)2+ʏt0[K2(t,s,Y(s))-K2(t,s,Y(s))]d W(s)2+ʏt0[K2(t,s,Y(s))-K2(t,s,Y1(s))]d W(s)2.对上述6项分别进行处理得到Eʏt0[K1(t,s,y(s))-K1(t,s,Y(s))]d s2ɤT E(ʏt0L25|y(s)-Y(s)|2d sɤT L25ʏt0E(|y(s)-Y(s)|2)d s, Eʏt0[K1(t,s,Y(s))-K1(t,s,Y(s))]d s2ɤT Eʏt0[K1(t,s,Y(s))-K1(t,s,Y(s))]2d sɤT Eʏt0L23(1+|Y(s)|)2|s-s|2d sɤ2T h2L23ʏt0(1+E(|Y(s)|2))d sɤC h2L23T2, Eʏt0[K1(t,s,Y(s))-K1(t,s,^Y1(s))]d s2ɤT Eʏt0[K1(t,s,Y(s))-K1(t,s,^Y1(s))]2d sɤT L25ʏt0E(|Y(s)-^Y1(s)|2)d sɤC h2T2L25.采用同样的处理方式,得到Eʏt0[K2(t,s,y(s))-K2(t,s,Y(s))]d W(s)2ɤL25ʏt0E(|y(s)-Y(s)|2)d s,Eʏt0[K2(t,s,Y(s))-K2(t,s,Y(s))]d W(s)2ɤC T h2L23,Eʏt0K2t,s,Y(s)-K2t,s,Y1(s)d W(s)2ɤC h2L25T,那么E y(t)-Y(t)2ɤ(C L23T2+C L25T2+C L23T+C L25T)h2e T(T+1)L25ɤM h2. 3半隐式欧拉格式的稳定性本节在假设1的条件下研究式(6)的数值解的稳定性.定义3设Y n+1nȡ1为式(6)具有初始解ξ对应的解,X n+1nȡ1为式(6)对应初始值为λ的另一个解.对于任意的ε>0,存在一个正常数δ>0使得当E|ξ-λ|2<δ时,有E Y n+1-X n+12ɤε成立,即式(6)的解是均方稳定的.定理3设{y(t)}tȡ0,{x(t)}tȡ0分别为式(1)对应于初始值η和φ的精确解,那么,如果满足假设1,对于任意的hɤ13L25T,式(1)的精确解是均方稳定的.证明由式(2)得y(t)-x(t)=η-φ+ʏt0K1(t,s,y(s))-K1t,s,x(s)d s+ʏt0K2(t,s,y(s))-K2t,s,x(s)d W(s).对上式两端同时取期望,得E|y(t)-x(t)|2ɤ3Eη-φ2+3T Eʏt0|K1(t,s,y(s))-K1t,s,x(s)|2d s+ 3Eʏt0K2(t,s,y(s))-K2t,s,x(s)d W(s)2ɤ3Eη-φ2+3L25(T+1)ʏt0E|y(s)-x(s)|2d s.再由G r o n w a l l不等式得E y(t)-x(t)2ɤ3e x p3L25T T+1Eη-φ2.因此,对于任意的ε>0,存在一个常数δ>0,当Eη-φ2<δ时,有E|y(t)-x(t)|2ɤε.定理4 设Y n+1nȡ1,X n+1nȡ1分别为式(6)对应于初始值ξ和λ的数值解,那么如果假设1成立,则式(6)的数值解就是均方稳定的.证明由式(3)得到Y n+1-X n+12=|ξ-λ+hðn i=0K1t n+1,t i,Y i+1-K1t n+1,t i,X i+1+ðn i=0K2t n+1,t i,Y i-K2t n+1,t i,X iΔW i2ɤ3ξ-λ2+3h2ðn i=0[K1t n+1,t i,Y i+1-K1t n+1,t i,X i+1]2+ 3ðn i=0K2t n+1,t i,Y i-K2t n+1,t i,X iΔW i2.01中北大学学报(自然科学版)2021年第1期对上述不等式两侧同时取期望,得E Y n +1-X n +12ɤ3E ξ-λ2+3h 2Eðni =0K 1t n +1,t i ,Y i +1 -K 1t n +1,t i ,X i +12+3E ðni =0K 2t n +1,t i ,Y i -K 2t n +1,t i ,X i ΔW i 2ɤ3E |ξ-λ|2+3h 2(n +1)ðni =0E K 1t n +1,t i ,Y i +1-K 1t n +1,t i ,X i +1 2+3h ðni =0E |K 2t n +1,t i ,Y i -K 2t n +1,t i ,X i |2ɤ3E |ξ-λ|2+3L 25T h ðni =0E Y i +1-X i +12+3L 25h ðni =0E |Y i -X i |2,则E |Y n +1-X n +1|2ɤ31-3L 25T h E |ξ-λ|2+3L 25T h +3L 25h 1-3L 25T h ðni =0E |Y i -X i |2. 再由离散G r o n w a l l 不等式得E |Y n +1-X n +1|2ɤ31-3L 25T h E |ξ-λ|2e 3L 25T n h +3L 25n h 1-3L 25T h ɤ31-3L 25T h e 3L 25T (T +1)1-3L 25T h E |ξ-λ|2. 因此,对任何的ε>0,存在一个正常数δ>0,当E |ξ-λ|2<δ时,有E |Y n +1-X n +1|2<ε成立.4 数值算例本节给出一个数值算例以验证随机分数阶积分微分方程半隐式欧拉方法的收敛率.类似于文献[18],使用样本均值逼近期望,更准确地说,使用以下表达衡量在最后时刻t N 上的均方误差.ε=11000ð1000i =1|y (i )(t N )-Y (i )(t N )|212,式中:y (i )(t N )和Y (i )(t N )分别为精确解与数值解.例1 考虑1维随机分数阶积分微分方程且γ=1,D αy (t )=s i n (t )Γ(2)+ʏt(2t -s )s i n (2s y (s ))d s +ʏt(2t +s )c o s (2s y (s ))d W (s ),式中:t ɪ[0,1],且初始值y (0)=0.注意到函数Ø,k 1,k 2均满足先前的假设条件,且将在时间步长为h =2-11下的数值解作为随机分数阶积分方程的精确解.在相同布朗路径上任意取3个不同的时间步长,即h =2-6,2-7,2-8,并分别求得其半隐式欧拉格式的数值解及相应的误差ε,相关结果如图1所示.图1 例1中半隐式欧拉格式的均方误差F i g .1 M e a n s q u a r e e r r o r o f s e m i -i m pl i c i t e u l e r s c h e m e i n e x a m pl e 1当α=0.45与α=0.65时,图像斜率接近于1,即半隐式欧拉方法的一阶收敛率得到验证.参考文献:[1]L e v i n J J ,N o h e l JA .O n a s y s t e mo f i n t e gr o -d i f f e r -e n t i a l e q u a t i o n so c c u r r i n g i nr e a c t o rd y n a m i c s [J ].T h eA r c h i v ef o rR a t i o n a l M e c h a n i c sa n d A n a l ys i s ,1962,11(1):210-243.[2]G a r n i e r J .A c c e l e r a t i n g s o l u t i o n s i n i n t e gr o -d i f f e r e n -t i a l e q u a t i o n s [J ].S I A MJ o u r n a l o nM a t h e m a t i c a lA -n a l ys i s ,2010,43(4):1955-1974.[3]P a n a s e n k oG ,P s h e n i t s y n aN .H o m o g e n i z a t i o n o f i n -t e g r o -d i f f e r e n t i a l e q u a t i o n o f B u r g e r s t y p e [J ].A p pl i -c a b l eA n a l y s i s ,2008,87(12):1325-1336.[4]A l e k s e y D .S t a b i l i t y o f a c l a s s o f s t o c h a s t i c i n t e gr o -d i f f e r e n t i a l e q u a t i o n s [J ].S t o c h a s t i cA n a l y s i s&A p -pl i c a t i o n s ,1995,13(5):517-530.[5]C o n tR ,T a n k o vP .F i n a n c i a lm o d e l l i n g w i t h j u m pp r o c e s s e s [M ].B o c a R a t o n :C h a pm a na n d H a l l /C R C ,2004.[6]K h o d a b i nM ,M a l e k n e j a dK ,R o s t a m iM ,e t a l .I n -t e r p o l a t i o n s o l u t i o n i n g e n e r a l i z e d s t o c h a s t i c e x p o n e n -t i a l p o p u l a t i o n g r o w t hm o d e l [J ].A p pl i e dM a t h e m a t -i c a lM o d e l l i n g ,2012,36(3):1023-1033.[7]S a t h a n a n a t h a nS ,P e d j e uJC .F u n d a m e n t a l p r o p e r -t i e s o f s t o c h a s t i c i n t e g r o -d i f f e r e n t i a l e qu a t i o n s -I :e x -i s t e n c e a n d u n i q u e n e s s r e s u l t s [J ].I J P A M ,2003,7(3):339-358.[8]R a oANV ,T s o k o sCP .O n t h e e x i s t e n c e ,u n i qu e -11(总第195期)非线性随机分数阶积分微分方程半隐式欧拉解的收敛性和稳定性(李晓卫等)n e s s,a n d s t a b i l i t y b e h a v i o r o f a r a n d o ms o l u t i o n t o a n o n l i n e a r p e r t u r b e ds t o c h a s t i c i n t e g r od i f f e r e n t i a l e-q u a t i o n[J].I n f o r m a t i o n&C o n t r o l,1975,27(1): 61-74.[9]R e nY,X i aN.E x i s t e n c e,u n i q u e n e s s a n d s t a b i l i t y o f t h e s o l u t i o n s t o n e u t r a l s t o c h a s t i c f u n c t i o n a l d i f f e r e n-t i a l e q u a t i o n sw i t h i n f i n i t e d e l a y[J].A p p l i e dM a t h e-m a t i c s&C o m p u t a t i o n,2009,210(1):72-79. [10]M a r i e-A m e l i eM,S a i dH.E x i s t e n c e a n du n i q u e n e s so f v i s c o s i t y s o l u t i o n s f o r s e c o n do r d e r i n t e g r o-d i f f e r-e n t i a l e q u a c t i o n sw i t h o u t m o n o t o n i c i t y c o n d i t i o n s[J].M a t h e m a t i c s,a r X i v:1411.2266v1:1-14. [11]T o c i n oA,A r d a n u y R.R u n g eK u t t am e t h o d s f o r n u-m e r i c a ls o l u t i o no fs t o c h a s t i cd i f f e r e n t i a le q u a t i o n s[J].J o u r n a l o fC o m p u t a t i o n a l a n d A p p l i e d M a t h e-m a t i c s,2002,138(2):219-241.[12]B a b u s k a I,T e m p o n eR,Z o u r a r i sG E.G a l e r k i n f i-n i t e e l e m e n t a p p r o x i m a t i o no f s t o c h a s t i c e l l i p t i c p a r-t i a l d i f f e r e n t i a l e q u a t i o n s[J].S I A MJ o u r n a l o nN u-m e r i c a l A n a l y s i s,2004,42(2):800-825.[13]M a l e k n e j a dK,K h o d a b i nM,R o s t a m iM.An u m e r i-c a lm e t h o df o rs o l v i n g m-d i me n s i o n a l s t o c h a s t i cI tôV o l t e r r a i n t e g r a l e q u a t i o n sb y s t o c h a s t i co p e r a t i o n a l m a t r i x[J].C o m p u t e r s&M a t h e m a t i c sw i t hA p p l i c a-t i o n s,2012,63(1):133-143.[14]P a n d aR,D a s hM.F r a c t i o n a l g e n e r a l i z e d s p l i n e s a n d s i g n a l p r o c e s s i n g[J].S i g n a lP r o c e s s,2006,86: 2340-2350.[15]C h o wTS.F r a c t i o n a l d y n a m i c s o f i n t e r f a c e s b e t w e e n s o f t n a n o p a r t i c l e s a n dr o u g hs u b s t r a t e s[J].P h y s i c s L e t t e r sA,2005,342(1-2):148-155. [16]T i e nDN.F r a c t i o n a l s t o c h a s t i c d i f f e r e n t i a l e q u a t i o n sw i t h a p p l i c a t i o n st of i n a n c e[J].J o u r n a lo f M a t h e-m a t i c a lA n a l y s i sa n d A p p l i c a t i o n s,2013,397(1): 334-348.[17]D a i X,B u W,X i a oA.W e l l-p o s e d n e s s a n dE Ma p-p r o x i m a t i o n f o r n o n-L i p s c h i t z s t o c h a s t i c f r a c t i o n a l i n-t e g r o-d i f f e r e n t i a l e q u a t i o n s[J].J o u r n a l o fC o m p u t a-t i o n a l a n d A p p l i e d M a t h e m a t i c s,2019,356: 377-390.[18]L i nA,H uL.E x i s t e n c e r e s u l t s f o r i m p u l s i v e n e u t r a ls t o c h a s t i c f u n c t i o n a li n t e g r o-d i f f e r e n t i a li n c l u s i o n sw i t hn o n l o c a l i n i t i a lc o n d i t i o n s[J].C o m p u t e r s&M a t h e m a t i c s w i t h A p p l i c a t i o n s,2010,59(1): 64-73.[19]T a h e r i Z,J a v a d i S,B a b o l i a nE.N u m e r i c a l s o l u t i o no fs t o c h a s t i cf r a c t i o n a l i n t e g r o-d i f f e r e n t i a le q u a t i o nb y t h es p ec t r a lc o l l o c a t i o n m e t h o d[J].J o u r n a lo fC o m p u t a t i o n a l a n dA p p l i e dM a t h e m a t i c s,2017,321:336-347.[20]H uP,H u a n g C.S t a b i l i t y o f E u l e r-M a r u y a m am e t h-o d f o r l i n e a r s t o c h a s t i c d e l a y i n t e g r o-d i f f e r e n t i a l e q u a-t i o n s[J].M a t h e m a t i c a N u m e r i c aS i n i c a,2010,32(1):105-112.[21]M i r z a e eF,S a m a d y a rN.O n t h en u m e r i c a l s o l u t i o n o f f r a c t i o n a l s t o c h a s t i c i n t e g r o-d i f f e r e n t i a le q u a t i o n s v i am e s h l e s s d i s c r e t e c o l l o c a t i o nm e t h o d b a s e d o n r a-d i a l b a s i sf u n c t i o n s[J].E n g i ne e r i n g A n a l y s i s w i t hB o u n d a r y E l e m e n t s,2018,100(3):246-255.[22]C h a u d h a r y R,P a n d e y D N.A p p r o x i m a t i o no f s o l u-t i o n s t o s t o c h a s t i c f r a c t i o n a l i n t e g r o-d i f f e r e n t i a l e q u a-t i o nw i t hd e v i a t e da r g u m e n t[J].D i f f e r e n t i a lE q u a-t i o n s a n dD y n a m i c a l S y s t e m s,2017,3:1203-1223.[23]M o j a h e d f a rM,T a r i A,M a r z a b a dAT.S o l v i n g t w o-d i me n s i o n a lf r a c t i o n a l i n t eg r o-d i f f e r e n t i a le q u a t i o n sb y l e g e n d r e w a v e l e t s[J].B u l l e t i n o ft h eI r a n i a nM a t h e m a t i c a l S o c i e t y,2017,43(7):2419-2435.[24]F a nZ,L i uM,C a oW.E x i s t e n c e a n du n i q u e n e s s o f t h e s o l u t i o n sa n dc o n v e r g e n c eo f s e m i-i m p l i c i tE u l e rm e t h o d sf o rs t o c h a s t i c p a n t o g r a p h e q u a t i o n s[J]. J o u r n a l o f M a t h e m a t i c a lA n a l y s i sa n d A p p l i c a t i o n s, 2007,325(2):1142-1159.[25]L i uM,C a oW,F a nZ.C o n v e r g e n c e a n d s t a b i l i t y o f t h e s e m i-i m p l i c i t E u l e rm e t h o d f o r a l i n e a r s t o c h a s t i c d i f f e r e n t i a l d e l a y e q u a t i o n[J].J o u r n a l o fC o m p u t a-t i o n a l a n dA p p l i e dM a t h e m a t i c s,2004,170(2):255-268.[26]A b o u a g w aM,L i u J,L i J.C a r a t héo d o r y a p p r o x i m a-t i o na n ds t a b i l i t y o fs o l u t i o n st on o n-L i p s c h i t zs t o-c h a s t i c f r a c t i o n a ld i f f e r e n t i a le q u a t i o n so fI tôD o o b t y p e[J].A p p l i e d M a t h e m a t i c sa n d C o m p u t a t i o n, 2018,329:143-153.21中北大学学报(自然科学版)2021年第1期。
03非线性分析要点

第三部分非线性分析第一章非线性有限元概述1.1非线性行为1、 非线性结构的基本特征是结构刚度随载荷的改变而变化。
如果绘制一个非线 性结构的载荷一位移曲线,则 力与位移的关系是非线性函数。
2、 引起结构非线性的原因:a 几何非线性:大应变,大位移,大旋转 (例如钓鱼竿的变形)b 材料非线性:塑性,超弹性,粘弹性,蠕变c 状态改变非线性:接触,单元死活3、 非线性行为一一分析方法特点A 不能使用叠加原理!B 结构响应与路径有关,也就是说加载的顺序可能是重要的。
C 结构响应与施加的载荷可能不成比例。
1.2非线性分析的应用1、 一些典型的非线性分析的应用包括: 非线性屈曲失稳分析金属成形研究碰撞与冲击分析制造过程分析(装配、部件接触等)材料非线性分析 (塑性材料、聚合物)2、 橡胶底密封:一个包含几何非线性(大应变与大变形),材料非线性(橡胶), 及状态非线性(接触)的例子。
2.1非线性方程组的解法1、求解一个结构的平衡问题通常等于求解结构的总位能的驻值 问题。
结构总位能n : 口 "3弋门心 2、 增量法:就是将荷载分成一系列的荷载增量,即 ANSYS 中的荷载步或荷载子 步。
A 要点:在每一个荷载增量求解完成后,继续进行下一个荷载增量之前, 刚度矩阵以反映结构刚度的变化。
B 增量法的优点:可以追踪结构变形历程,这对于材料或几何非线性(特别是 极限值屈曲分析)十分有用。
C 增量法的缺点:随着荷载步增量的增加而产生积累误差,导致荷载-位移曲 线飘移。
D 对飘移进行平衡修正,可以大大提高增量法的精度。
应用最广的就是在每一 级载荷增量上用Newton-Raphsor 或其变形的迭代法。
3、 迭代法:割线刚度法:收敛性差,因此很少应用切线刚度法Newto n-Ra phsor 迭代法:切向刚度法中 2.2 Newto n-Ra phsor 迭代法 1、 优点:对于一致的切向刚度矩阵有 二次收敛速度。
线性系统的稳定性分析

第三章 线性系统的稳定性分析3.1 概述如果在扰动作用下系统偏离了原来的平衡状态,当扰动消失后,系统能够以足够的准确度恢复到原来的平衡状态,则系统是稳定的。
否则,系统不稳定。
一个实际的系统必须是稳定的,不稳定的系统是不可能付诸于工程实施的。
因此,稳定性问题是系统控制理论研究的一个重要课题。
对于线性系统而言,其响应总可以分解为零状态响应和零输入响应,因而人们习惯分别讨论这两种响应的稳定性,从而外部稳定性和内部稳定性的概念。
应用于线性定常系统的稳定性分析方法很多。
然而,对于非线性系统和线性时变系统,这些稳定性分析方法实现起来可能非常困难,甚至是不可能的。
李雅普诺夫(A.M. Lyapunov)稳定性分析是解决非线性系统稳定性问题的一般方法。
本章首先介绍外部稳定性和内部稳定性的概念及其相互关系,然后介绍李雅普诺夫稳定性的概念及其判别方法,最后介绍线性定常系统的李雅普诺夫稳定性分析。
虽然在非线性系统的稳定性问题中,Lyapunov 稳定性分析方法具有基础性的地位,但在具体确定许多非线性系统的稳定性时,却并不是直截了当的。
技巧和经验在解决非线性问题时显得非常重要。
在本章中,对于实际非线性系统的稳定性分析仅限于几种简单的情况。
3.2 外部稳定性与内部稳定性3.2.1 外部稳定:考虑一个线性因果系统,如果对一个有界输入u (t ),即满足条件:1()u t k ≤<∞的输入u (t ),所产生的输出y (t )也是有界的,即使得下式成立:2()y t k ≤<∞则称此因果系统是外部稳定的,即BIBO (Bounded Input Bounded Output )稳定。
注意:在讨论外部稳定性的时候,我们必须要假定系统的初始条件为零,只有在这种假定下面,系统的输入—输出描述才是唯一的和有意义的。
系统外部稳定的判定准则系统的BIBO 稳定性可根据脉冲响应矩阵或者传递函数矩阵来进行判别。
a) 时变情况的判定准则对于零初始条件的线性时变系统,设(,)G t τ为脉冲响应矩阵,则系统BIBO 稳定的充要条件是,存在一个有限常数k ,使对于一切0[,),(,)t t G t τ∈∞的每一个元0(,)(1,2,.......;1,2,.....)(,)ij tij t g t i q j p g t d k τττ==≤<∞⎰有即,(,)G t τ是绝对可积的。
非精确线搜索条件下共轭梯度法的收敛性分析

非精确线搜索条件下共轭梯度法的收敛性分析鞠静洁;庞德艳;杜守强【期刊名称】《江苏师范大学学报(自然科学版)》【年(卷),期】2014(000)003【摘要】Based on the study of the two conjugate gradient methods with the value of objective function by Hideaki and Yasushi,a new Wolf type line search is used to analyze their convergence properties.The discussion shows that the two kinds of conjugate gradient method with other inexact line search are also feasible.Finally,the effectiveness of the given conjugate gradient methods is shown by numerical results.%对Hideaki与Yasushi提出的两种使用目标函数值的共轭梯度法进行了研究,在一种新的Wolfe型线搜索条件下分析了它们的收敛性质。
通过讨论可知,在其它的非精确线搜索条件下这两种共轭梯度法也是可行的。
最后的数值试验表明了所给共轭梯度法的有效性。
【总页数】5页(P36-40)【作者】鞠静洁;庞德艳;杜守强【作者单位】青岛大学数学科学学院,山东青岛 266071;青岛大学数学科学学院,山东青岛 266071;青岛大学数学科学学院,山东青岛 266071【正文语种】中文【中图分类】O224【相关文献】1.非精确线搜索下一类新的混合共轭梯度法研究 [J], 孟姗姗;熊丽涢;廖月红2.一类新共轭梯度法在几种非精确线搜索下的收敛性 [J], 梁玉梅;刘云3.FR共轭梯度法在非精确线搜索下的收敛性质 [J], 雷伟华4.非精确线搜索条件下共轭梯度法的收敛性分析 [J], 鞠静洁;庞德艳;杜守强;5.几类非精确线搜索下共轭梯度法的收敛条件 [J], 刘云;梁玉梅因版权原因,仅展示原文概要,查看原文内容请购买。
非线性薛定谔方程的五种差分格式

非线性薛定谔方程的五种差分格式非线性薛定谔方程(NLSE)是一类非常重要的和高度发达的信息传输研究的重要模型。
它的出现为很多无线通信的技术发展提供了重要的基础和参照。
目前,非线性薛定谔方程的差分格式已有五种。
它们是恒定折回差分格式(CFD),动态折回差分格式(DRFD),步进步函数差分格式(SDF),连续步函数差分格式(CDF)和多阶进步函数差分格式(MSDF)。
恒定折回差分格式(CFD)是用于解决非线性薛定谔方程的最简单的一种差分格式。
它最初由Lyons发明,是一种非标准的三点迭代形式,但比一般三点迭代形式更有效。
它的优点在于最大限度地减少了计算量,但它的准确性不高,偏离正确的解。
动态折回差分格式(DRFD)是用于解决非线性薛定谔方程的一种改进的差分格式。
它使用了非标准的五点迭代形式,比三点迭代形式更高效,可以很好地跟踪参数变化并准确地加以反映。
它在计算量上比CFD稍大,但其计算结果更加准确,离正确解更近。
步进函数差分格式(SDF)是用于解决非线性薛定谔方程的一种改进的五点迭代格式。
它在数值处理上有更低的计算量,而且能够比动态折回差分格式更准确地产生数值解。
连续步函数差分格式(CDF)是用于解决非线性薛定谔方程的一种七点迭代格式,它可以更准确地模拟无线信号传输状况。
它有较低的运算量,可以获得较高精度的解。
多阶步函数差分格式(MSDF)是用于解决非线性薛定谔方程的一种变阶函数形式,它可以更准确地模拟信号的非线性传输过程,同时具有低的运行复杂性和高的计算精度,减小了计算时间。
总之,非线性薛定谔方程的不同差分格式均有不同的特征,决定了它们之间的特点和性能差异,旨在满足不同信号处理需求。
ANSYS讲义非线性分析

t1
t2
时间 t
XJTU
自动时间步(续)
• 自动时间步算法是 非线性求解控制 中包含的多种算法的一种。
(在以后的非线性求解控制中有进一步的讨论。) • 基于前一步的求解历史与问题的本质,自动时间步算法或者增加
或者减小子步的时间步大小。
XJTU
5) 输出文件的信息
在非线性求解过程中,输出窗口显示许多关于收敛的信息。输出 窗口包括:
子步
时间 ”相关联。
“时间
两个载荷步的求解 ”
XJTU
在非线性求解中的 “ 时间 ”
• 每个载荷步与子步都与 “ 时间 ”相关联。 子步 也叫时间步。
• 在率相关分析(蠕变,粘塑性)与瞬态分析中,“ 时间 ”代表真实 的时间。
• 对于率无关的静态分析,“ 时间 ” 表示加载次序。在静态分析中, “ 时间 ” 可设置为任何适当的值。
最终结果偏离平衡。
u 位移
XJTU
1) Newton-Raphson 法
ANSYS 使用Newton-Raphson平衡迭代法 克服了增量
求解的问题。 在每个载荷增量步结束时,平衡迭代驱 使解回到平衡状态。
载荷
F
4 3 2
1
u 位移
一个载荷增量中全 Newton-Raphson 迭代 求解。(四个迭代步如 图所示)
XJTU
非线性分析的应用(续)
宽翼悬臂梁的侧边扭转失 稳
一个由于几何非线性造 成的结构稳定性问题
XJTU
非线性分析的应用(续)
橡胶底密封 一个包含几何非线 性(大应变与大变 形),材料非线性 (橡胶),及状态 非线性(接触的例 子。
XJTU
非线性分析的应用(续)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性非局部Drude模型的一种解耦格式的稳定性和收敛性分
析
徐倩;夏泽宇;李茂军
【期刊名称】《西华师范大学学报:自然科学版》
【年(卷),期】2022(43)4
【摘要】本文针对线性非局部Drude模型,基于二阶向后差分(BDF)和间断伽辽金(DG)方法提出了一种能量稳定的解耦格式,证明了半离散格式和全离散格式的能量稳定性,以及全离散格式的最优收敛速率。
为了有效求解全离散系统,采用“解耦”技术将整个系统分解为2个更小的系统,即电流密度函数在电场方程中是显式的,且电场函数在电流密度方程中是显式的。
这种“解耦”技术在系统较大的时候可以提高计算效率。
最后,通过数值实验对理论结果进行了验证,结果表明所提格式具有二阶时间和空间精度且能量函数递减,与理论分析吻合。
【总页数】11页(P394-404)
【作者】徐倩;夏泽宇;李茂军
【作者单位】电子科技大学数学科学学院
【正文语种】中文
【中图分类】O241.82
【相关文献】
1.基于局部与非局部线性判别分析和高斯混合模型动态集成的晶圆表面缺陷探测与识别
2.非线性Schrodinger方程的显式差分格式的收敛性与稳定性分析
3.解决非
线性互补问题非光滑牛顿算法的全局收敛以及局部收敛性分析4.跳-分形过程下亚洲幂期权定价的一种高精度隐式差分格式及其稳定性和收敛性分析5.跳-分形过程下亚洲幂期权定价的一种高精度隐式差分格式及其稳定性和收敛性分析
因版权原因,仅展示原文概要,查看原文内容请购买。