第1讲 实数的有关概念和计算(讲练)(原卷版)

合集下载

七年级(下)数学 同步讲义 实数的概念及数的开方 (解析版)

七年级(下)数学 同步讲义 实数的概念及数的开方 (解析版)

知识点1:实数的概念1、无限不循环的小数叫做无理数.注意:1)整数和分数统称为有理数; 2)圆周率π是一个无理数. 2、无理数也有正、负之分.如2、π、0.101001000100001等这样的数叫做正无理数;2-、π-、0.101001000100001-这样的数叫做负无理数;只有符号不同的两个无理数,如2与2-,π与π-,称它们互为相反数.实数、数的开方知识结构模块一 实数的概念和分类知识精讲3、有理数和无理数统称为实数. (1)按定义分类⎧⎫⎧⎪⎪⎨⎬⎨⎪⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数(2)按性质符号分类0⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数【例1】 写出下列各数中的无理数:3.1415926,2π,16,.0.5,0,23-,0.1313313331…(两个1之间依次多一个3),0.2121121112.【答案】2π、0.1313313331….【解析】无限不循环小数都是无理数. 【总结】考查无理数的概念.【例2】 判断正误,在后面的括号里对的用“√”,错的记“×”表示.(1)无限小数都是无理数. ( ) (2)无理数都是无限小数.( ) (3)带根号的数都是无理数.( ) (4)不带根号的数一定不是无理数.()【答案】(1)×; (2)√; (3)×; (4)×.【解析】(1)无限不循环小数才是无理数;(2)无理数是无限不循环小数当然是无限小数; (3)开方开不尽的数是无理数;(4)π没带根号但是无理数. 【总结】考查无理数的概念及无理数与小数的关系.【例3】 a 是正无理数与a 是非负无理数这两种说法是否一样?为什么. 【答案】一样.例题解析【解析】a 是非负无理数实质上就是说a 是正无理数,因为0不是无理数. 【总结】考查无理数的分类及无理数的概念.【例4】 若a +bx =c +dx (其中a 、b 、c 、d 为有理数,x 为无理数),则a =c ,b =d ,反之, 亦成立,这种说法正确吗?说明你的理由. 【答案】略.【解析】移项得:()()a c d b x -=-, 因为非零有理数乘以无理数的结果还是无理数,而a c -是有理数(两个有理数的差仍是有理数),忧伤0d b -=,从而0a c -=, 于是有:a c b d ==,,当a c b d ==,时,等式a bx c dx +=+成立. 【总结】考查有理数、无理数的运算性质.【例5】 3为什么是无理数?请说明理由.【解析】假设3是有理数,则3能写成两个整数之比的形式:3p q=, 又因为p 、q 没有公因数可以约去,所以pq是最简分数. 把3p q=两边平方,得223p q =,即223q p =.由于23q 是3的倍数,则p 必定是3的倍数.设3p m =, 则2239q m =, 同理q 必然也是3的倍数,设3q n =,既然p 、q 都是3的倍数,它们必定有公因数3,与前面假设pq是最简分数矛盾, 故3是无理数.【总结】考查对无理数的理解及证明.模块二:数的开方知识精讲一、开平方:1、定义:求一个数a的平方根的运算叫做开平方.2、如果一个数的平方等于a,那么这个数叫做a的平方根.这个数a叫做被开方数.x=±,1的平方根是1±.如21x=,1说明:1)只有非负数才有平方根,负数没有平方根;2)平方和开平方互为逆运算.3、算术平方根:正数a的两个平方根可以用“a的正平方根(又叫算术平方根),读作“根号a”;a的负平方根,读作“负根号a”.★注意:1)一个正数有两个平方根,这两个平方根互为相反数;零的平方根是0;2=2是被开方数的根指数,平方根的根指数为2,书写上一般平方根的根指数2略写;3)一个数的平方根是它本身,则这个数是0.二、开立方:1、定义:求一个数a的立方根的运算叫做开立方.2、如果一个数的立方等于a,那么这个数叫做a的立方根号a a叫做被开方数,“3”叫做根指数.★注意:1)任意一个实数都有立方根,而且只有一个立方根;负数有立方根;2)零的立方根是0;3)一个数的立方根是它本身,则这个数是0,1和-1.三、开n次方:1、求一个数a的n次方根的运算叫做开n次方.a叫做被开方数,n叫做根指数.2、如果一个数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根.3、当n为奇数时,这个数为a的奇次方根;当n为偶数时,这个数为a的偶次方根.★注意:1)实数a a是任意一个数,根指数n是大于1的奇数;2)正数a”表示,负n次方根用“0n=时,在中省略n);a>,根指数n是正偶数(当23)负数的偶次方根不存在;4)零的n 次方根等于零,表示为00n =.【例6】 写出下列各数的平方根:(1)9121; (2)2(9)-.【答案】(1)311±; (2)3±. 【解析】注意要先把题中给的算式化简,再求它的平方根. 【总结】考查平方根的概念,注意平方根有两个.【例7】 写出下列各数的正平方根: (1)225;(2)9.【答案】(1)15;(2)3.【解析】(1)15; (2)93=,3的正平方根是3. 【总结】考查平方根的概念,注意对正平方根的准确理解.【例8】 下列各式是否正确,若不正确,请说明理由.(1)1的平方根是1;(2)9是2(9)-的算术平方根; (3)π-是2π-的平方根;(4)81的平方根是9±.【答案】(1)×; (2)√; (3)×; (4)×.【解析】(1)错误:1的平方根是1±;(2)正确;(3)错误:2π-是负数,没有平方根; (4)2π-错:819=,9的平方根是3±.例题解析【总结】考查平方根的基本概念,注意一定要先化简,再求平方根.【例9】写出下列各数的立方根:(1)216;(2)0;(3)1-;(4)3438-;(5)27.【解析】(1)6;(2)0;(3)1-;(4)72-;(5)3.【总结】本题主要考查立方根的概念.【例10】判断下列说法是否正确;若不正确,请说明理由:(1)一个数的偶次方根总有两个;()(2)1的奇次方根是1±;()(3)7=±;()(4)2±是16的四次方根;()(5)a的n次方根的个数只与a的正负有关.()【答案】(1)×;(2)×;(3)×;(4)√;(5)×.【解析】(1)错误:负数没有偶次方根;(2)错误:奇次方根只有一个,所以1的奇次方根是1;(37=;(4)正确;(5)错误:还与n的奇偶性有关.【总结】考查数的开方的基本概念,注意奇次方根与偶次方根的区别.【例11】写出下列各数的整数部分和小数部分:(1(2(3)9【解析】(1)因为89=,8,8;(2)因为78==77;(3)因为34=,所以596<<,所以95,小数部分为4-【总结】考查利用估算法求出无理数的整数部分和小数部分.【例12】 求值:(1 (2);(3)2; (4)2(.【解析】(1)12; (2)0.1- ; (3)4; (4)11. 【总结】考查对平方根的理解及运用.【例13】 求值:(1 (2 (3; (4【解析】(1)4; (2)35-; (3)原式54=-; (4)原式2-. 【总结】考查实数的立方根的运用.【例14】 求值:(1 (2 (3; (4【解析】(1)6 ; (2)3 ; (3)3- ; (4)2. 【总结】考查实数的奇次方根与偶次方根的计算.【例15】 求值:(1(2)(3.【解析】(1)0.5 ; (2)原式=95; (3)原式60=. 【总结】考查实数的立方根运算.【例16】 小明的房间面积为17.62m ,房间的地面恰好由110块大小相同的正方形地砖铺成,问:每块地砖的边长是多少? 【答案】0.4m .【解析】设每块地砖的边长是x 米,则有:211017.6x =,化简得20.16x =,解得:0.4x = 即每块地砖的边长是0.4m .【总结】考查实数的运算在实际问题中的运用.【例17】 已知2a -1的平方根是3±,3a +b -1的算术平方根是4 【答案】3.【解析】由题意知:219a -=,3116a b +-=,即210a =,173b a =-解得:5a =,2b =,所以2549a b +=+=3=. 【总结】本题主要考查实数的平方根与算术平方根的区别,以及代数式的值.【例18】 若a 的平方根恰好是方程3x +2y =2的一组解,求x y a a +的值.【答案】125716()1616或.【解析】由题意,因为a 的两个平方根是相反数,那么y x =-,则有:32322x y x x +=-=,即2x =,2y =-.那么由题意可得:4a =,所以22125744161616x y a a -+=+=+=. 【总结】本题主要考查实数的平方根与求代数式的值.【例19】 3,3(43)8x y +=-,求2()n x y +的值. 【答案】1.【解析】由题意可得:49432x y x y -=⎧⎨+=-⎩, 解得:12x y =⎧⎨=-⎩,所以222()(12)(1)1n n n x y +=-=-=.【总结】本题考查实数的开方以及二元一次方程组的解法,学生忘记解方程组的情况下,老师可以略微拓展复习一下二元一次方程组的解法哦.【例20】用“>”把下列各式连接起来:=,-12-23【总结】本题考查实数的大小比较,注意先化简,再比较大小.【例21】 1.732 5.477≈,利用以上结果,求下列各式的近似值.(1≈_______;(2____________;(3≈_________;(4≈______________;(5___________;(6≈_____________.【答案】略.【解析】(1 1.7321017.32⨯=;(2 5.4771054.77≈⨯=;(3 1.732100173.2⨯=;(4 5.4770.10.5477≈⨯=;(5 1.7320.10.1732⨯=;(6 5.4770.010.05477≈⨯=.【总结】本题考查实数的运算,注意每题之间的联系,类比推理.【例22】填写下表,并回答问题:a…0.000001 0.001 1 1000 1000000 …….3a……(1)数a与它的立方根3a的小数点的移动有何规律?(2)根据这个规律,若已知33,,求a的值.==a0.005250.1738 1.738【解析】(1)由题可知,被开方数a的小数点每向右或向左移动三位,立方根3a的小数点相应地向右或向左移动一位;(2)由(1)总结的规律可知: 5.25a=.【总结】本题考查实数的开方与被开方数之间的关系,注意引导学生仔细分析表格.【例23】阅读下面材料并完成填空:你能比较两个数20162017和20172016的大小吗?为了解决这个问题先把问题一般化,要比较n n+1和(n+1)n的大小(的整数),先从分析n=1,=2,=3,……这些简单的情况入手,从中发现规律,经过归纳,猜想出结论.(1)通过计算,比较下列①—⑦各组中两个数的大小(在横线上填“>、=、<”号①12______21;②23______32;③34______43;④45______54;⑤56______65;⑥67______76;⑦78______87.(2)对第(1)小题的结果进行归纳,猜想出n n+1和(n+1)n的大小关系: ______(3)根据上面的归纳结果猜想得到的一般结论是:20162017_____20172016.【答案】(1)①<;②<;③>;④>;⑤>;⑥>;⑦>:(2)当n =1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;(3)>.【解析】(1)①12 <21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)当n=1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;(3)根据第(2)小题的结论可知,20162017>20172016.【总结】本题考查实数的运算规律,注意观察计算后的结果,总结出规律。

(完整版)实数知识点和练习

(完整版)实数知识点和练习

第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类,7等;(1)开方开不尽的数,如32π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等(这类在初三会出现)是有理数,而不是无判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16理数。

3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。

考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。

(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

如果,那么x叫做a的平方根。

(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

如果,那么x叫做a的立方根。

2、运算名称(1)求一个正数a 的平方根的运算,叫做开平方。

平方与开平方互为逆运算。

(2)求一个数的立方根的运算,叫做开立方。

开立方和立方互为逆运算。

3、运算符号(1)正数a 的算术平方根,记作“a ”。

(2)a(a ≥0)的平方根的符号表达为。

(3)一个数a 的立方根,用表示,其中a 是被开方数,3是根指数。

4、运算公式4、开方规律小结(1)若a ≥0,则a 的平方根是a ±,a 的算术平方根a ;正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。

实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。

正数的立方根是正数,负数的立方根是负数,0的立方根是0。

(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。

第1讲 实数及其有关概念

第1讲 实数及其有关概念

数和式班级___________姓名__________学号__________ 一、选择题1. 如果一个正数的平方根为2a +1和3a -11,则a =( )A .±1B .1C .2D .9 2. (-13)-1-4cos 30°+|-12|的计算结果为( ) A .-4 B .4 C .-3 D .-23. 小红要购买珠子串成一条手链,黑色珠子每个a 元,白色珠子每个b 元,要串成如图所示的手链,小红购买珠子应该花费( ) A .(3a +4b )元 B .(4a +3b )元 C .4(a +b )元 D .3(a +b )元4.(2016·雅安)已知a 2+3a =1,则代数式2a 2+6a -1的值为( ) A .0 B .1 C .2 D .35. (2015·天水)定义运算:a ⊗b =a (1-b ).下面给出了关于这种运算的几种结论:①2⊗(-2)=6;②a ⊗b =b ⊗a ;③若a +b =0,则(a ⊗a )+(b ⊗b )=2ab ;④若a ⊗b =0,则a =0或b =1,其中结论正确的序号是( )A .①④B .①③C .②③④D .①②④ 6. (2016·北京)如果a +b =2,那么代数式(a -b 2a )·a a -b的值是( )A .2B .-2 C.12 D. -127.在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,,()()()()1331;g a b b a g =如②,=,.,,,()()()()1313h a b a b h --=--如③,=,.,,,. 按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( )A .()53--, B .()53, C .()53-, D .()53-,8.计算的值是( ) .(A ) 1 (B ) 5 (C ) (D ) 59.当219941+=x 时,多项式20013)199419974(--x x 的值为( ) (A )1; (B )-1; (C )22001(D )-22001二、填空题1. 若实数m ,n 满足|m -2|+(n -2014)2=0,则m -1·n 2=___________.2. 计算:(π-2015)0+(-12)-3-2cos 60°=__________.3. 已知x 2+x -5=0,则代数式(x -1)2-x (x -3)+(x +2)(x -2)的值为_____________.4. (2016·滨州)观察下列式子:1×3+1=22; 7×9+1=82; 25×27+1=262; 79×81+1=802; …可猜想第2016个式子为________________________.5. (2016·雅安)P 为正整数,现规定P !=P (P -1)(P -2)×…×2×1,若m !=24,则正整数m =______________.6. 刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数: a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(m ,-2m )放入其中,得到实数2,则m =______.7. (2015·黔西南)已知x =5-12,则x 2+x +1=______________. 8.,0141258422=+-++a b b a 则=-b a 3271________ 三、解答题1. (2016·哈尔滨)先化简,再求代数式(2a +1-2a -3a 2-1)÷1a +1的值,其中a =2sin 60°+tan 45°.2. 利民商店出售一种原价为a 的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问用这三种方案调价的结果是否一样?最后是不是都恢复了原价?3. 已知a ,b 为有理数,m ,n 分别表示5-7的整数部分和小数部分,且amn +bn 2=1,求2a +b 的值.4. 求1+2+22+23+24+…+22016的值.5. (2016·重庆A)我们知道,任意一个正整数n 都可以进行这样的分解:n =p×q(p ,q 是正整数,且p≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的最佳分解.并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所有3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数. 求证:对任意一个完全平方数m ,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y(1≤x≤y≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中F(t)的最大值.6. 如图所示,在矩形ABCD 中,AB =12,AC =20,两条对角线相交于点O . 以OB 、OC 为邻边作第1个平行四边形OBB 1C ,对角线相交于点A 1;再以A 1B 1、A 1C 为邻边作第2个平行四边形A 1B 1C 1C ,对角线相交于点O 1;再以O 1B 1、O 1C 1为邻边作第3个平行四边形O 1B 1B 2C 1……依次类推. (1)求矩形ABCD 的面积;(2)求第1个平行四边形OBB 1C 、第2个平行四边 形A 1B 1C 1C 和第6个平行四边形的面积.O1 ABD2A 2B 2A 1B 1O 16.(2015·重庆A)如果一个自然数各数位上的数字从最高位到个位依次排出的一串数字与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是6,4,7,4,6,从个位到最高位排出的一串数字也是:6,4,7,4,6,所以64746是“和谐数”.再如:33,181,212,4664,…都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位数“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.21.利民商店出售一种原价为a的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问用这三种方案调价的结果是否一样?最后是不是都恢复了原价?解:(1)a(1+10%)(1-10%)=0.99a;(2)a(1-10%)(1+10%)=0.99a;(3)a (1+20%)(1-20%)=0.96a ,∴调价结果不都一样,只有(1)(2)相同,最后都没有恢复原价15.已知a ,b 为有理数,m ,n 分别表示5-7的整数部分和小数部分,且amn +bn 2=1,求2a +b 的值. (导学号 02052050)解:∵4<7<9,即2<7<3,∴2<5-7<3,∴m =2,n =(5-7)-2=3-7,将m ,n 代入amn +bn 2=1,得a ×2×(3-7)+b ×(3-7)2=1,(6-27)a +(16-67)b -1=0,(6a +16b -1)+(-2a -6b )7=0,∵a ,b 为有理数,∴⎩⎪⎨⎪⎧6a +16b -1=0-2a -6b =0,解得⎩⎪⎨⎪⎧a =32b =-12,∴2a +b =2×32+(-12)=3-12=5216.(2016·重庆A )我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所有3×4是12的最佳分解,所以F (12)=34.(1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有F (m )=1; (2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中F (t )的最大值.(导学号 02052019)(1)证明:设m =n 2=n ×n ,其中m 和n 均为正整数, ∴F (m )=nn =1;(2)解:由题意得:10y +x -(10x +y )=18, 即:y =x +2,∴t 可能的值为13,24,35,46,57,68,79,当t =13时,F (t )=113,当t =24时,F (t )=23,当t =35时,F (t )=57,当t =46时,F (t )=223,当t =57时,F (t )=319,当t =68时,F (t )=417,当t =79时,F (t )=179, ∴F (t )的最大值为5716.(2015·重庆A )如果一个自然数各数位上的数字从最高位到个位依次排出的一串数字与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是6,4,7,4,6,从个位到最高位排出的一串数字也是:6,4,7,4,6,所以64746是“和谐数”.再如:33,181,212,4664,…都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位数“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x (1≤x ≤4,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式. (导学号 02052010)解:(1)四位“和谐数”:1221,1331,1111,6666(答案不唯一);任意一个四位“和谐数”都能被11整除,理由如下:设任意四位数“和谐数”形式为:abba (a ,b 为自然数),则a ×103+b ×102+b ×10+a =1001a +110b ,∵1001a +110b 11=91a +10b ,∴四位数“和谐数”abba 能被11整数;∴任意四位数“和谐数”都可以被11整除;(2)设能被11整除的三位“和谐数”为:xyx ,则x ×102+y ×10+x =101x +10y ,101x +10y11=9x+y +2x -y 11,∵1≤x ≤4,101x +10y 能被11整除,∴2x -y =0,∴y =2x (1≤x ≤4)(32016-2)×32016+1=(32016-1)2。

2022年中考数学分类复习强化练 -第一讲 实数(含答案)

2022年中考数学分类复习强化练 -第一讲  实数(含答案)

第一讲 实 数专项一 实数及有关概念知识清单1. 实数的分类⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎧⎫⎨⎪⎨⎬⎪⎪⎩⎭⎩⎪⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正整数负整数实数分数有限小数或无限循环小数正无理数无理数无限不循环小数负无理数 2.规定了_____、_____和_____的直线叫做数轴.实数与数轴上的点具有______的关系.3.相反数、绝对值、倒数定 义 性 质 相反数 只有______不同的两个数互为相反数,0的相反数是______若a 与b 互为相反数,则a+b=______ 绝对值 数轴上表示数a 的点到原点的______叫做数a 的绝对值 |a|=(0)00(0)a a a a a ⎧⎪=⎨⎪-⎩>()< 倒数 乘积为______的两个数互为倒数.0是唯一没有倒数的数,倒数等于它本身的数是_____若a 与b 互为倒数,则ab=1 考点例析例1 (2021•模考 福建)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10 907米.假设以马里亚纳海沟所在海域的海平面为基准,记为 0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10 907米处,该处的高度可记为 米.分析:在一对具有相反意义的量中,规定其中一个为正,则另一个就用负表示,理解了“正”与“负”的意义后再根据题意作答即可.解:例2 (2021•模考 郴州)如图,表示互为相反数的两个点是( )A .点A 与点B B .点A 与点DC .点C 与点BD .点C 与点D分析:根据只有符号不同的两个数互为相反数可得答案.解:例3 (2021•模考 武威)下列实数是无理数的是( )A .-2B .16C .9D .11 分析:根据无理数的定义逐一分析.解:归纳:判断一个实数是不是无理数,关键是掌握几种常见的无理数:(1)含根号型,如322,等开方开不尽的数;⑵三角函数型:如sin60°,tan30°等;⑶特定结构型,如0.101 001 000 1…(每相邻两个1之间依次多一个0);⑷与π有关的数:如4π,π-1等.(注:在判断无理数时,不能只根据某些无理数的形式来判断,关键要看化简后的结果,如题中9含根号,但它是有理数)跟踪训练1.(2021•模考 无锡)-7的倒数是( )A .7B .17C .-17D .-7 2.(2021•模考 鄂尔多斯)实数-3的绝对值是( )A .3B .-33C .-3D .333.(2021•模考 天水)下列四个实数中,是负数的是( )A .-(-3) B. (-2)2 C. |-4| D.-54.(2021•模考 烟台)实数a ,b ,c 在数轴上对应点的位置如图所示,那么这三个数中绝对值最大的是( )A .aB .bC .cD .无法确定第4题图5.(2021•模考 株洲)一实验室检测A ,B ,C ,D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A B C D专项二 科学记数法知识清单科学记数法就是把一个数写成 的形式,其中a 的范围是 .当表示一个大于10 的数时,n 的值等于原数的整数位数减去1;当表示一个大于0小于1的数时,n 是负整数,且其绝对值等于原数左起第一个非零数前所有零的个数(包括小数点前的零).考点例析例1 (2021•模考 成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成,该卫星距离地面约36 000千米,将数据36 000用科学记数法表示为()A.3.6×103 B.3.6×104 C.3.6×105 D.36×104分析:根据科学记数法的表示方法表示即可.解:例2 (2021•模考滨州)冠状病毒的直径约为80~120纳米,1纳米=1.0×10-9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10-9米 B.1.1×10-8米 C.1.1×10-7米 D.1.1×10-6米分析:先将110纳米转化成110×10-9米,再根据科学记数法的表示方法移动小数点即可.解:归纳:对于含有计数(量)单位的数用科学记数法表示时,应先把计数(量)单位转化为数字,然后再表示为科学记数法的形式.常见的计数单位:1千可以表示为103 ,1万可以表示为104 ,1亿可以表示为108 ;常考的计量单位:1毫米可以表示为10-3 米,1纳米可以表示为10-9 米等.跟踪训练1.(2021•模考长沙)为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632 400 000 000元,其中632 400 000 000用科学记数法表示为()A.6.324×1011 B.6.324×1010 C.632.4×109 D.0.6324×10122.(2021•模考江西)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50 175亿元,比上年增长8.74%.将50 175亿用科学记数法表示为()A.5.017 5×1011 B.5.017 5×1012 C.0.501 75×1013 D.0.50 175×10143.(2021•模考苏州)某种芯片每个探针单元的面积为0.000 001 64 cm²,0.000 001 64用科学记数法可表示为()A.1.64×10-5 B.1.64×10-6 C.16.4×10-7 D.0.164×10-54.(2021•模考威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为()A.10×10-10 B.1×10-9 C.0.1×10-8 D.1×109专项三无理数的估算知识清单无理数的估算,最常见的就是对带根号的无理数的估算,通常用“夹逼法”,即将被开方数限定在两个连续的平方数之间,然后确定无理数的整数部分和小数部分.考点例析例1(2021•模考)A.3和4之间B.4和5之间C.5和6之间D.6和7之间,开方即可求得答案.解:例2 (2021•模考南通)若m<<m+1,且m为整数,则m=.分析:m的值.解:跟踪训练1.(2021•模考 黔东南州)实数 )A .4和5之间B .5和6之间C .6和7之间D .7和8之间2.(2021•模考 临沂)设a +2,则( )A .2<a <3B .3<a <4C .4<a <5D .5<a <63.(2021•模考 河南)请写出一个大于1且小于2的无理数 .4.(2021•模考 最接近的自然数是 .专项四 实数的大小比较知识清单实数的大小比较有以下几种常用方法:(1)在数轴上表示的两个数,右边的数总比左边的 ;(2)正数 零,负数 零,正数 负数;两个负数,绝对值大的 ;(3)作差比较法:若a-b>0,则a>b ;若a-b=0,则a=b ;若a-b<0,则a<b ;(4)平方比较法:,则a>b (a >0,b >0).考点例析例1 (2021•模考 聊城)在实数-10,41中,最小的实数是( )A .-1B .41 C .0 D 分析:思路一:把这几个数在数轴上表示出来,根据它们在数轴上的位置来比较大小;思路二:根据解:例2 (2021•模考 菏泽)下列各数中,绝对值最小的数是( )A .﹣5B .12C .﹣1 D分析:先求出四个数的绝对值,再进行比较即可得出结果.解:归纳:对含有无理数的实数在比较其大小时,可先估算出无理数的近似值,再和其他的有理数比较大小.跟踪训练1.(2021•模考 内江)下列四个数中,最小的数是( )A. 0B. 12020C. 5D. -12.(2021•模考 天门)下列各数中,比-2小的数是( )A .0B .-3C .-1D .|-0.6|3.(2021•模考 大庆)在﹣1,0 )A .﹣1B .0C .πD 4.(2021•模考 株洲)下列不等式错误的是( )A .﹣2<﹣1B C .52.13>0.3专项五 平方根、立方根知识清单1. 平方根:若一个数的____等于a ,则这个数叫做a 的平方根.一个正数有___个平方根,它们____,0的平方根是_____,负数____平方根.一个正数____的平方根,叫做它的算术平方根,0的算术平方根是 .2.立方根:若一个数的____等于a ,则这个数叫做a 的立方根.正数有一个____的立方根;负数有一个____的立方根;0的立方根是____.3.开平方:求一个非负数a 的______的运算,叫做开平方.4.开立方:求一个数a 的______的运算,叫做开立方.考点例析例1 (2021•模考 烟台)4的平方根是( )A .±2B .-2C .2D 分析:一个正数有两个平方根,它们互为相反数.例2 (2021•模考 常州)8的立方根是( )A .B .±C .2D .±2分析:根据立方根的定义求解即可.解:跟踪训练1.(2021•模考 0,则x 的值是( )A .﹣1B .0C .1D .22.(2021•模考 金昌)若一个正方形的面积是12,则它的边长是( )A .B .3C .D .43.(2021•模考 攀枝花)下列说法中正确的是( )A .0.09的平方根是0.3B 4C .0的立方根是0D .1的立方根是±14.(2021•模考 恩施州)9的算术平方根是 .5.(2021•模考 徐州)7的平方根是 .6.(2021•模考 的结果是 .专项六 实数的运算知识清单1. 实数的运算法则(1)加法:同号两数相加,取相同符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大数的绝对值减去较小数的绝对值;一个数同零相加仍得这个数.(2)减法:减去一个数,等于加上这个数的相反数.(3)乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,积为零.(4)除法:两数相除,同号得正,异号得负,并把绝对值相除;零除以任何一个不为零的数都得零;除以任何一个不为零的数等于乘以这个数的倒数.2.求______________的运算,叫做乘方,乘方可以转化为乘法运算.3.用字母表示运算律:交换律:a+b=________,ab=________;结合律:(a+b )+c=a+(b+c )_________,(ab )c=________;乘法对加法的分配律m (a+b+c )=_________.4.实数的运算顺序:先算_____,再算______,最后算______;有括号的要先算_____;同级运算,要按________的顺序依次进行计算.5.若实数0≠a ,m 为整数,则0a =______,m a -=______.考点例析例1 (2021•模考 铜仁)计算:2÷12﹣(﹣1)20200. 分析:先根据除法法则、乘方的意义、算术平方根的定义、零指数幂的运算公式分别求得2÷12=4,(﹣1)2020=1=20=1,然后再进行实数的运算.解:归纳:在进行实数的运算时,一定要养成良好的习惯:运算前要认真审题,确定顺序(包括使用简便方法);运算过程中,要耐心细致;得出结果后,要认真检查,谨防出错.要特别注意a 0=1(a ≠0),(-1)2n+1=-1(n 是整数),(-1)2n =1(n 是整数).例2 (2021•模考 =0,则(a+b )2020= .分析:由非负数的意义,得a-2=0,b+1=0,求出a ,b 的值,代入计算即可.解:归纳:对非负数的考查是中考的一个热点,一个数的绝对值a ,一个非负数的算术平方根()0≥a a ,一个数的偶数次方n a 2是初中阶段常见的非负数.在解题时要正确理解并熟练应用非负数的性质:非负数有最小值(为零),但无最大值;如果几个非负数的和等于零,那么每一个非负数都等于零.例3 (2021•模考 娄底)下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为( )A .135B .153C .170D .189分析:由前三个正方形可知规律为:左上方的数等于序号数,左下方的数比左上方的数大1,右上方的数是左下方数的2倍,右下方的数为左下方数与右上方数的乘积加上序号数,由此即可求得答案. 归纳:实数问题中的找规律问题是中考的常考内容,解题的关键是通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后进行归纳总结,得出一般的结论,从而将问题解决. 跟踪训练 1.(2021•模考 凉山州)-12020=( )A .1B .-1C .2020D .-20202.(2021•模考 咸宁)早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是( )A .3+(-2)B .3-(-2)C .3×(-2)D .(-3)÷(-2)3.(2021•模考 雅安)已知2a -+|b ﹣2a|=0,则a+2b 的值是( )A .4B .6C .8D .104.(2021•模考 连云港)我市某天的最高气温是4℃,最低气温是-1℃,则这天的日温差是 ℃.5.(2021•模考 常州)计算:|-2|+(π-1)0= .6.(2021•模考 随州)(-1)2+9= .7.(2021•模考 张家界)观察下面的变化规律:213⨯=1-13,235⨯=13-15,257⨯=15-17,279⨯=17-19,…根据上面的规律计算:213⨯+235⨯+257⨯+…+220192021⨯= . 8.(2021•模考 宜宾)计算:()()1020*******π-⎛⎫----+- ⎪⎝⎭. 专项七 数轴与数形结合知识清单数和形是数学研究的两个方面,数形结合实质就是把问题中的数量关系转化为图形的性质,或者把图形的性质转化为数量关系来解决问题,这样可以使复杂的问题简单化、抽象的问题具体化. 考点例析例1 (2021•模考 北京)实数a 在数轴上对应点的位置如图1所示,若实数b 满足-a <b <a ,则b 的值可以是( )A .2B .-1C .-2D .-3图1分析:根据数轴可得1<a <2,所以-2<-a <-1.如图1,在数轴上找出-a 的对应点,即可确定符合条件的b 的值.解:例2 (2021•模考 铜仁)实数a ,b 在数轴上对应的点的位置如图2所示,下列结论正确的是( )A.a>b B.﹣a<b C.a>﹣b D.﹣a>b图2分析:先由数轴,得-2<a<-1,0<b<1,所以1<-a<2,-1<-b<0,再根据实数的大小比较方法进行比较即可求解.解:归纳:实数与数轴上的点具有一一对应的关系,把数和点对应起来,也就是说把“数”和“形”结合起来,二者相互补充,相辅相成,把许多复杂问题转化为简单的问题.跟踪训练1.(2021•模考盐城)实数a,b在数轴上对应的位置如图所示,则()A.a>0 B.a>b C.a<b D.|a|<|b|第1题图2.(2021•模考福建)如图,数轴上两点M,N所对应的实数分别为m,n,则m-n的结果可能是()A.-1 B.1 C.2 D.3第2题图3.(2021•模考枣庄)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0 C.a+b>0 D.1﹣a>1第3题图参考答案专项一实数及有关概念例1 -10 907 例2 B 例3 D1.C 2.A 3.D 4.A 5.D专项二科学记数法例1 B 例2 C1.A 2.B 3.B 4.B专项三无理数的估算例1 B 例2 51.C 2.C 3.2专项四实数的大小比较例1 D 例2 B1.D 2.B 3.C 4.C专项五平方根、立方根例1 A 例2 C1.C 2.A 3.C 4.3 5 6.3专项六实数的运算例1 0.例2 1 例3 C1.B 2.C 3.D 4.5 5.3 6.4 7.202020218.1.专项七数轴与数形结合例1 B 例2 D1.C 2.C 3.D。

中考复习:有理数与实数讲解+练习

中考复习:有理数与实数讲解+练习

内容基本要求略高要求较高要求有理数理解有理数的意义会比较有理数的大小无理数了解无理数的概念能根据要求用有理数估计一个无理数的大致范围数轴能用数轴上的点表示有理数;知道实数与数轴上的点一一对应相反数会用有理数表示具有相反意义的量,借助数轴理解相反数的意义,会求实数的相反数掌握相反数的性质绝对值借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题近似数、有效数字和科学记数法了解近似数和有效数字的概念;会用科学记数法表示数在解决实际问题中,能按问题的要求对结果取近似值;能对含有较大数字的信息作出合理的解释和推断有理数运算理解乘方的意义掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)能运用的有理数的运算解决简单问题运算律理解有理数运算律能用运算律简化有理数运算实数了解实数的概念会进行简单的实数运算平方根、算术平方根了解开方与乘方互为逆运算,了解平方根及算术平方根的概念,会用根号表示非负数的平方根及算术平方根会用平方运算的方法,求某些非负数的平方根立方根了解立方根的概念,会用根号表示数的立方根会用立方运算的方法,求某些数的立方根二次根式及其性质了解二次根式的概念,会确定二次根式有意义的条件能根据二次根式的性质对代数式作简单变形;能在给定的条件下,确定字母的值二次根式的化简和运算理解二次根式的加、减、乘、除运算法则会进行二次根式的化简,会进行二次根式的混合运算(不要求分母有理化)有理数与实数2014年中考怎么考2022年中考复习方案知识点一 有理数一、有理数注意:0既不是正数,也不是负数,前面带“—”号的不一定是负数二、数轴注意:原点、正方向、单位长度称为数轴的三要素,三者缺一不可.三、相反数⑴代数意义:只有符号不同的两个数叫做互为相反数,特别地,0的相反数是0. 相反数必须成对出现,不能单独存在.⑵几何意义:一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等.这两点是关于原点对称的.四、绝对值绝对值几何意义当x a =时,0x a -=,此时a 是x a -的零点值.零点分段讨论的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值.a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.五、科学计数法、有效数字科学记数法:把一个大于10的数表示成10n a ⨯的形式(其中110a ≤<,n 是整数),此种记法叫做科学记数法.例如:5200000210=⨯就是科学记数法表示数的形式. 710200000 1.0210=⨯也是科学记数法表示数的形式.有效数字: 从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字. 如:0.00027有两个有效数字:2,7 ;1.2027有5个有效数字:1,2,0,2,7.注意:万410=,亿810=常考点及易错点:科学计数法中的单位转换,精确到什么位与保留有效数字的差别.记忆方法:移动几位小数点问题.比如:1800000要科学记数法,实际就是小数点向左移动到1和8之间,移动了6位,故记为61.810⨯.知识点二 实数①若0a ≥,则2()a a =;②不管a 为何值,总有2(0)||(0)a a a a a a ≥⎧==⎨-<⎩注:平方根要取正负,算术平方根只有一个且为非负.被开方数一定为非负数知识点三 二次根式自检自查必考点最简二次根式:⑴被开方数不能存在小数、分数形式⑵被开方数中不含能开得尽方的因数或因式⑶分母中不含二次根式二次根式的计算结果要写成最简根式的形式.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.考点一有理数☞考点说明:本类题型无难度,但需要细心【例1】有理数-2的相反数是()A.2B.-2C.12D.12-【例2】13-的倒数是()A.3B.3- C.12D.13【例3】23-的倒数的绝对值为()A.23B.32C.3D.2【例4】这些数1750.1390.10101010.1010010001211π----,,,,,,,……,……中为无理数的个数是()A.1个B.2个C.3个D.4个【例5】2009年初甲型H1N1流感在墨西哥爆发并在全球蔓延,研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m,用科学记数法表示这个数(保留两位有效数字)是()A.0.16×510-m B.0.156×510m C.1.6×610-m D.1.56×610m【例6】2010年上海世博会开园第一个月共售出门票664万张,664万用科学计数法表示为( )A.664×104B.66.4×l05C.6.64×106D.0.664×l07【例7】在电子显微镜下测得一个圆球体细胞的直径是5510-⨯cm,3210⨯个这样的细胞排成的细胞链的长是( )A.210-cm B.110-cm C.310-cm D.410-cm【例8】用四舍五入法按要求对0.06249分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.06(精确到百分位)中考满分必做题C .0.06(精确到千分位)D .0.062(精确到0.001)【例9】 已知有理数a 与b 在数轴上的位置如图所示,那么a ,b ,a -,b -的大小顺序为___________【例10】已知01x <<,则2x ,x ,1x的大小顺序为_____________ 【例11】设23a m a +=+,12a n a +=+,1ap a =+,若3,a <-则( )A.m n p << B . n p m << C . p n m << D .p m n <<【例12】若化简绝对值26a -的结果为62a -,则a 的取值范围是( )A.3a >B.3a ≥C.3a <D.3a ≤【例13】若220x x -+-=,则x 的取值范围是____________【例14】 已知2()55a b b b +++=+,且210a b --=,那么ab =_______【例15】如果有理数a 、b 、c 在数轴上的位置如图所示,则11a b b a c c +------的值为______.考点二 实数与二次根式☞考点说明:本类型题在选择和填空中都有可能出现,只要掌握二次根式的四个公式即可 【例16】若a <11( )A .2a -B .2a -C .aD .a -【例17】已知1x <化简的结果是_______________. 【例18】下列计算正确的是( )A= B .632=⋅C .224=-3-【例19_________【例20】已知a b ,为两个连续的偶数,且a b <,则a b +=________. 【例21】把(2a -____________。

实数的有关计算问题(真题10道+模拟30道)-中考数学重难题型押题培优导练案【解析版】

实数的有关计算问题(真题10道+模拟30道)-中考数学重难题型押题培优导练案【解析版】

实数的有关计算问题(北京真题10道+模拟30道)【方法归纳】题型概述,方法小结,有的放矢1.实数的运算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.2.实数运算的“三个关键”(1).运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.(2).运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.(3).运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.【典例剖析】典例精讲,方法提炼,精准提分【例1】(2021·北京·中考真题)计算:2sin60°+√12+|−5|−(π+√2)0.【答案】3√3+4【解析】【分析】根据特殊三角函数值、零次幂及二次根式的运算可直接进行求解.【详解】+2√3+5−1=3√3+4.解:原式=2×√32【点睛】本题主要考查特殊三角函数值、零次幂及二次根式的运算,熟练掌握特殊三角函数值、零次幂及二次根式的运算是解题的关键.【例2】(2022·北京·中考真题)计算:(π−1)0+4sin45∘−√8+|−3|.【答案】4【解析】【分析】根据零次幂、特殊角的正弦值、二次根式和去绝对值即可求解.【详解】解:(π−1)0+4sin45∘−√8+|−3|.=1+4×√22−2√2+3=4.【点睛】本题考查了实数的混合运算,掌握零次幂、特殊角的正弦值、二次根式的化简及去绝对值是解题的关键.【真题再现】必刷真题,关注素养,把握核心1.(2013·北京·中考真题)计算:.【答案】5【解析】【分析】针对零指数幂,绝对值,特殊角的三角函数值,负整数指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:原式=1+√2−2×√22+4=5.2.(2014·北京·中考真题)计算:(6−π)0+(−15)−1−3tan30°+|−√3|.【答案】-4【解析】【详解】特殊角的三角函数值,按顺序计算即可试题解析:原式=1+(−5)−√3+√3=-4考点:1、零指数幂;2特殊角的三角函数值;3、绝对值;4、负指数幂3.(2015·北京·中考真题)计算:(12)−2−(π−√7)0+|√3−2|+4sin60°.【答案】5+√3【解析】【分析】先根据一个数的负指数幂等于正指数幂的倒数,一个不等于零的数的零指数幂为1,一个数的绝对值是非负数,特殊角三角函数值sin60°=√32,求出各项的值即可. 【详解】解:原式=4−1+2−√3+4×√32=5−√3+2√3 =5+√3 【点睛】本题考查实数的混合运算;特殊角三角函数值.4.(2016·北京·中考真题)计算:(3−π)0+4sin45∘−√8+|1−√3|. 【答案】√3.【解析】【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算即可.【详解】解:原式=1+4×√22−2√2+√3−1=√3. 5.(2017·北京·中考真题)计算:4cos30°+(1−√2)°−√12+|−2|.【答案】3.【解析】【详解】试题分析:利用特殊三角函数值,零指数幂,算术平方根,绝对值计算即可.试题解析:原式=4×√32 +1-2√3+2=2√3+1-2√3+2=3 . 6.(2018·北京·中考真题)计算:4sin45°+(π−2)0−√18+|−1|.【答案】2−√2【解析】【分析】按照实数的运算顺序进行运算即可.【详解】原式=4×√22+1−3√2+1=2−√2.【点睛】本题考查实数的运算,主要考查零次幂,绝对值,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.7.(2019·北京·中考真题)计算:|−√3|−(4−π)0−2sin60∘+(14)−1.【答案】3【解析】【分析】根据绝对值、零指数幂、特殊角的三角函数值、负指数幂法则计算即可【详解】原式=√3−1+2×√32+4=√3−1−√3+4=3【点睛】本题考查零指数幂、特殊角的三角函数值,负指数幂,熟练掌握相关的知识是解题的关键.8.(2020·北京·中考真题)计算:(13)−1+√18+|−2|−6sin45°【答案】5【解析】【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.【详解】解:原式=3+3√2+2−6×√22=3+3√2+2−3√2=5.【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.【模拟精练】押题必刷,巅峰冲刺,提分培优1.(2022·北京房山·二模)计算:tan60°+(3−π)0+|1−√3|+√27.【答案】5√3【解析】【分析】分别计算三角函数值、零指数幂,化简绝对值和二次根式,再进行加减即可.【详解】解:原式=√3+1+√3−1+3√3=5√3.【点睛】本题考查特殊角三角函数、零指数幂以及绝对值和二次根式的化简,属于基础题,熟练掌握上述基本知识是解题的关键.2.(2022·北京朝阳·二模)计算√18+2sin45∘−(12)−1+|√2−2|.【答案】3√2【解析】【分析】分别根据二次根式的性质,45°角的三角函数值,负整数指数幂及绝对值的性质进行化简,最后再由二次根式的运算法则合并即可.【详解】解:原式=3√2+2×√22−2+2−√2 =3√2.故答案为:3√2.【点睛】 此题考查了实数的混合运算,正确掌握二次根式的性质,45°角的三角函数值,负整数指数幂定义及绝对值的性质是解题的关键.3.(2022·北京平谷·二模)计算:√83+(13)−1−2cos30°+|1−√3|.【答案】4【解析】【分析】先利用负整数指数幂,特殊角锐角三角函数值,绝对值的性质,立方根的性质化简,再合并,即可求解.【详解】 解:√83+(13)−1−2cos30°+|1−√3|=2+3−2×√32+√3−1=2+3−√3+√3−1 =4.【点睛】本题主要考查了负整数指数幂,特殊角锐角三角函数值,绝对值的性质,立方根的性质,熟练掌握相关运算法则是解题的关键是解题的关键.4.(2022·北京北京·二模)计算:(12)−1−4cos30∘+√12+|−2|.【答案】4【解析】【分析】先计算乘方和化简二次根式,并把特殊角的三角函数值代入,去值符号,再计算乘法,最后计算加减即可.【详解】解:原式=2−4×√32+2√3+2 =2-2√3+2√3+2=4.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则,负整指数幂的运算,熟记特殊角的三角函数值是解题的关键.5.(2022·北京丰台·二模)计算:|−3|−2sin45∘+√8+(π+√3)0【答案】4+√2【解析】【分析】原式第一项利用绝对值的意义化简,第二项利用特殊角的三角函数值计算,第三项化为最简二次根式,第四项利用零指数幂法则计算即可得到结果.【详解】解:原式 = 3−2×√22+2√2+1 =3−√2+2√2+1=4+√2.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.6.(2022·北京西城·二模)计算:|−√2|+2cos45°−√8+(13)−2. 【答案】9【解析】【分析】先去绝对符号,把特殊角三角函数值代入,化简二次根式并计算乘方,再进行乘法运算,最后计算加减即可.【详解】解:原式=√2+2×√22-2√2+9 =√2+√2-2√2+9=9.【点睛】本题考查实数的混合运算,熟练掌握特殊角的三角函数值、二次根式化简、负整指数幂的运算是解题的关键.7.(2022·北京顺义·二模)计算:√18−4cos45°+|−2|−(1−√2)0. 【答案】√2+1【解析】【分析】根据二次根式的性质化简,代入特殊角的三角函数值,化简绝对值,求零次幂,进行实数的计算即可求解.【详解】解:原式=3√2−4×√22+2−1 =3√2−2√2+2−1 =√2+1.【点睛】本题考查了实数的混合运算,掌握二次根式的性质化简,代入特殊角的三角函数值,化简绝对值,求零次幂是解题的关键.8.(2022·北京市十一学校二模)计算:√3tan30°+|√2−2|−√83+(π−3)0【答案】2−√2【解析】【分析】先根据特殊角锐角三角函数值,绝对值的性质,立方根,零指数幂化简,再合并,即可求解.【详解】 解:√3tan30°+|√2−2|−√83+(π−3)0 =√3×√33+2−√2−2+1=1+2−√2−2+1=2−√2【点睛】本题主要考查了特殊角锐角三角函数值,绝对值的性质,立方根,零指数幂,熟练掌握相关运算法则是解题的关键.9.(2022·北京大兴·一模)计算:2sin30°+√8+|−5|−(−12)−1. 【答案】8+2√2【解析】【分析】先计算锐角三角函数、算术平方根、绝对值和负整数指数幂,再利用实数的加减法法则计算即可.【详解】解:原式=2×12+2√2+5−(−2)=1+2√2+5+2=8+2√2.【点睛】本题考查特殊三角函数值、负整数指数幂、算术平方根等内容,掌握运算法则是解题的关键.10.(2022·北京东城·二模)计算:(−1)2022+√83−(13)−1+√2sin45°.【答案】1【解析】【分析】先计算乘方和开方运算,并把特殊角的三角函数值代入,再计算乘法,最后计算加减即可求解.【详解】解:原式=1+2-3+√2×√22=1+2-3+1=1【点睛】本题考查实数的混合运算,熟练掌握负整指数幂的运算法则和熟记特殊角的三角函数值是解题的关键. 11.(2022·北京丰台·一模)计算:(12)﹣1﹣2cos30°+|﹣√12|﹣(3.14﹣π)0. 【答案】√3+1【解析】【分析】分别根据负整数指数幂、特殊角的三角函数值、绝对值的性质、零指数幂计算出各数,再根据混合运算的法则进行计算;【详解】解:(12)﹣1﹣2cos30°+|﹣√12|﹣(3.14﹣π)0=2﹣2×√32+2√3﹣1 =2﹣√3+2√3﹣1 =√3+1【点睛】此题考查了负整数指数幂、特殊角的三角函数值、绝对值的性质、零指数幂,掌握相关运算法则是解题的关键.12.(2022·北京一七一中一模)计算:3tan30°+(13)−1+20220+|√3−2|.【答案】6【解析】【分析】根据特殊角三角函数值,负整数指数幂,零指数幂,绝对值的计算法则求解即可.【详解】解:3tan30°+(13)−1+20220+|√3−2|=3×√33+3+1+2−√3 =√3+3+1+2−√3=6.【点睛】本题主要考查了特殊角三角函数值,负整数指数幂,零指数幂,绝对值,实数的混合计算,熟知相关计算法则是解题的关键.13.(2022·北京平谷·一模)计算:√12+(15)−1−3tan30°−|−2|.【答案】3+√3【解析】【分析】根据特殊角三角函数值,负整数指数幂,绝对值,以及二次根式的性质进行求解即可.【详解】 解:√12+(15)−1−3tan30°−|−2|=2√3+5−3×√33−2 =2√3+5−√3−2=3+√3.【点睛】本题主要考查了特殊角三角函数值,负整数指数幂,绝对值,以及二次根式的性质,实数的运算,熟知相关计算法则是解题的关键.14.(2022·北京·东直门中学模拟预测)计算:2cos30°+√12−|−√3|−(π+√2)°.【答案】2√3−1【解析】【分析】根据0指数幂运算法则、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:原式=2×√32+2√3−√3−1=√3+2√3−√3−1=2√3−1.【点睛】本题考查的是实数的运算,熟知0指数幂的运算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.15.(2022·北京市第一六一中学分校一模)计算:2sin45°+|√2−3|−(π−2022)0+(13)−2.【答案】11【解析】【分析】原式第一项利用特殊角的三角函数值计算,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.【详解】解:2sin45°+|√2−3|−(π−2022)0+(13)−2=2×√22+3−√2−1+32=√2+3−√2−1+9=11.【点睛】此题考查了实数的运算、特殊角的三角函数值、零指数幂和负整数指数幂,熟练掌握运算法则是解本题的关键.16.(2022·北京朝阳·一模)计算:2cos30°+|−√3|−(π−√3)0−√12.【答案】-1【解析】【分析】根据实数的计算,把各个部分的值求出来进行计算即可.【详解】解:原式=2×√32+√3−1−2√3 =√3+√3−1−2√3=-1.【点睛】本题考查了实数的混合运算,准确记忆特殊角的锐角三角函数值、绝对值化简、零指数幂、二次根式的化简是解题的关键.17.(2022·北京顺义·一模)计算:2tan60°−√27+(12)−2+|1−√3|.【答案】3【解析】【分析】直接利用二次根式的性质、绝对值的性质、特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.【详解】解:原式=2×√3−3√3+4+√3−1=3【点睛】此题主要考查了特殊角的三角函数值、实数运算,正确化简各数是解题关键.18.(2022·北京·中国人民大学附属中学朝阳学校一模)计算:4cos45°+(√3−1)0−√8+2−1. 【答案】32【解析】【分析】先分别根据特殊角的三角函数值、零指数幂、二次根式的化简、负指数幂计算,然后根据实数混合运算法则计算即可求得结果.【详解】解:原式=4×√22+1−2√2+12 =2√2+32−2√2 =32. 【点睛】本题考查了特殊角的三角函数值、零指数幂、二次根式的化简、负指数幂,熟练掌握相关运算法则和熟记特殊角的三角函数值是解题的关键.19.(2022·北京·模拟预测)计算:cos 230°+|1﹣√2|﹣2sin45°+(π﹣3.14)0 【答案】34【解析】【分析】根据cos30°=√32,|1−√2|=√2−1,sin45°=√22,(π−3.14)0=1,再计算即可. 【详解】解:原式=(√32)2+√2−1−2×√22+1 =34+√2−√2 =34【点睛】本题主要考查了实数的运算,掌握特殊角三角函数值,零指数次幂,绝对值的性质是解题的关键. 20.(2022·北京市师达中学模拟预测)计算:(15)−1−(π−2022)0+|√3−1|−3tan30°【答案】3【解析】【分析】先根据负指数幂、零指数幂、绝对值的意义和特殊角的三角函数值分别计算,然后再根据实数的混合运算法则计算即可求得结果.【详解】解:原式=5−1+√3−1−3×√33=3+√3−√3=3【点睛】本题主要考查负指数幂、零指数幂、绝对值的意义和特殊角的三角函数值,熟练掌握相关运算法则和熟记特殊角的三角函数值是解题的关键.21.(2022·北京朝阳·模拟预测)计算:(﹣1)2020﹣√9﹣(3﹣π)0+|3﹣√3|+(tan30°)﹣1.【答案】0【解析】【分析】计算乘方、算术平方根、零指数幂、去绝对值符号、代入三角函数值并计算负整数指数幂,再计算加减可得;【详解】解:原式=1﹣3﹣1+3﹣√3+(√33)-1=1﹣3﹣1+3﹣√3+√3=0.【点睛】本题考查了实数的运算,解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、特殊角的三角函数值、绝对值等考点的运算.22.(2022·北京·一模)计算√2cos45°+(1−π)0+√14+|1−√2|.【答案】32+√2【解析】【分析】根据特殊角的三角函数值,零指数幂,二次根式的性质,化简绝对值进行计算即可.【详解】原式=√2×√22+1+12+(√2−1)=1+1+12+√2−1=32+√2【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值,零指数幂,二次根式的性质,化简绝对值是解题的关键.23.(2022·北京·北理工附中模拟预测)计算:−√274−(1−π)0+2tan 30°−|√32−(√32)−1| 【答案】−√3−1【解析】【分析】根据二次根式的性质化简,零指数幂,特殊角的三角函数值,负整数指数幂,化简绝对值,进行计算即可【详解】解:−√274−(1−π)0+2tan 30°−|√32−(√32)−1| =−3√32−1+2×√33−|√32−2√33| =−3√32+2√33−(2√33−√32)−1 =−√3−1 【点睛】本题考查了实数的混合运算,掌握二次根式的性质化简,零指数幂,特殊角的三角函数值,负整数指数幂,化简绝对值是解题的关键.24.(2022·北京师大附中模拟预测)计算:√8+(−12)−1−4cos45°+|−2|【答案】0【解析】【分析】根据二次根式的性质、负整数指数幂、特殊角的三角函数值分别计算各项,即可求解.【详解】解:原式=2√2−2−4×√22+2 =0.【点睛】本题考查实数的混合运算,掌握二次根式的性质、负整数指数幂、特殊角的三角函数值是解题的关键. 25.(2022·北京四中模拟预测)计算:(13)−1−√12+3tan30°+|√3−2|.【答案】5−2√3【解析】【分析】直接利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简得出答案.【详解】解:原式=3−2√3+3×√33+2−√3 =5−2√3.【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.26.(2021·北京平谷·二模)计算:|−√2|−2cos45°+(π−1)0+(12)−1【答案】3【解析】【分析】根据绝对值的性质、特殊角的三角函数值、零指数幂以及负整指数幂进行运算即可【详解】解:|−√2|−2cos45°+(π−1)0+(12)−1 =√2−2×√22+1+2 =3【点睛】本题考查了实数的混合运算,涉及到绝对值的性质、特殊角的三角函数值、零指数幂以及负整指数幂,熟练掌握法则是解题的关键27.(2021·北京朝阳·二模)计算:√12+(√5−2)0−(13)−1+tan60°. 【答案】3√3−2【解析】【分析】直接根据无理数的运算,零指数幂,负整数指数幂和特殊角的三角函数值计算即可.【详解】解:原式=2√3+1−3+√3=3√3−2.【点睛】本题主要考查实数的运算,掌握无理数的运算,零指数幂,负整数指数幂的运算法则和特殊角的三角函数值是关键.28.(2021·北京顺义·二模)计算:(2−π)0+3−1+|√2|−2sin45°.【答案】43【解析】【分析】根据混合运算公式运算即可【详解】解:原式=1+13+√2−2×√22=43【点睛】本题主要考查实数混合运算内容,注意运算中的易错点,避免犯错,属于常考题.29.(2021·北京房山·二模)计算:(13)−1−2sin60°+|−√3|−(π−2021)0【答案】2【解析】【分析】根据负整数指数幂,绝对值的化简,零指数幂定义依次化简及特殊角的三角函数值代入计算即可.【详解】解:原式=(13)−1−2sin60°+|−√3|−(π−2021)0=3−√3+√3−1=2.【点睛】此题考查实数的计算,正确掌握负整数指数幂,绝对值的化简,零指数幂定义依次化简及特殊角的三角函数值是解题的关键.30.(2021·北京海淀·二模)计算:(12)−1+√8+|√3−1|−2sin60°.【答案】1+2√2【解析】【分析】原式利用负整数指数幂法则、二次根式的性质、绝对值的性质以及特殊角的三角函数值计算即可求出值.【详解】原式=2+2√2+√3−1−2×√32=1+2√2.【点睛】此题考查了实数的运算,负整数指数幂,绝对值的性质以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.。

备战中考数学分点透练真题实数(含二次根式)(解析版)

备战中考数学分点透练真题实数(含二次根式)(解析版)

第一讲实数(含二次根式)命题1 实数的分类级正负数意义1.(2020•河池)如果收入10元记作+10元,那么支出10元记作()A.+20 元B.+10元C.﹣10元D.﹣20元【解答】解:如果收入10元记作+10元,那么支出10元记作﹣10元.故选:C.2.(2021•凉山州)在实数,,0,,,﹣1.414,有理数有()A.1个B.2个C.3个D.4个【解答】解:,0,,﹣1.414,是有理数,故选:D.3.(2021•河池)下列4个实数中,为无理数的是()A.﹣2B.0C.D.3.14【解答】解:A.﹣2是整数,属于有理数,故本选项不合题意;B.0是整数,属于有理数,故本选项不合题意;C.是无理数,故本选项符合题意;D.3.14有限小数,属于有理数,故本选项不合题意;故选:C.命题点2 相反数、倒数、绝对值4.(2021•沈阳)9的相反数是()A.B.﹣C.9D.﹣9【解答】解:9的相反数是﹣9,故选:D.5.(2021•内江)﹣2021的绝对值是()A.2021B.C.﹣2021D.﹣【解答】解:﹣2021的绝对值是2021,故选:A.6.(2021•宜昌)﹣2021的倒数是()A.2021B.﹣2021C.D.﹣【解答】解:﹣2021的倒数是.故选:D.命题点3 数轴7.(2021•广州)如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A 表示的数为()A.﹣3B.0C.3D.﹣6【解答】解:∵a+b=0,∴a=﹣b,即a与b互为相反数.又∵AB=6,∴b﹣a=6.∴2b=6.∴b=3.∴a=﹣3,即点A表示的数为﹣3.故选:A.8.(2021•凉山州)下列数轴表示正确的是()A.B.C.D.【解答】解:A选项,应该正数在右边,负数在左边,故该选项错误;B选项,负数的大小顺序不对,故该选项错误;C选项,没有原点,故该选项错误;D选项,有原点,正方向,单位长度,故该选项正确;故选:D.9.(2021•威海)实数a,b在数轴上的位置如图所示,则下列结论正确的是()A.a+b>0B.a﹣b>0C.a•b>0D.>0【解答】解:依题意得:﹣1<a<0,b>1∴a、b异号,且|a|<|b|.∴a+b>0;a﹣b=﹣|a﹣b|<0;a•b<0;<0.故选:A.命题点4 科学计数法10.(2021•黔西南州)2021年2月25日,全国脱贫攻坚总结表彰大会在北京隆重举行.从2012年开始,经过七年多的精准扶贫,特别是四年多的脱贫攻坚战,全国现行标准下的9899万农村贫困人口全部脱贫,完成了消除绝对贫困的艰巨任务,创造了又一个彪炳史册的人间奇迹,数9899万用科学记数法表示为()A.0.9899×108B.98.99×106C.9.899×107D.9.899×108【解答】解:9899万=98990000=9.899×107,故选:C.11.(2021•巴中)据中央电视台新闻联播报道:今年4月我国国际收支口径的国际货物和服务贸易顺差337亿美元.用科学记数法表示337亿正确的是()A.337×108B.3.37×1010C.3.37×1011D.0.337×1011【解答】解:337亿=33700000000=3.37×1010.故选:B.12.(2021•桂林)细菌的个体十分微小,大约10亿个细菌堆积起来才有一颗小米粒那么大.某种细菌的直径是0.0000025米,用科学记数法表示这种细菌的直径是()A.25×10﹣5米B.25×10﹣6米C.2.5×10﹣5米D.2.5×10﹣6米【解答】解:0.0000025米=2.5×10﹣6米.故选:D.命题点5 实数的大小比较13.(2021•朝阳)在有理数2,﹣3,,0中,最小的数是()A.2B.﹣3C.D.0【解答】解:∵﹣3<0<<2,∴在有理数2,﹣3,,0中,最小的数是﹣3.故选:B.14.(2021•常州)已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b【解答】解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选:A.命题点6 平方根、算术平方根、立方根15.(2021•通辽)的平方根是()A.±4B.4C.±2D.+2【解答】解:=4,±=±2,故选:C.16.(2021•济南)9的算术平方根是()A.3B.﹣3C.±3D.【解答】解:∵32=9,∴9的算术平方根是3.故选:A.17.(2021•抚顺)27的立方根为.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.18.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x=.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.命题点7 二次根式及其运算类型一二次根式的有关概念及性质19.(2021•桂林)下列根式中,是最简二次根式的是()A.B.C.D.【解答】解:A.,不是最简二次根式;B.,不是最简二次根式;C.,不是最简二次根式;D.,是最简二次根式.故选:D.20.(2021•泰州)下列各组二次根式中,化简后是同类二次根式的是()A.与B.与C.与D.与【解答】解:A、=2和不是同类二次根式,本选项不合题意;B、=2与不是同类二次根式,本选项不合题意;C、与不是同类二次根式,本选项不合题意;D、=5,=3是同类二次根式,本选项符合题意.故选:D.21.(2021•襄阳)若二次根式在实数范围内有意义,则x的取值范围是()A.x≥﹣3B.x≥3C.x≤﹣3D.x>﹣3【解答】解:若二次根式在实数范围内有意义,则x+3≥0,解得:x≥﹣3.故选:A.22.(2021•日照)若分式有意义,则实数x的取值范围为.【解答】解:要使分式有意义,必须x+1≥0且x≠0,解得:x≥﹣1且x≠0,故答案为:x≥﹣1且x≠0.类型二二次根式的运算23.(2021•苏州)计算()2的结果是()A.B.3C.2D.9【解答】解:()2=3.故选:B.24.(2021•益阳)将化为最简二次根式,其结果是()A.B.C.D.【解答】解:==,故选:D.25.(2021•柳州)下列计算正确的是()A.=B.3=3C.=D.2【解答】解:A、与不是同类二次根式,不能合并,故A不符合题意.B、3与不是同类二次根式,不能合并,故B不符合题意.C、原式=,故C符合题意.D、﹣2与2不是同类二次根式,不能合并,故D不符合题意.故选:C.26.(2021•天津)计算(+1)(﹣1)的结果等于.【解答】解:原式=()2﹣1=10﹣1=9.故答案为9.27.(2021•山西)计算:+=.【解答】解:原式=2+3=;故答案为:5.类型三二次根式的估值28.(2021•营口)估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【解答】解:∵16<21<25,∴4<<5,故选:B.29.(2021•台州)大小在和之间的整数有()A.0个B.1个C.2个D.3个【解答】解:∵2<3<4<5,∴<<<,即<<2<,∴在和之间的整数有1个,就是2,故选:B.30.(2020•黔南州)已知a=﹣1,a介于两个连续自然数之间,则下列结论正确的是()A.1<a<2B.2<a<3C.3<a<4D.4<a<5【解答】解:∵4<<5,∴3<﹣1<4,∴﹣1在3和4之间,即3<a<4.故选:C.命题点8 实数的运算类型一有理数的运算31.(2021•阜新)计算:3+(﹣1),其结果等于()A.2B.﹣2C.4D.﹣4【解答】解:3+(﹣1)=2.故选:A.32.(2021•聊城)计算:(﹣﹣)÷=.【解答】解:原式=(﹣)×=﹣,故答案为:﹣.33.(2021•雅安)若规定运算:a⊕b=2ab,aΘb=,a⊗b=a﹣b2,则(1⊕2)⊗(6Θ3)=.【解答】解:∵a⊕b=2ab,aΘb=,a⊗b=a﹣b2,∴(1⊕2)⊗(6Θ3)=(2×1×2)⊗=4⊗=4﹣()2=4﹣=,故答案为:.类型二实数的运算34.(2021•河池)计算:+4﹣1﹣()2+|﹣|.【解答】解:原式=2+﹣+=3.35.(2021•百色)计算:(π﹣1)0+|﹣2|﹣()﹣1+tan60°.【解答】解:原式=1+2﹣﹣3+=0.36.(2021•常州)计算:﹣(﹣1)2﹣(π﹣1)0+2﹣1.【解答】解:原式=2﹣1﹣1+=.。

专题01实数的有关概念及计算(测试)-2023年中考数学一轮复习讲练测(浙江专用)(解析版)

专题01实数的有关概念及计算(测试)-2023年中考数学一轮复习讲练测(浙江专用)(解析版)

2023年中考数学总复习一轮讲练测(浙江专用)第一单元数与式专题01实数的有关概念及计算(测试)班级:________ 姓名:__________ 得分:_________注意事项:本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.本试卷所选题目为浙江地区中考真题、模拟试题、阶段性测试题.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022•台州)计算﹣2×(﹣3)的结果是( )A.6B.﹣6C.5D.﹣5【分析】根据有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘即可得出答案.【解析】﹣2×(﹣3)=+(2×3)=6.故选:A.2.(2022•宁波)﹣2022的相反数是( )A.―12022B.12022C.﹣2022D.2022【分析】根据相反数的定义直接求解.【解析】﹣2022的相反数是2022,故选:D.3.(2022•杭州)国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为( )A.14.126×108B.1.4126×109C.1.4126×108D.0.14126×1010【分析】根据科学记数法的规则,进行书写即可.【解析】1412600000=1.4126×109,故选:B.4.(2022•金华)在﹣2,12,2中,是无理数的是( )A .﹣2B .12CD .2【分析】利用有理数,无理数的概念对每个选项进行判断即可得出结论.【解析】﹣2,12,2故选:C .5.(2022•A .1和2之间B .2和3之间C .3和4之间D .4和5之间【分析】根据无理数的估算分析解题.【解析】∵4<6<9,∴23.故选:B .6.(2022秋•杭州期中)在数2,0,﹣2,―A .―B .0C .﹣2D .2【分析】根据正数、0、负数比较大小的办法得结论.【解析】∵正数>0>负数,∴数2,0,﹣2,―2.故选:D .7.(2022•富阳区一模)已知a ,b 是两个连续整数,a ―1<b ,则a ,b 分别是( )A .﹣1,0B .0,1C .1,2D .2,3【分析】估算无理数的大小即可得出答案.【解析】∵4<5<9,∴23,∴1―1<2,∴a =1,b =2,故选:C .8.(2022秋•杭州期中)以下几种说法:①每一个无理数都可以用数轴上的点来表示;②近似数1.70所表示的准确数x 的范围是1.695≤x <1.705;③在数轴上表示的数在原点的左边;④立方根是它本身的数是0和1;其中正确的有( )A.1个B.2个C.3个D.4个【分析】①数轴上的点与实数是一一对应关系,每一个无理数都可以用数轴上的点来表示;②根据四舍五入来判定x的取值范围;③在数轴上表示的数可以在原点的左边右边或原点上;④根据立方根的定义解答.【解析】①数轴上的点与实数是一一对应关系,每一个无理数都可以用数轴上的点来表示;②根据四舍五入来判定近似数1.70所表示的准确数x的范围是1.695≤x<1.705;③在数轴上表示的数可以在原点的左边右边或原点上;④立方根是它本身的数为0,1,﹣1.故选B.9.(2020秋•拱墅区期末)一个物体自由下落时,它所经过的距离h(米)和时间t(秒)之间的关系我们可以用t假设物体从超过10米的高度自由下落,小明要计算这个物体每经过1米所需要的时间,则经过第5个1米时所需要的时间最接近( )A.1秒B.0.4秒C.0.2秒D.0.1秒【分析】用经过5米所用的时间减去经过4米所用的时间计算即可.【解析】当h=5时,t=1,当h=4时,t=≈0.9,∴1﹣0.9=0.1(秒),∴经过第5个1米时所需要的时间最接近0.1秒,故选:D.10.(2021秋•秀洲区校级期中)对于实数a、b,定义min{a,b}的含义为:当a<b时,min{a,b}=a;当a>b时,min{a,b}=b,例如:min{1,﹣2}=﹣2.已知min a}=a,min b}=a 和b为两个连续正整数,则2a﹣b的值为( )A.1B.2C.3D.4【分析】根据a,b的范围,然后再代入求出2a﹣b的值即可.【解析】∵min a}=a,min b}=∴a b∵a,b是两个连续的正整数.∴a=5,b=6.∴2a﹣b=2×5﹣6=4.故选:D.二.填空题(共6小题)11.(2022•宁波)请写出一个大于2【分析】首先2【解析】大于2的无理数有:须使被开方数大于4.12.(2021秋•余杭区期中)若(x﹣1)3=8,则x= 3 .【分析】直接利用立方根的定义得出x的值,进而得出答案.【解析】∵(x﹣1)3=8,∴x﹣1=2,解得:x=3.故答案为:3.13.(2022秋•萧山区校级期中)已知6―a,小数部分b,则a= 2 ,2a﹣b【分析】先估算6―a和小数部分b,最后代入计算2a﹣b.34,∴﹣4<――3,∴6﹣4<6―6﹣3,即2<63.∴a=2,b=62=4―∴2a﹣b=2×2﹣(4=4﹣4+=故答案为:214.(2016秋•嵊州市校级期中)有一个数值转换器,流程如下:当输入的x值为64时,输出的y【分析】依据运算程序进行计算即可.8,是有理数,8的立方根是2,是有理数,215.(2017春•梁子湖区期中)对于任何实数a ,可用[a ]表示不超过a 的最大整数,如[4]=4,=1.现对72进行如下操作:72第一次→=8第二次→=2第三次→=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是 255 .【分析】根据规律可知,最后的取整是1,得出前面的一个数字最大是3,再向前一步推取整是3的最大数为15,继续会得到取整是15的最大数为255;反之验证得出答案即可.【解析】∵=1,=3,=15;所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为:255.16.(2020秋•柯桥区期中)如图,Rt △OAB 的直角边OA =2,AB =1,OA 在数轴上,在OB 上截取BC =BA ,以原点O 为圆心,OC 为半径画弧,交数轴于点P ,则OP 的中点D 对应的实数是 2 .【分析】根据勾股定理求出OB ,进而求出OC ,最后求出OD 即可.【解析】∵Rt △OAB 的直角边OA =2,AB =1,∴OB =又∵BA =BC ,∴OC =OB ﹣BC =1=OP ,∵点D 是OP 的中点,∴OD =12OP =即点D 所表示的数为:2,故答案为:2.三.解答题(共7小题)17.(2022秋•上城区校级期中)计算:(1)(―79+56―118)×(﹣18);(2)﹣24―17×[2﹣(﹣3)2];(3)8.4×103﹣4.8×104.【分析】(1)根据乘法分配律计算即可;(2)先计算乘方,再计算乘法,最后计算减法,有括号的先计算括号内的;(3)根据科学记数法的表示方法计算即可.【解析】(1)(―79+56―118)×(﹣18)=79×18―56×18+118×18=14﹣15+1=0;(2)﹣24―17×[2﹣(﹣3)2]=―16―17×(2―9)=―16―17×(―7)=﹣16+1=﹣15;(3)8.4×103﹣4.8×104.=8400﹣48000=﹣39600.18.(2021•金华)计算:(﹣1)2021+―4sin45°+|﹣2|.【分析】先分别计算有理数的乘方,二次根式的化简,代入特殊角三角函数值,绝对值的化简,然后再计算.【解析】原式=﹣1+4×+2=﹣2=1.19.(2022•杭州)计算:(﹣6)×(23―■)﹣23.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是12,请计算(﹣6)×(23―12)﹣23.(2)如果计算结果等于6,求被污染的数字.【分析】(1)将被污染的数字12代入原式,根据有理数的混合运算即可得出答案;(2)设被污染的数字为x,根据计算结果等于6列出方程,解方程即可得出答案.【解析】(1)(﹣6)×(23―12)﹣23=(﹣6)×16―8=﹣1﹣8=﹣9;(2)设被污染的数字为x,根据题意得:(﹣6)×(23―x)﹣23=6,解得:x=3,答:被污染的数字是3.20.(2020•拱墅区模拟)计算:已知|x|=23,|y|=12,且x<y<0,求6÷(x﹣y)的值.【分析】直接利用绝对值的性质结合有理数混合运算法则计算得出答案.【解析】∵|x|=23,|y|=12,且x<y<0,∴x=―23,y=―12,∴6÷(x﹣y)=6÷(―23+12)=﹣36.21.(2020•西湖区二模)(1)若a=cos45°,b=(π+1)0,c=d=(―12)﹣1,化简得a= 2 ,b= 1 ,c= 12 ,d= ﹣2 ;(2)在(1)的条件下,试计算a―cd.【分析】(1)根据cos45°=a0=1(a≠0),负整数指数幂:a﹣p=1a p(a≠0,p为正整数),算术平方根分别计算即可;(2)把(1)中的数据代入进行计算即可.【解析】(1)a=cos45°b=(π+1)0=1,c=12,d=(―12)﹣1=﹣2,故答案为:2;1;12;﹣2;(2)a―cd―(﹣1)=2+1=3.22.(2021•宁波模拟)规定一种新运算a※b=a2﹣2b.(1)求(﹣1)※2的值;(2)这种新运算满足交换律吗?若不满足请举反例,若满足请说明理由.【分析】(1)把a=(﹣1),b=2,代入所给运算中计算就可以了;(2)不满足,举出反例,例如:1※2≠2※1等.【解析】(1)(﹣1)※2=(﹣1)2﹣2×2=1﹣4=﹣3;(2)不满足.例如:∵1※2=﹣3,2※1=2.∴1※2≠2※1.23.(2022秋•温州期中)操作探究:已知在纸面上有一数轴(如图所示),(1)折叠纸片,使表示1的点与表示﹣1的点重合,则表示﹣2的点与表示 2 的点重合;(2)折叠纸片,使表示﹣1的点与表示3的点重合,回答以下问题:①表示5的点与表示 ﹣3 的点重合;②若数轴上A、B两点之间的距离为13(A在B的左侧),且A、B两点经折叠后重合,此时点A表示的数是 ―112 ;点B表示的数是 152 .③(3)已知数轴上P,Q两点表示的数分别为﹣1和3,有一只电子小蜗牛从P点出发以每秒2个单位的速度向右移动,运动多少秒时,它到点P的距离是到点Q的距离的2倍?【分析】(1)根据题意确定纸片是沿着0点进行折叠的,再求解即可;(2)①由题意确定纸片是沿着表示1的点进行折叠的,再求解即可;②设点A表示的数是x,则点B表示的数是x+13,根据折叠的性质可得x x132=1,求出x的值再求解即可;③由①2―(3)设运动时间为t 秒,小电子小蜗牛运动的点表示的数为x ,则x =﹣1+2t ,根据题意列出方程|x +1|=2|x ﹣2|,求出x 后再求t 的值即可求解.【解析】(1)∵表示1的点与表示﹣1的点重合,∴纸片是沿着0点进行折叠的,∴表示﹣2的点与表示2的点重合,故答案为:2;(2)①∵表示﹣1的点与表示3的点重合,又∵132=1,∴纸片是沿着表示1的点进行折叠的,∴表示5的点与表示﹣3的点重合,故答案为:﹣3;②设点A 表示的数是x ,则点B 表示的数是x +13,∵A 、B 两点经折叠后重合,∴x x 132=1,解得x =―112,∴―112+13=152,∴点A 表示的数是―112,点B 表示的数是152,故答案为:―112,152;③∵纸片是沿着表示1的点进行折叠的,2―故答案为:2(3)设运动时间为t 秒,小电子小蜗牛运动的点表示的数为x ,∴x =﹣1+2t ,∵它到点P 的距离是到点Q 的距离的2倍,∴|x +1|=2|x ﹣2|,解得x=1或x=5,当x=1时,2t﹣1=1,解得t=1,当x=5时,2t﹣1=5,解得t=3,∴运动1秒或3秒时,它到点P的距离是到点Q的距离的2倍.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战2021年中考数学总复习一轮讲练测
第一单元数与式
第1讲实数的有关概念和计算
1、了解:平(立)方根、算术平方根的概念;无理数、实数的概念;近似数、有效数字的概念;二次根式的概念及其加、减、乘、除运算法则.
2、理解:有理数的意义;借助数轴理解相反数和绝对值的意义;实数与数轴上的点一一对应;有理数的运算律.
3、会:比较有理数大小;求有理数的相反数;会求有理数的绝对值;用根号表示数的平(立)方根;求平(立)方根;进行实数的简单四则运算.
4、掌握:有理数的加、减、乘、除、乘方;简单的混合运算.
5、能:灵活处理较大数字的信息;能用有理数估计无理数的大致范围.
1.(2020•顺义区二模)5-的倒数是( ) A .5-
B .1
5
C .15
-
D .5
2.(2020•东城区一模)2019年上半年北京市实现地区生产总值15212.5亿元,同比增长6.3%.总体来看,经济保持平稳运行,高质量发展.将数据15212.5用科学记数法表示应为( ) A .51.5212510⨯
B .41.5212510⨯
C .50.15212510⨯
D .60.15212510⨯
3.(2020•石景山区一模)实数a ,b ,c 在数轴上的对应点的位置如图所示,则不正确的结论是( )
A .||3a >
B .0b c -<
C .0ab <
D .a c >-
4.(2020•北京一模)在数轴上,点A ,B 分别表示实数a ,b ,将点A 向左平移1个单位长度得到点C ,若点C ,B 关于原点O 对称,则下列结论正确的是( ) A .1a b +=
B .1a b +=-
C .1a b -=
D .1a b -=-
5.(2020春•西城区校级期中)如图,3,11在数轴上的对应点分别为C ,B ,点C 是AB 的中点,则点A 表示的数是( )
A .11-
B .311
C 113
D .611
6.(2020秋•通州区期末)下列说法正确的是( ) A .16的算术平方根是4±
B .任何数都有两个平方根
C .因为3的平方是9,所以9的平方根是3
D .1-是1的平方根
7.若21(2)0x y
-++=,则2021()x y +等于( ) A .1-
B .1
C .20203
D .20203-
8.(2020秋•海淀区校级月考)写出一个比3大且比13小的整数是 . 9.(2020•平谷区一模)计算:0113tan30(4)()|32|2π-︒--++-.
10.(2020•北京一模)计算:11
4sin30|2|8()2
-︒+---.
1.实数的有关概念
(1) 和 统称为有理数. (2) 和 统称实数.
(3)数轴的三要素为 、 和 . 数轴上的点与 一一对应. (4)实数a 的相反数为 .若a ,b 互为相反数,则b a += . (5)非零实数a 的倒数为 . 若a ,b 互为倒数,则ab = .
(6)绝对值⎪⎪⎩

⎪⎨
⎧<=>=)
0()0()
0(a a a a .若=a a ,则a 为 ;若a a =-,则a 为 . (7)科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数. 2.实数的计算
(1)n
a 表示n 个a 相乘,n
a 称为幂,其中a 叫做 ,n 叫做 .
=0a (其中a 0);0的任何非零次幂都等于0;
=-p a (其中a 0,p 为整数)
(2)平方根:如果一个数x 的平方等于a ,即2x a =,那么这个数x 叫做a 的平方根或二次方根,记为a ±.
一个正数有 平方根,它们互为 ;负数没有平方根;0的平方根是 . (3)算术平方根:如果一个正数x 的平方等于a ,则这个正数x 为a 的算术平方根,记为a ±.
一个正数有 算术平方根,0的算术平方根是 .
(4)立方根:一个数x 的立方等于a ,那么这个数x 叫做a 的立方根或三次方根,记为3a .
一个正数有一个正的立方根;一个负数有一个 的立方根;0的立方根是 . 3. 实数运算顺序及运算律
(1)先算 ,再算 ,最后算 ;如果有括号,先算 里面的,同一级运算按照从 到 的顺序依次进行. (2)运算律:交换律、结合律、乘法分配律. 4. 实数大小的比较
(1) 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大.
(2)正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的.
考点一 实数分类
例1.(2020秋•顺义区期末)实数2-,0.3,22
7
,2,π-中,无理数的个数是( ) A .2 B .3 C .4 D .5
【变式训练】
1.(2020春•东城区校级期末)下列各数中属于无理数的是( ) A .0.333 B .
22
7
C .5
D .327
考点二 实数与数轴
例2.(2020•海淀区一模)若实数m ,n ,p ,q 在数轴上的对应点的位置如图所示,且n 与q 互为相反数,则绝对值最大的数对应的点是( )
A .点M
B .点N
C .点P
D .点Q
【变式训练】
1.(2020•昌平区二模)实数a ,b ,c ,d 在数轴上对应的点的位置如图所示,下列结论正确的是( )
A .||||a b <
B .0ad >
C .0a c +>
D .0d a ->
2.(2020•丰台区二模)实数a ,b ,c 在数轴上的对应点的位置如图所示,则下列结论正确的是( )
A .a b c >>
B .||||b a >
C .0b c +<
D .0ab >
3.(2020•平谷区一模)若已知实数a ,b 满足0ab <,且0a b +>,则a ,b 在数轴上的位置符合题意的是
( ) A . B . C .
D .
4.(2020•西城区一模)在数轴上,点A ,B 表示的数互为相反数,若点A 在点B 的左侧,且22AB =则点A ,点B 表示的数分别是( ) A .2-2 B 22-C .0,22D .22-22
考点三 科学记数法
例3.(2020•海淀区一模)北京故宫有着近六百年的历史,是最受中外游客喜爱的景点之一,其年接待量在2019年首次突破19000000人次大关.将19000000用科学记数法可表示为( ) A .80.1910⨯ B .70.1910⨯ C .71.910⨯ D .61910⨯
【变式训练】
1.电影《流浪地球》中,人类计划带着地球一起逃到距地球4光年的半人马星座比邻星.已知光年是天文学中的距离单位,1光年大约是95000亿千米,则4光年约为( ) A .49.510⨯亿千米 B .49510⨯亿千米 C .53.810⨯亿千米
D .43.810⨯亿千米
2.(2020•丰台区二模)熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为( ) A .30.15610-⨯
B .31.5610-⨯
C .41.5610-⨯
D .415.610-⨯
3.(2020•丰台区一模)据报道,位于丰台区的北京排水集团槐房再生水厂,是亚洲规模最大的一座全地下再生水厂,日处理污水能力600000立方米,服务面积137平方公里.将600000用科学记数法表示为( ) A .50.610⨯ B .60.610⨯
C .5610⨯
D .6610⨯
考点四 实数的非负性
例4.(2020秋•石景山区期末)如果2|3|(2)0m n -++=,那么mn 的值为( ) A .6- B .6
C .1
D .9
【变式训练】
1.如果2(21)|5|0x y x y -+++-=,那么y x = .
2.(2020秋•通州区期末)已知23(2)0a b ++-=,那么a b +的值为 .
考点五 实数的估算
例5.(2020秋•顺义区期末)如果101m =-,那么m 的取值范围是( ) A .01m << B .12m <<
C .23m <<
D .34m <<
【变式训练】
1.(2020春•丰台区期末)如图,数轴上与40对应的点是( )
A .点A
B .点B
C .点C
D .点D
273a ,小数部分是b ,则2a b -= .
考点六 实数比较大小
例6.(202010小的整数: .
【变式训练】
1.(2020秋•延庆区期中)比较大小:
(1)
(2.
考点七 实数中的规律
例7.(2020秋•通州区期末)给出表格:
,0.15a b =,则a b += .(用含的代数式表示) 【变式训练】
1.(2020 1.2639≈ 2.7629≈ .
考点八 实数的运算
例8.(2020•海淀区一模)计算:0(2)2sin 30|-+︒+.
【变式训练】
1.计算1)-的结果为 .
2.(2020•石景山区一模)计算:101()(2020)1|3tan305
π---+-︒.
3.(2020•海淀区二模)计算:101
()(2020)1|2cos302
π-+-+-︒.。

相关文档
最新文档