七年级数学下第四章测试卷

合集下载

2020春北师大版七年级数学下第四章《三角形》单元测试卷

2020春北师大版七年级数学下第四章《三角形》单元测试卷

即当点
Q
每秒运动������������
������
cm 时,△BEP≌△CQP.
返回
谢谢观看
返回
数学 25.如图,在四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘 米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒 的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点 运动. (1)若点Q的运动速度与点P的运动速度相等, 经过1秒后, △BPE与△CQP是否全等?请说明理由; (2)若点Q与点P的运动速度不同,当点Q的运动速度为多少时, 能够使△BEP与△CQP全等?
( C) A.锐角三角形 B.钝角三角形 C.直角三角形 D.任意三角形
返回
数学
3.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为 C,D,E,则下列
说法不正确的是( C ) A.AC 是△ABC 的高
B.DE 是△BCD 的高
C.DE 是△ABE 的高
D.AD 是△ACD 的高
返回
数学
4.如图,点 D,E 分别在线段 AB,AC 上,CD 与 BE 相交于 O 点,
A.2 cm2
B.1 cm2
C.0.5 cm2 D.0.25 cm2
返回
数学 10.一个正方形和两个等边三角形的位置如图,若∠3=50°,则 ∠1+∠2=( B )
A.90°
B填空题(本大题共 7 小题,每小题 4 分,共 28 分) 11.如图,把手机放在一个支架上面,就可以非常方便地使用, 这是因为手机支架利用了三角形的 稳定 性.
已知 AB=AC,现添加以下的哪个条件仍不能判定△ABE≌
△ACD 的是( D )
A.∠B=∠C

2020-2021学年北师大版数学七年级下册 第四章 三角形 单元检测卷及答案

2020-2021学年北师大版数学七年级下册 第四章 三角形 单元检测卷及答案

第四章三角形单元综合测试一.选择题1.已知三条线段长分别为2cm、4cm、acm,若这三条线段首尾顺次联结能围成一个三角形,那么a的取值可以是()A.1cm B.2cm C.4cm D.7cm2.全等形是指两个图形()A.大小相等B.完全重合C.形状相同D.以上都不对3.下列各选项中的两个图形属于全等形的是()A.B.C.D.4.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC =75°,∠ACB=35°,然后在M处立了标杆,使∠CBM=75°,∠MCB=35°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA5.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为()A.45°B.60°C.90°D.100°6.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D7.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=DC,∠A=∠D B.BC=EC,AC=DCC.∠B=∠E,∠BCE=∠ACD D.BC=EC,∠B=∠E8.下列判断正确的个数是()(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等;(4)全等三角形对应边相等.A.1个B.2个C.3个D.4个9.如图,已知△ABC的六个元素,则下面甲、乙、丙、丁四个三角形中一定和△ABC全等的图形是()A.甲、丁B.甲、丙C.乙、丙D.乙10.如图,AB=AC,角平分线BF、CE交于点O,AO与BC交于点D,则图中共有()对全等三角形.A.8B.7C.6D.5二.填空题11.已知三角形的三边长为3、7、a,则a的取值范围是.12.如图,测量三角形中线段AB的长度为cm;判断大小关系:AB+AC BC(填“>”,“=”或“<”).13.如图,把两根钢条AB,CD的中点连在一起做成卡钳,可测量工件内槽的宽,已知AC的长度是6cm,则工件内槽的宽BD是cm.14.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.15.如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是.16.下列说法正确的是(填写语句的序号):①形状相同的图形是全等图形;②边长相等的等边三角形是全等图形;③面积相等的三角形是全等三角形;④平移前后的两个图形一定是全等形;⑤全等图形的对应边和对应角都相等.17.如图,∠A=∠B=90°,AB=100,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为2:3,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为.18.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3=.19.如图,已知线段AB与CD相交于点E,AC=AD,CE=ED,则图中全等三角形有对.20.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE交于点F,若BF =AC,CD=3,BD=8,则线段AF的长度为.三.解答题21.在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.22.下面图形中有哪些是全等图形?23.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.24.如图,在五边形ABCDE和五边形A′B′C′D′E′中,如果AB=A′B′,BC=B′C′,CD=C′D′,DE=D′E′,EA=E′A′.请添加尽可能少的条件,使它们全等(写出添加的条件,不需要说明理由)25.阅读下题及其证明过程:已知:如图,D是△ABC中BC边上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.证明:在△AEB和△AEC中,.∴△AEB≌△AEC(第一步).∴∠BAE=∠CAE(第二步).问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.26.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,E是对角线AC上一点,连接BE,DE.(1)求证:BE=DE.(2)当BE∥CD,∠BAD=78°时,求∠BED的度数.27.已知:在△ABC和△DBE中,AB=DB,BC=BE,其中∠ABD=∠CBE.(1)如图1,求证:AC=DE;(2)如图2,AB=BC,AC分别交DE,BD于点F,G,BC交DE于点H,在不添加任何辅助线的情况下,请直接写出图2中的四对全等三角形.参考答案一.选择题1.解:依题意有4﹣2<a<4+2,解得:2<a<6.只有选项C在范围内.故选:C.2.解:能够完全重合的两个图形叫做全等形,故选:B.3.解:A、两个图形属于全等形,故此选项符合题意;B、两个图形不属于全等形,故此选项不符合题意;C、两个图形不属于全等形,故此选项不符合题意;D、两个图形不属于全等形,故此选项不符合题意;故选:A.4.解:在△ABC和△MBC中,∴△MBC≌△ABC(ASA),故选:D.5.解:∵在△ABC和△AED中,∴△ABC≌△AED(SAS),∴∠1=∠AED,∵∠AED+∠2=90°,∴∠1+∠2=90°,故选:C.6.解:∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D∴第三个选项∠ACB=∠ECD是错的.故选:C.7.解:A.AB=DE,BC=DC,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEC,故本选项符合题意;B.AC=DC,AB=DE,BC=EC,符合全等三角形的判定定理SSS,能推出△ABC≌△DEC,故本选项不符合题意;C.∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,即∠ACB=∠DCE,∵∠B=∠E,AB=DE,∴△ABC≌△DEC(AAS),故本选项不符合题意;D.AB=DE,∠B=∠E,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故本选项不符合题意;故选:A.8.解:(1)能够完全重合的两个图形全等,正确;(2)两边和一角对应相等的两个三角形全等,必须是SAS才可以得出全等,错误;(3)根据“ASA”或“AAS”定理,有两角和一边对应相等的两个三角形,比如一边是两角的夹边和一角对边相等,则这两个三角形就不全等,故原说法错误;(4)全等三角形对应边相等,正确.所以有2个判断正确.故选:B.9.解:A、△ABC和甲两个三角形根据SAS可以判定全等,△ABC与丁三角形根据ASA可以判定全等,故本选项正确;B、△ABC与丙两个三角形的对应角不一定相等,无法判定它们全等,故本选项错误;C、△ABC与乙、丙都无法判定全等,故本选项错误;D、△ABC与乙无法判定全等,故本选项错误;故选:A.10.解:∵AB=AC,角平分线BF、CE交于点O,∴AO平分∠BAC,点D为BC的中点,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS);同理可证:△OBD≌△OCD,△OBE≌△OCE,△OEA≌△OF A,△OBA≌△OCA,△BEC ≌△CFB,△ABF≌△ACF,由上可得,图中共有7对全等的三角形,故选:B.二.填空题11.解:根据三角形的三边关系,得7﹣3<a<7+3,即:4<a<10.故答案为:4<a<10.12.解:测量可知,三角形中线段AB的长度为2cm;判断大小关系:AB+AC>BC.故答案为:2,>.13.解:∵把两根钢条AB,CD的中点连在一起做成卡钳,∴AO=BO,CO=DO,在△BOD和△AOC中,∴△BOD≌△AOC(SAS),∴BD=AC=6cm,故答案为:6.14.解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∴若添加∠AFB=∠DEC,可以利用“SAS”证明△ABF≌△DCE,若添加AB=DC,可以利用“SSS”证明△ABF≌△DCE,所以,添加的条件为∠AFB=∠DEC或AB=DC.故答案为:∠AFB=∠DEC或AB=DC.15.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣∠B﹣∠C﹣∠D=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.16.解:①形状相同,大小相等的图形是全等图形,故本小题错误;②边长相等的等边三角形是全等图形,正确;③面积相等的三角形是全等三角形,错误;④平移前后的两个图形一定是全等形,正确;⑤全等图形的对应边和对应角都相等,正确.所以,正确的说法有②④⑤.故答案为:②④⑤.17.解:设BE=2t,则BF=3t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴3t=100﹣2t,解得:t=20,∴AG=BE=2t=2×20=40;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴2t=100﹣2t,解得:t=25,∴AG=BF=3t=3×25=75,综上所述,AG=40或AG=75.故答案为:40或75.18.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=28°,∴∠3=∠1+∠ABD=28°+30°=58°,故答案为:58°.19.解:在△ACE和△ADE中,,∴△ACE≌△ADE(SSS),∴∠CAE=∠DAE,在△CAB和△DAB中,∴△CAB≌△DAB(SAS),∴BC=BD,在△BCE和△BDE中,∴△BCE≌△BDE(SSS).∴图中全等三角形有3对.故答案为:3.20.解:∵AD是BC边上的高,BE是AC边上的高,∴∠ADC=∠BDF=∠AEB=90°,∴∠DAC+∠C=90°,∠C+∠DBF=90°,∴∠DAC=∠DBF,在△ADC和△BDF中,,∴△ADC≌△BDF(AAS),∴CD=FD=3,AD=BD=8,∵CD=3,BD=8,∴AD=8,DF=3,∴AF=AD﹣FD=8﹣3=5,故答案为:5.三.解答题21.解:∵在△ABC中,AB=3,AC=7,∴第三边BC的取值范围是:4<BC<10,∴符合条件的偶数是6或8,∴当BC=6时,△ABC的周长为:3+6+7=16;当BC=8时,△ABC的周长为:3+7+8=18.∴△ABC的周长为16或18.22.解:如图所示:(1)和(8)是全等图形.23.(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6cm,BE=7×2=14cm,∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.24.解:如图:,连接AC,AD,A′C′,A′D′,AC=A′C′,AD=A′D′,五边形ABCDE≌五边形AB′C′D′E′.25.解:上面证明过程不正确;错在第一步.正确过程如下:∵BE=CE,∴∠EBC=∠ECB,又∵∠ABE=∠ACE,∴∠ABC=∠ACB,∴AB=AC,在△AEB和△AEC中,,∴△AEB≌△AEC(SSS),∴∠BAE=∠CAE.26.(1)证明:∵AC平分∠BAD,∴∠BAE=∠DAE,在△BAE和△DAE中,,∴△BAE≌△DAE(SAS),∴BE=DE;(2)解:由(1)得:△BAE≌△DAE,∴∠BEA=∠DEA,∴∠BEC=∠DEC,∵AC平分∠BAD,∠BAD=78°,∴∠BAC=∠DAC=∠BAD=×78°=39°,∵AC=AD,∴∠ACD=∠ADC=×(180°﹣39°)=70.5°,∵BE∥CD,∴∠BEC=∠ACD=70.5°,∴∠BEC=∠DEC=70.5°,∴∠BED=2×70.5°=141°.27.证明:(1)∵∠ABD=∠CBE,∴∠ABD+∠DBC=∠CBE+∠DBC,即∠ABC=∠DBE,在△ABC与△DBE中,,∴△ABC≌△DBE(SAS),∴AC=DE;(2)由(1)得△ABC≌△DBE,∴∠A=∠D,∠C=∠E,AB=DB,BC=BE,∴AB=BE,∵AB=BC,∴∠A=∠C,∴∠A=∠E,在△ABG与△EBH中,,∴△ABG≌△EBH(ASA),∴BG=BH,在△DBH与△CBG中,,∴△DBH≌△CBG(SAS),∴∠D=∠C,∵DB=CB,BG=BH,∴DG=CF,在△DFG与△CFH中,,∴△DFG≌△CFH(AAS).1、三人行,必有我师。

【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)

【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)

【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P68习题T1变式】地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是( )A.地表B.岩层的温度C.所处深度D.时间2.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为( )A.1 B.3 C.-1 D.-33.如果圆珠笔有12支,总售价为18元,用y(元)表示圆珠笔的售价,x(支)表示圆珠笔的数量,那么y与x之间的关系应该是( )A.y=12x B.y=18x C.y=23x D.y=32x4.【教材P78复习题T6变式】小明从家出发,外出散步,到一个公共阅报栏前看了一会儿报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(m)与散步所用时间t(min)之间的关系.根据图象,下列信息错误..的是( )A.小明看报用时8 minB.公共阅报栏距小明家200 mC.小明离家最远的距离为400 mD.小明从出发到回家共用时16 min5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b(cm)与下降高度d(cm)的关系,下面能表示这种关系的式子是( )A.b=d2B.b=2d C.b=d2D.b=d+256.【2022·合肥一六八中学模拟】一个长方形的周长为24 cm,其中一边长为x cm,面积为y cm2,则y与x的关系式可写为( )A.y=x2B.y=(12-x)2 C.y=x(12-x) D.y=2(12-x) 7.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是( )A.861B.863C.865D.8678.【教材P74随堂练习T2改编】【2022·雅安】一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是( )9.如图是甲、乙两车在某时间段速度随时间变化的图象,下列结论错误..的是( )A.乙前4 s行驶的路程为48 mB.在0 s到8 s内甲的速度每秒增加4 mC.两车到第3 s时行驶的路程相等D.在4 s到8 s内甲的速度都大于乙的速度10.【2022·河北】某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),下列各图中正确的是( )二、填空题(每题3分,共24分)11.已知圆的半径为r,则圆的面积S与半径r之间有如下关系:S=πr2.在这个关系中,常量是__________,变量是__________.12.小虎拿6元钱去邮局买面值为0.8元的邮票,买邮票后所剩的钱数y(元)与买邮票的枚数x(枚)的关系式为________________,最多可以买________枚.13.【数学运算】根据如图所示的程序,当输入x=3时,输出的结果y是________.(第13题) (第14题) (第15题) 14.假定甲、乙两人在一次赛跑中,路程s(m)与时间t(s)的关系如图所示,则甲、乙两人中先到达终点的是________,乙在这次赛跑中的速度为__________.15.如图,长方形ABCD的四个顶点在互相平行的两条直线上,AD=10 cm.当点B,C在平行线上运动时,长方形的面积发生了变化.(1)在这个变化过程中,自变量是__________________,因变量是__________________________;(2)如果长方形的边AB长为x(cm),那么长方形的面积y(cm2)与x(cm)的关系式为____________.16.声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=35x+331.(1)当气温为15 ℃时,声音在空气中传播的速度为__________;(2)当气温为22 ℃时,某人看到烟花燃放5 s后才听到响声,则此人与燃放的烟花所在地相距__________.17.某市自来水收费实行阶梯水价,收费标准如下表所示.月用水量不超过12 t的部分超过12 t不超过18 t的部分超过18 t的部分收费标准/(元/t)2.00 2.503.00 某户5月份交水费45元,则所用水量为__________.18.火车匀速通过隧道时,火车在隧道内的长度y(m)与火车行驶时间x(s)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120 m;②火车的速度为30 m/s;③火车整体都在隧道内的时间为25 s;④隧道的长度为750 m.其中,正确的结论是__________(把你认为正确结论的序号都填上).三、解答题(19,20,23题每题14分,其余每题12分,共66分)19.【教材P63随堂练习T2变式】下表是橘子的销售额随橘子卖出质量的变化表:质量/kg 1 2 3 4 5 6 7 8 9 …销售额/元 2 4 6 8 10 12 14 16 18 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5 kg时,销售额是________元.(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为____________.(4)当橘子的销售额是100元时,共卖出多少千克橘子?。

北师大版七年级数学下册第四章三角形同步测试题

北师大版七年级数学下册第四章三角形同步测试题

北师大版七年级数学测试卷(考试题)第4章三角形一、选择题1.下列说法正确的是()A. 全等三角形是指形状相同的三角形B. 全等三角形是指面积相等的两个三角形C. 全等三角形的周长和面积相等D. 所有等边三角形是全等三角形2.已知某三角形的两边长是6和4,则此三角形的第三边长的取值可以是()A. 2B. 9C. 10D. 113.下列各组图形中,一定是全等图形的是()A. 两个周长相等的等腰三角形B. 两个面积相等的长方形C. 两个斜边相等的直角三角形D. 两个周长相等的圆4.下列各组长度的三条线段能组成三角形的是()A. 1cm,2cm,3cmB. 1cm,1cm,2cmC. 1cm,2cm,2cmD. 1cm,3cm,5cm5.画△ABC的边AB上的高,下列画法中,正确的是()A. B.C. D.6.有长为2cm、3cm、4cm、6cm的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是A. 1个B. 2个C. 3个D. 4个7.在如图所示的长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C的个数是()A. 2B. 3C. 4D. 58.如图所示,∠1+∠2+∠3+∠4的度数为()A. 100°B. 180°C. 360°D. 无法确定9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是()A. ∠A=∠1+∠2B. 2∠A=∠1+∠2C. 3∠A=2∠1+∠2D. 3∠A=2(∠1+∠2)10.将一副直角三角尺按如图所示摆放,则图中锐角∠α的度数是()A. 45°B. 60°C. 70°D. 75°11.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A. B. C. D.12.我国的纸伞工艺十分巧妙。

北师大版七年级数学下册 第四章《三角形》单元测试卷(含答案)

北师大版七年级数学下册  第四章《三角形》单元测试卷(含答案)

高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B= 1 ∠C, 2
那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是
直角三角形;⑥在 ABC 中,若∠A+∠B=∠C,则此三角形是直角三角形。
A、3 个
B、4 个
C、5 个
D、6 个
7.在 ABC 中, B, C 的平分线相交于点 P,设 A = x, 用 x 的代数式表示 BPC 的
B
21.(本题 6 分)有人说,自己的步子大,一步能走三米多,你相信吗?
用你学过的数学知识说明理由。
C D
第 20 题图
22.(本题 6 分)小颖要制作一个三角形木架,现有两根长度为 8m 和 5m 的木棒。如果要 求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?
2/5
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
度。
14.如图,∠1=_____.
A
A
C
B
E
D 第 11 题图 第 12 题图
D
B
C
第 13 题图
80
1
140
第 14 题图
第 16 题图
15.若三角形三个内角度数的比为 2:3:4,则相应的外角比是
.
16.如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB,CD⊥AB 于 D,DF⊥CE,
2
2
2
2
∠CDE=∠AED-∠C=(90°- 1 x)-[90°- 1 (40°+x)]=20°.
2
2
5/5
度数,正确的是( )
(A) 90 + 1 x (B) 90 − 1 x

人教版七年级数学下学期第四章测试题

人教版七年级数学下学期第四章测试题

人教版七年级数学下学期第四章测试题班级 姓名 学号一、填空题1、游戏的公平性是指双方获胜的概率 。

2、一般地,就事件发生的可能性而言,可将事件分为 、 和 。

3、有一组卡片,制作的颜色,大小相同,分别标有0~10这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任取一组,则: (1)P (抽到两位数)= ; (2)P (抽到一位数)= ;(3)P (抽到的数是2的倍数)= ; (4)P (抽到的数大于10)= ;4、学校升旗要求学生穿校服,但有一些粗心大意的学生忘记了,若500名学生中没有穿校服的学生为25名,则任意叫出一名学生,没穿校服的概率为 ;穿校服的概率为 。

5、轰炸机练习空中投靶,靶子是在空地上的一个巨型正方形铁板,板上画有大小相同的36个小正方形,其中6个红色,30个黑色,那么投中红色小正方形的概率为 。

6、某中学学生情况如右表:若任意抽取一名该校的学生,是高中生的概率是 ;是女生的概率是 。

7、一只口袋中有4只红球和5个白球,从袋中任摸出一个球,则P (抽到红球) P (抽到白球)(填“>”或“<”)。

8、小明和爸爸进行射击比赛,他们每人都射击10次。

小明击中靶心的概率为0.6,则他击不中靶心的次数为 ;爸爸击中靶心8次,则他击不中靶心的概率为 。

二、选择题1、如图所示的圆盘中三个扇形大小相同,则指针落在黄区域的概率是( )A 、21 B 、31 C 、41 D 、61 2、某电视综艺节目接到热线电话3000个。

现要从中抽取“幸运观众”10名,张华同学打通了一次热线电话,那么他成为“幸运观众”的概率为( ) A 、 B 、 C 、 D 、0 3、下列各事件中,发生概率为0的是( )A 、掷一枚骰子,出现6点朝上B 、太阳从东方升起C 、若干年后,地球会发生大爆炸D 、全学校共有1500人,从中任意抽出两人,他们的生日完全不同 4、转动下列各转盘,指针指向红色区域的概率最大的是( )5、小明和三名女生、四名男生一起玩丢手帕游戏,小明随意将手帕丢在一名同学的后面,那么这名同学是女生的概率为( )A 、0B 、83C 、73D 、无法确定6、一箱灯泡有24个,合格率为80%,从中任意拿一个是次品的概率为( )A 、51B 、80%C 、2420D 、1三、观察与思考3、用自己的语言解释下列问题:(1)一种彩票的中奖率为10001,你买1000张,一定中奖吗?(2)一种彩票的中奖率为五百万分之一,你买一张一定不能中奖吗?4、某广场一角如图所示,其中每一块地砖面积相同,几位小朋友在广场上喂鸽子,他们在这一角的每块方砖上都放有相同的食物,则鸽子落在中间一层的红 黄A 红 白B黄红白 C黑黄红白D白 红红 白红白概率是多少呢?四、操作与解释1、请将下列事件发生的可能性标在图中的大致位置上。

七年级第四单元数学测试卷

七年级第四单元数学测试卷

一、选择题(每题3分,共30分)1. 下列各数中,是正数的是()A. -3B. 0C. 2.5D. -0.52. 下列运算中,正确的是()A. (-2) × (-3) = 6B. (-2) × (-3) = -6C. (-2) ÷ (-3) = 6D. (-2) ÷ (-3) = -63. 如果一个数的相反数是它本身,那么这个数是()A. 0B. 1C. -1D. 任意数4. 在数轴上,表示数-2的点与表示数-6的点的距离是()A. 2B. 4C. 6D. 85. 下列各数中,有理数是()A. √9B. √-9C. πD. 0.1010010001...6. 下列各数中,无理数是()A. √16B. √-16C. πD. 2.57. 下列各数中,整数是()A. -3B. 0.5C. √2D. π8. 下列各数中,分数是()A. -2B. 1/2C. √9D. π9. 如果一个数的倒数是它本身,那么这个数是()A. 0B. 1C. -1D. 任意数10. 下列各数中,绝对值最大的是()A. -5B. -3C. 0D. 2二、填空题(每题3分,共30分)11. 数轴上表示数-3的点向右移动5个单位长度后,所表示的数是______。

12. -2的相反数是______。

13. 2的倒数是______。

14. |5|的值是______。

15. 下列各数中,最小的有理数是______。

16. 下列各数中,最大的无理数是______。

17. 下列各数中,最小的整数是______。

18. 下列各数中,最小的分数是______。

19. 下列各数中,绝对值最大的有理数是______。

20. 下列各数中,绝对值最小的无理数是______。

三、解答题(每题10分,共40分)21. 计算下列各式的值:(1) (-2) × (-3) + 4 ÷ 2(2) |5 - 3| ÷ (-2) + 1/322. 判断下列各数是有理数还是无理数,并说明理由:(1) √9(2) √-16(3) π23. 在数轴上表示下列各数,并计算它们之间的距离:(1) 表示数-2的点与表示数-5的点(2) 表示数1的点与表示数-3的点24. 解下列方程:(1) 3x - 5 = 4(2) 2(x + 3) = 5答案一、1.C 2.A 3.A 4.C 5.C 6.B 7.A 8.B 9.B 10.A二、11. -2 12. 2 13. 1/2 14. 5 15. -2 16. π 17. -3 18. 0 19. -2 20. π三、21. (1) 7 (2) 4/322. (1) 有理数,因为√9 = 3,3是整数,整数属于有理数。

北师大版七年级数学下册第四章单元测试题(含答案)

北师大版七年级数学下册第四章单元测试题(含答案)

第四章三角形一.选择题(共10小题,每小题4分,满分40分.每小题只有一个正确的选项.)1.在下列图形中,最具有稳定性的是()2.如面是个网球场地,在A、B、C、D、E、F六个图形中,其中全等图形有()A.1对B.2对C.3对D.4对第2题图第3题图第4题图3.在课堂上,老师把教学用的两块三角板叠放在一起,得到如图所示的图形,其中三角形有()A.2个B.3个C.5个D.6个4.已知:∠AOB.作法:(1)作射线O'A';(2)以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D;(3)以点O'为圆心,以OC长为半径作弧,交O’A'于C';(4)以点C'为圆心,以CD长为半径作弧,交前弧于D';(5)经过点D'作射线O'B'.∠A'D'B'就是所求的角.这个作图是() A.平分已知角 B.作一个角等于已知角C.作一个三角形等于已知三角形D.作一个角的平分线5.下列各三角形中,能正确画出AC边长的高的是()A B C D6.下列各组线段的长度,能构成三角形的是()A.3、4、8B.5、6、10C.5、6、11D.2、3、6 7.若一个三角形三个内角的度数之比为2∶3∶7,则此三角形一定是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形8.如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依此规律,则第n个图形中有全等三角形的对数是()A.n B.2n﹣1C.(1)2n nD.3(n+1)9.如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,关于∠A,∠1与∠2的数量关系,下列结论正确的是()A.∠1=∠2+∠A B.∠1=2∠A+∠2C.∠1=2∠2+2∠A D.2∠1=∠2+∠A第9题图第12题图第13题图10.若三角形的三边长分别为2,a-1,4,则化简|a-3|+|a-7|的结果为()A.2a-10B.10-2a C.4D.-4二.填空题(每空4分,共24分)11.已知在直角△ABC中,有一个锐角等于50°,则另一个锐角的度数是°.12.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有性.13.如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,若∠BOC=132°,则∠A=°.14.一个缺角的三角形ABC残片如图,若量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C=°.第14题图第15题图第16题图15.如图,AD是△ABC的角平分线,BE是△ABC的高,若∠BAC=40°,则∠AFE=_°.16.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为.三.解答题(满分86分)17.在我市19年春季田径运动会上,某校七年级(1)班的全体同学荣幸成为拉拉队队员,为了在明天的比赛中给同学加油助威,提前每人制作了一面同一规格的直角三角形彩旗.队员小明放学回家后,发现自己的彩旗破损了一角,他想用如下图所示的长方形彩纸重新制作一面彩旗.请你帮助小明,用直尺与圆规在彩纸上作出一个与破损前完全一样的三角形(保留作图痕迹,不写作法).18.如图,在△ABC 中,AE 是角平分线,AD 是高,∠BAC =80°,∠EAD =10°,求∠B 的度数.19.如图,A ,B 两个建筑物分别位于河的两岸,要测得它们之间的距离,可以从B 出发沿河岸画一条射线BF ,在BF 上截取BC =CD ,过D 作DE ∥AB ,使E ,C ,A 在同一条直线上,则DE 的长就等于A ,B 之间的距离,请你说明道理.第17题图第18题图第19题图20.已知,a ,b ,c 为△ABC 的三边长,b ,c 满足(b -2)2+|c -3|=0,且a 为方程|a -4|=2的解,求△ABC 的周长,并判断△ABC 的形状.21.如图,在△ABC 中,∠ACB =90°,AE 是角平分线,CD 是高,AE ,CD 相交于点F ,试说明:∠CEF =∠CFE .22.如图,在△ABC 和△DAE 中,D 是AC 边上一点,AD =AB ,DE ∥AB ,DE =AC .求证:AE =BC .23.如图,有一块直角三角板XYZ 放置在△ABC 中,三角板的两条直角边XY 和XZ 恰好分别经过点B 和点C .(1)若∠A =30°,则∠ABX +∠ACX 的大小是多少?(2)若改变三角板的位置,但仍使点B ,C 分别在三角板的边XY 和第21题图第22题图边XZ 上,此时∠ABX +∠ACX 的大小有变化吗?请说明你的理由.24.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,则我们把形如这样的图形称为“8字型”.(1)试说明:∠A +∠C =∠B +D ;(2)如图2,若∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,且与CD 、AB 分别相交于点M 、N .①以线段AC 为边的“8字型”有个,以点O 为交点的“8字型”有个;②若∠B =100°,∠C =120°,求∠P 的度数;③若角平分线中角的关系改为“∠CAP =∠CAB ,∠CDP =∠CDB ”,试探究∠P 与∠B 、∠C之间存在的数量关系,并证明理由.第23题图第24题图25.“如图1,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm,求BE的长.”(1)请你也独立完成这道题;(2)待同学们完成这道题后,张老师又出示了一道题:在课本原题其它条件不变的前提下,将CE所在直线旋转到△ABC的外部(如图2),请你猜想AD,DE,BE三者之间的数量关系,直接写出结论,不需说理.(3)如图3,将(1)中的条件改为:在△ABC中,AC=BC,D,C,E三点在同一条直线上,并且有∠BEC=∠ADC=∠BCA=α,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.第25题图参考答案一.选择题(共10小题,每小题4分,满分40分.每小题只有一个正确的选项,请将正确选项填入相应的表格内)题号12345678910答案D C C B D B A C B C二、填空题(共6小题,每小题4分,满分24分)11.4012.稳定13.8414.4515.7016.1.三.解答题(满分86分)17.解:18.解:∵AD是高,∴∠ADC=90°,∵AE是角平分线,∠BAC=80°,∴∠CAE=BAC=40°,∵∠EAD=10°,∴∠CAD=30°,∴∠C=60°,∴∠B=180°﹣∠BAC﹣∠C=40°.19.解:∵AB∥DE,∴∠A=∠E或∠ABC=∠EDC,在ΔABC与ΔEDC中,∴ΔABC≌ΔEDC(AAS),∴AB=ED,即测出ED的长后即可知道A,B之间的距离.20.解:∵(b-2)2+|c-3|=0,∴b-2=0,c-3=0,解得b=2,c=3,∵a为方程|a-4|=2的解,解得a=6或2,∵a,b,c为△ABC的三边长,b+c<6,∴a=6不合题意,舍去,∴a=2,∴△ABC的周长为:2+2+3=7.∵a=b,∴△ABC是等腰三角形.21.解:∵∠ACB=90°,CD是高,∴∠ACD+∠CAB=90°,∠B+∠CAB=90°,∴∠ACD=∠B.∵AE是角平分线,∴∠CAE=∠BAE.∵∠CEF=∠BAE+∠B,∠CFE=∠CAE+∠ACD,∴∠CEF=∠CFE.22.证明:∵DE∥AB,∴∠ADE=∠BAC.在△ADE和△BAC中,=BA,ADE=∠BAC,=AC,∴△ADE≌△BAC(SAS).∴AE=BC.23.解:(1)∵∠A=30°,∴∠ABC+∠ACB=180°-∠A=180°-30°=150°,∵∠YXZ=90°,∴∠XBC+∠XCB=90°,∴∠ABX+∠ACX=150°-90°=60°.(2)∠ABX+∠ACX的大小没有变化,理由:∵∠ABC+∠ACB=180°-∠A,∠YXZ=90°,∴∠XBC+∠XCB=90°,∴∠ABX+∠ACX=180°-∠A-90°=90°-∠A,即∠ABX+∠ACX的大小没有变化.24.(1)证明:在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①3;4;②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=(∠B+∠C)=(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠CAB,∠BDP=∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C﹣∠P=∠CDP﹣∠CAP=(∠CDB﹣∠CAB),∠P﹣∠B=∠BDP﹣∠BAP=(∠CDB﹣∠CAB).∴2(∠C﹣∠P)=∠P﹣∠B,∴3∠P=∠B+2∠C.25.解:(1)∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.∵AC=BC,∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD=2.5.∵DC=CE﹣DE,DE=1.7cm,∴DC=2.5﹣1.7=0.8cm,∴BE=0.8cm;(2)AD+BE=DE,证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.∵AC=BC,∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD,∴DE=CE+DE=AD+BE;(3)、(2)中的猜想还成立,证明:∵∠BCE+∠ACB+∠ACD=180°,∠DAC+∠ACB+∠ACD=180°,∠ADC=∠BCA,∴∠BCE=∠CAD,∵AC=BC,∴△CEB≌△ADC,∴BE=CD,EC=AD,∴DE=EC+CD=AD+BE.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下第四章测试卷
一、选择题(每小题3分,共30分)
1.下列各组数分别表示三根小棒的长度,将它们首尾相接后能摆成三角形的是()A.1,2,3 B.5,7,12 C.6,6,13 D.6,8,10
2.下列说法错误的是( )
A.两条直角边对应相等的两个直角三角形全等
B.斜边和一条直角边对应相等的两个直角三角形全等
C.两个锐角对应相等的两个直角三角形全等
D.一边一锐角对应相等的两个直角三角形全等
3.下列说法正确的是()
A.三角形的三条高都在三角形的内部 B.等边三角形一角平分线是一条射线C.三个角对应相等的三角形全等; D.两直角边对应相等的两直角三角形全等. 4.有两边长分别为5cm和6cm的等腰三角形,则这个等腰三角形的周长是()A.16cm B.17cm C.16cm或17cm D.11cm
5.如图1,已知AB//CD,CE、AE分别平分∠ACD、∠CAB,则∠1+∠2=
()
A.
45o B. 90o C. 60o D. 75o
6.两个三角形有以下元素对应相等,则不能确定全等的是()
A.一边两角 B.两边和其夹角 C.两边及一边所对的角 D.三条边
7.如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE全等的理由是()
A.SAS B.AAS C.SSS D.HL
8.已知ΔABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A,则此三角形()
A、一定有一个内角为45︒B.一定有一个内角为60︒
C.一定是直角三角形D.一定是钝角三角形
9.如图,能用AAS来判断△ACD≌△ABE需要添加的条件是( )
A、∠AED=∠ABC,∠C=∠B
B、∠AEB=∠ADC,CD=BE
C、AC=AB,AD=AE
D、AC=AB,∠C=∠B
10.根据下列已知条件,能判断△ABC≌△A′B′C′的是()
A.A B=A′B′BC=B′C′∠A=∠A′
B.∠A=∠A′∠C=∠C′AC=B′C′
C.∠A=∠A′∠B=∠B′∠C=∠C′
D.A B=A′B′BC=B′C′△ABC的周长等于△A′B′C′的周长
二、填空题(每小题4分,共30分)
11.如右图,为了使一扇旧木门不变形,木工师傅在木门的背面加钉
了一根木条,这样做的道理是利用.
12.点D是△ABC中BC边上的中点,若AB=3,AC=4,则△ACD与△ABD的周长之差为.
13.在△ABC中,∠A∶∠B∶∠C=3∶4∶5,则∠A= ,∠B= 。

14.如图,∠ACD是△ABC的外角,若∠ACD=125°,∠A=75°,则∠B=___度;
F
D
E
C
B A
15.如图,△ABC 中,AD ⊥BC 于D ,要使△ABD ≌△ACD ,若根据“HL ”判定,还需要加条件________ _,若加条件∠B=∠C ,则可用_____ _判定.
16.如图,△ABD ≌△ABC ,∠C =100°,∠ABD =30°,那么∠DAB = °. 17.如图,△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D ,DE ⊥BA 于E ,•且AB=10cm ,则△DEB 的周长为_________.
18. 在△ABC 中,AB =6 cm ,AC =8 cm 那么BC 长的取值范围是___________. 19.如图:点C 、F 在BE 上,∠1=∠2 ,BC=EF 请补充条件 (写一个即可),使△ABC ≌△DEF,理由是 。

20.在△ABC 中,∠A =1/2∠B =1/3∠C ,则∠A =_,∠B =__,∠C =____. 三、解答题(共40分)
21.如图,在△ABC 中,∠BAC 是钝角,完成下列画图。

(1)∠BCA 的平分线;(2)BC 边上的中线;(3)三边上的高.
22.已知线段a ,b ,求作△ABC ,使AB =BC =a ,AC =
b .
23.如图,已知EC=FB ,ED=AB ,ED ∥AB ,求证:∠A=∠D 。

24.如图,AB =AD, ∠BAE =∠CAD ,∠C=∠E, AC 与AE 相等吗?
25、AD=AE ,∠1=∠2,试说明:BE=CD .
26.如图,点E 在AC 上,AC 平分∠BAD 和∠BCD .BE 与DE 相等吗?为什么?
27.在△ABC 中,已知∠ABC =66°,∠ACB =54°,BE 是AC 上的高,CF 是AB 上的高,H 是BE 和CF 的交点,求∠ABE 、∠ACF 和∠BHC 的度数.
28.如图,有一湖的湖岸在A 、B 之间呈一段圆弧状,A 、B 间的距离不能直接测得,你能用已学过的知识或方法设计测量方案,求出A 、B 间的距离吗?
14题 A
B
C
D
15题 16题 17题
A
B
D
C 2
1
E
F
B
A。

相关文档
最新文档