2011年《高等传热学》结课作业
传热学课后答案(完结版)

2
tw2
3
tw1 tw 2 q2 1 2 3 1 2 3
再由:
tw1
λ
λ 3
tw2
q1
q2 0.2q1 ,有
tw1 tw 2 t t 0.2 w1 w 2 1 2 1 2 3 1 2 1 2 3
得:
3 43 (
'2 3 2 5 6 2 R 0.265m k / W 2 3 0.65 0.024
"
由计算可知,双 Low-e 膜双真空玻璃的导热热阻高于中空玻璃,也就是说双 Low-e 膜双真 空玻璃的保温性能要优于中空玻璃。 3. 4.略 5 .
m2
(m 2 K )
、 h2 85W
(m 2 K )
、 t1 45 ℃
t2 500 ℃、 k ' h2 85W
求: k 、 、
(m 2 K )
、 1mm 、 398 W
(m K )
解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即: k
tw1 t w 2 x
(设 tw1 tw 2 ) , 否则 t 与平壁 coust (即常物性假设)
其与平壁的材料无关的根本原因在 的材料有关 (2)由 4.略
q
dt dx
知,q 与平壁的材料即物性有关
5.解:
d 2 dt (r )0 dr dr r r1 , t tw1 (设tw1 t w 2 ) r r2 , t tw 2
绪论
思考题与习题( P89 )答案: 1. 冰雹落体后溶化所需热量主要是由以下途径得到:
高等传热学作业修订版

高等传热学作业修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】第一章1-4、试写出各向异性介质在球坐标系)(ϕθ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。
解:球坐标微元控制体如图所示:热流密度矢量和傅里叶定律通用表达式为:→→→∂∂+∂∂+∂∂-=∆-=k T r k j T r k i r T k T k q r ϕθθϕθsin 11'' (1-1)根据能量守恒:st out g in E E E E ••••=-+ϕθθρϕθθϕϕθθϕθd drd r tT c d drd r q d q d q dr r q p r sin sin 22∂∂=+∂∂-∂∂-∂∂-• (1-2) 导热速率可根据傅里叶定律计算:ϕθθθθd r dr Tr k q sin ⋅∂∂-= (1-3) 将上述式子代入(1-4-3)可得到)51(sin sin )sin ()sin (sin )(222-∂∂=+⋅⋅∂∂∂∂+⋅⋅∂∂∂∂+⋅⋅∂∂⋅∂∂⋅ϕθθρϕθθϕθϕθϕϕθθθθϕθθϕθd drd r t T c d drd r q d rd dr T r k rd d dr T r k d d dr r T r k r p r 对于各向异性材料,化简整理后可得到:tTc q T r k T r k r T r r r k pr ∂∂=+∂∂+∂∂∂∂+∂∂∂∂⋅ρϕθθθθθϕθ2222222sin )(sin sin )( (1-6)第二章2-3、一长方柱体的上下表面(x=0,x=δ)的温度分别保持为1t 和2t ,两侧面(L y ±=)向温度为1t 的周围介质散热,表面传热系数为h 。
试用分离变量法求解长方柱体中的稳态温度场。
解:根据题意画出示意图:(1)设f f f t t t t t t -=-=-=2211,,θθθ,根据题意写出下列方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+∂∂==∂∂======∂∂+∂∂00000212222θθλθθθδθθθθh y L y y y x x y x (2-1)解上述方程可以把θ分解成两部分I θ和∏θ两部分分别求解,然后运用叠加原理∏+=θθθI 得出最终温度场,一下为分解的I θ和∏θ两部分: (2)首先求解温度场I θ用分离变量法假设所求的温度分布),(y x I θ可以表示成一个x 的函数和一个y 的函数的乘积,即)()(),(11y Y x X y x I =θ (2-2)将上式代入I θ的导热微分方程中,得到012121212=+X dy Y d Y dx X d ,即21''11''1ε=-=Y Y X X ,上式等号左边是x 的函数,右边是y 的函数,只有他们都等于一个常数时才可能成立,记这个常数为2ε。
高等传热学

高等传热学问题及答案1. 简述三种基本传热方式的传热机理并用公式表达传热定律;传热问题的边界条件有哪两类?2. 有限元法求解传热问题的基本思想是什么?基本求解步骤有哪些?同有限差分方法相比其优点是什么?3. 什么是形函数?形函数的两个最基本特征是什么?4. 加权余量法是建立有限元代数方程的基本方法,请描述四种常见形式并用公式表达。
5. 特征伽辽金法(CG )在处理对流换热问题时遇到什么困难?特征分离法(CBS )处理对流换热问题的基本思想是什么?第一题:(1)热传导传热传导模式是因为从一个分子到另一个分子的能量交换,没有分子的实际运动,如果自由电子存在,也可能因为自由电子的运动。
因此,这种形式的热输送在很大程度上取决于介质的性质,如果存在温度差,热传导发生在固体,液体和气体。
书上补充:当两个物体有温差,或者物体内部有温度差时,在物体各部分之间不发生相对位移的情况下,物体微粒(分子,原子或自由电子)的热运动传递了热量。
(2)热对流()a w T T h q -=(牛顿冷却定律) 存在于液体和气体中的分子具有运动的自由,它们随身携带的能量(热量),从热区域移动到冷区域。
由于在液体或气体的宏观运动,热量传递从一个地区到另一个地方 ,加上流体内的热传导能量传递,称为对流换热。
对流可能是自然对流、强制对流,或混合对流。
百度补充:对流仅发生于流体中,它是指由于流体的宏观运动使流体各部分之间发生相对位移而导致的热量传递过程。
由于流体间各部分是相互接触的,除了流体的整体运动所带来的热对流之外,还伴生有由于流体的微观粒子运动造成的热传导。
在工程上,常见的是流体流经固体表面时的热量传递过程,称之为对流传热。
(3)辐射4w T q εσ= ( 斯蒂藩-玻耳兹曼定律)任何(所有)物体和任何(所有)温度都能产生热辐射。
(绝对零度以上)这是唯一一种发生热传递不需要介质的方式。
热辐射本质上是从物体的表面发射电磁波,由电磁波携带能量进行能量传输。
高等传热总结

辐射
黑体表面的辐射发射功率:
(W / m2 ) : Eb Ts4;Ts为表面的热力学温度(K) :史蒂芬- 玻尔兹曼常数5.6710-8W / m2 / K 4 实际表面为灰体:E Ts4;为发射率0 1 入射辐射:单位时间内投射在单位面积上的辐射能为辐照密度G. 对于入射辐射:表面可以吸收,反射,和透射(半透明固体)。 Gabs G;为吸收率0 1 灰体表面 一个温度为Ts的小表面和温度为Tsur周围环境(远大于表面并将它完全包围) 的辐射换热q q A (Eb (Ts ) G) A (Ts4 Tsur 4 ) A
E tot out
一个时间段t :
控制体内的储存的总能的变化等于进入控制
体的总能减去离开控制体的总能
进入和离开:传热,做功和平流
一个时间段t : E(机械能 热能)
Est Ein Eout Eg 控制体内的储存能量(机械能 热能)的变化 等于进入控制体的能量减去离开控制体的能量
0 Ein Eout Eg (0)
m(ut pv 1/ 2V 2 gz)in m(ut pv 1/ 2V 2 gz)out q W 0
没有相变的条件下,不考虑潜热
ut cvT ut pv i cpT 无做功、忽略机械能变化,忽略粘性功条件下
辐射
温度非0的固体(某些气体和液体)原子或分子中的电子运动(能级跳跃)必会发射 电磁波,辐射传热就是指固体表面间通过这些电磁波进行热能交换。辐射热交换不需要 介质。 固体内部原子和分子也能发射电磁波,不过都被临近的分子吸收,不能从表面透出。 固体表面可以发射热辐射,对于入射的热辐射,固体表面也可以吸收。
哈工程2011传热学A卷试题及答案

2011年春季学期《传热学》(A 卷)答案一.(10分)外直径为50mm 的蒸汽管道外表面温度为400℃,其外包裹有厚度为40mm 、导热系数为0.11W/(m·K)的矿渣棉。
矿渣棉外又包有厚为45mm 的煤灰泡沫砖,导热系数为0.12W/(m·K),煤灰泡沫砖外表面温度为50℃,试求通过每米长该保温层的热损失,并给出矿渣棉外表面温度。
解:由多层圆筒壁的导热热流量公式可知:()()()132113222ln ln l t t d d d d πλλ-Φ=+(3分)其中4001=t ℃,503=t ℃,1=l m,12350,130,220d mm d mm d mm === (2分)=1λ0.11W/(m·K),=2λ 0.12W/(m·K) 带入公式,可得:25.168=ΦW (1分)设矿渣棉外表面温度为2t ,则由能量守恒定律可知:()()122112ln l t t d d πλ-Φ=(3分),代入数据,可得:39.1672=t ℃(1分) 二.(10分)直径为12mm 、初始温度为1150K 的钢球,突然被放置于温度为325K 、表面传热系数为20W/(m 2·K)的空气中冷却。
已知钢球的物性如下:λ=40W/(m·K),ρ=7800kg/m 3,c=600J/(kg·K)。
试确定钢球中心温度被冷却到400K 所需的时间?如果考虑辐射的影响,冷却时间应延长还是缩短?解:这是一个典型的非稳态热传导问题,先计算其毕渥数的大小:1.0001.0403006.020)/<=⨯==λA V h Bi (,故可以利用集总参数法计算此非稳态问题。
(2分) 由公式:⎪⎪⎭⎫ ⎝⎛-=--=∞∞τρθθcV hA t t t t exp 00 (4分) 可得:⎪⎪⎭⎫⎝⎛---=∞∞t t t t hA cV0ln ρτ(1分) 代入数值,可得:21.1122=τs (1分)如果考虑辐射的影响,则钢球的散热强度增强,冷却时间会缩短。
哈工程2011传热B卷试题及答案

2011年春季学期《传热学》(B 卷)答案一、(10分)冬天某湖面上结了一层厚度为200mm 的冰,其上、下表面温度分别为-15℃和0℃,冰的导热系数为2W/(m·K),试求通过冰层的热流密度。
如果冰上覆盖了一层厚度为100mm 的雪,雪的导热系数为0.4W/(m 2·K),此时雪的上表面温度为-20℃,试确定此时的热流密度。
解:由公式λδ21t t q -=(3分),代入数据,可得2150m W q =(2分)当冰上覆盖一层雪时,由串联热阻的叠加公式,有:221131λδλδ+-=t t q (3分)代入数据,可得214.57m W q =(2分)二、(10分)直径为80mm 、初始温度为25℃的桔子放在冰箱中,冰箱中空气温度为2℃,空气与桔子间表面传热系数为1.5W/(m 2·K)。
已知桔子的物性如下:λ=0.6085 W/(m·K),ρ=997kg/m 3,c=4179J/(kg·K)。
试计算桔子中心温度减低到4℃所需的时间。
解:这是一个典型的非稳态热传导问题,先计算其毕渥数的大小:1.00986.06085.004.05.1<=⨯==λhl Bi ,故可以利用集总参数法计算此非稳态问题。
(3分) 由公式:⎪⎪⎭⎫ ⎝⎛-=--=∞∞τρθθcV hA t t t t exp 00,可得:⎪⎪⎭⎫⎝⎛---=∞∞t t t t hA cV 0ln ρτ(5分) 代入数值,可得:88.90452=τs (2分) 三、(10分)空气以10m/s 速度外掠0.8m 长的平板,80f t =℃,30w t =℃,计算该平板在临界雷诺数c Re 下的c h 、全板平均表面传热系数以及换热量。
(层流时平板表面局部努塞尔数1/21/30.332x x Nu Re Pr=,紊流时平板表面局部努塞尔数3/15/40296.0Pr Re Nu x =,板宽为1m ,已知5105⨯=c Re ,定性温度C t m 055=时的物性参数为:22.8710W/m K λ-=⨯⋅(),6218.4610m /s ν-=⨯,697.0=Pr )解:(1)根据临界雷诺数求解由层流转变到紊流时的临界长度1552m f w t t t =+=()℃,(1分)此时空气得物性参数为:22.8710W/m K λ-=⨯⋅(),6218.4610m /s ν-=⨯,0.697r P =5651018.46100.9210c c c Re ulRe X m u νν-⨯⨯⨯=⇒===() (2分)由于板长是0.8m ,所以,整个平板表面的边界层的流态皆为层流⇒==3/12/1Pr Re 332.0λhlNu x 21/21/351/21/322.87100.3320.3325100.6977.41W/m 0.8c c h Re Prlλ-⨯==⨯⨯⨯=⋅()(℃)(2分)(2)板长为0.8m 时,整个平板表面的边界层的雷诺数为:561033.41046.188.010⨯=⨯⨯==-νulRe (1分) 全板平均表面传热系数:21/21/351/21/322.87100.6640.664 4.33100.69713.9W/m 0.8h Re Prlλ-⨯==⨯⨯⨯=⋅()(℃)(2分)全板平均表面换热量13.90.818030557.9W f w hAt t Φ=-=⨯⨯⨯-=()() (2分)四、(10分)温度50f t =℃的空气平行掠过一表面温度为100w t =℃的平板表面,平板下表面绝热。
高等传热学作业

第一章1-4、试写出各向异性介质在球坐标系)(ϕθ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。
解:球坐标微元控制体如图所示:热流密度矢量和傅里叶定律通用表达式为:→→→∂∂+∂∂+∂∂-=∆-=k T r k j T r k i r T k T k q r ϕθθϕθsin 11'' (1-1)根据能量守恒:st out g in E E E E ••••=-+ϕθθρϕθθϕϕθθϕθd drd r tT c d drd r q d q d q dr r q p r sin sin 22∂∂=+∂∂-∂∂-∂∂-• (1-2) 导热速率可根据傅里叶定律计算:ϕθθθθd r dr Tr k q sin ⋅∂∂-= (1-3) 将上述式子代入(1-4-3)可得到)51(sin sin )sin ()sin (sin )(222-∂∂=+⋅⋅∂∂∂∂+⋅⋅∂∂∂∂+⋅⋅∂∂⋅∂∂⋅ϕθθρϕθθϕθϕθϕϕθθθθϕθθϕθd drd r tT c d drd r q d rd dr T r k rd d dr T r k d d dr r T r k r p r 对于各向异性材料,化简整理后可得到:tTc q T r k T r k r T r r r k pr ∂∂=+∂∂+∂∂∂∂+∂∂∂∂⋅ρϕθθθθθϕθ2222222sin )(sin sin )( (1-6) 第二章2-3、一长方柱体的上下表面(x=0,x=δ)的温度分别保持为1t 和2t ,两侧面(L y ±=)向温度为1t 的周围介质散热,表面传热系数为h 。
试用分离变量法求解长方柱体中的稳态温度场。
解:根据题意画出示意图:(1)设f f f t t t t t t -=-=-=2211,,θθθ,根据题意写出下列方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+∂∂==∂∂======∂∂+∂∂00000212222θθλθθθδθθθθh y L y y y x x y x(2-1)解上述方程可以把θ分解成两部分I θ和∏θ两部分分别求解,然后运用叠加原理∏+=θθθI 得出最终温度场,一下为分解的I θ和∏θ两部分: (2)首先求解温度场I θ用分离变量法假设所求的温度分布),(y x I θ可以表示成一个x 的函数和一个y 的函数的乘积,即)()(),(11y Y x X y x I =θ (2-2)将上式代入I θ的导热微分方程中,得到012121212=+X dyY d Y dx X d ,即21''11''1ε=-=Y Y X X ,上式等号左边是x 的函数,右边是y 的函数,只有他们都等于一个常数时才可能成立,记这个常数为2ε。
高等传热学复习题答案

高等传热学复习题答案1. 试述傅里叶定律的物理意义及其数学表达式。
傅里叶定律描述了在稳态条件下,热量通过材料的传导过程。
其物理意义是热量的传递速率与温度梯度的负值成正比,且与材料的热导率有关。
数学表达式为:\( q = -k \frac{dT}{dx} \),其中 \( q \) 表示热量传递速率,\( k \) 表示材料的热导率,\( \frac{dT}{dx} \) 表示温度梯度。
2. 什么是热对流?请简述热对流的两种主要类型。
热对流是指流体中热量的传递过程,它依赖于流体的宏观运动。
热对流的两种主要类型为自然对流和强制对流。
自然对流是由流体内部密度差异引起的,而强制对流则是由外部力(如风扇或泵)驱动的流体运动。
3. 简述辐射换热的基本原理。
辐射换热是指物体之间通过电磁波传递能量的过程。
它不需要任何介质,可以在真空中进行。
辐射换热的基本原理是物体根据其温度和表面特性发射和吸收辐射能。
斯特藩-玻尔兹曼定律和普朗克定律是描述辐射换热的基本定律。
4. 试分析在不同边界条件下,热传导问题的解法。
在不同的边界条件下,热传导问题的解法会有所不同。
例如,在狄利克雷边界条件下,物体表面的温度是已知的;在诺伊曼边界条件下,物体表面的热流密度是已知的;而在罗宾边界条件下,物体表面的热流密度与温度的函数关系是已知的。
对于这些不同的边界条件,可以采用分离变量法、有限差分法或有限元法等方法求解。
5. 描述在不同工况下,流体流动的类型及其特点。
流体流动的类型通常根据流动的雷诺数(Re)来分类。
当Re小于2300时,流动为层流,特点是流线平行,无涡旋;当Re大于4000时,流动为湍流,特点是流线混乱,存在涡旋。
在过渡流区域(2300 < Re < 4000),流动状态不稳定,可能同时存在层流和湍流的特点。
6. 试解释热辐射中的黑体、灰体和选择性辐射体的概念。
黑体是指能够吸收所有入射辐射的物体,其辐射能力与温度有关,遵循斯特藩-玻尔兹曼定律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年《高等传热学》结课作业
———放假前提交作业
一、【15分】无内热源物体内的稳态导热,材料为常物性。
请选择合适的坐标系,写出其导
热微分方程及边界条件。
(1) 巨型薄板(0≤x≤L1,0≤y≤L2,0≤z≤L3),L3<<L1,L3<<L2。
x = 0,x = L1,y = 0
处的三个边界维持0℃,y = L2的边界与温度为t f的流体发生换热,表面传热系数为h。
z = 0,z = L3的两个边界绝热。
(2) 半径为r0长度为L的短实心圆柱体,圆柱面绝热,x = 0及x = L的两个端面维持t w1
和t w2。
(3) 长半圆环,r1≤r≤r2,0≤φ≤π,z方向很长。
r = r1及r = r2的两个圆柱面绝热,φ=0
的边界维持0℃,而φ= π处与温度为t f的流体换热,表面传热系数为h。
二、【10分】一热电偶,其感温接点可看作直径为1mm的球体,材料的密度和比热容分别
为7900kg/m3和490J/(kg.℃),用于测量呈简谐波动的气流温度。
测温仪记录的结果是:波幅5.5℃,周期为30s,假定接点与气流之间的表面传热系数为50W/(m2.℃),试确定气流真实温度的波幅值。
三、【10分】一半无限大物体,初始温度分布为:0≤x≤L1时,初始温度为t i;L1<x时,初
始温度为0℃。
τ> 0时,x = 0处的边界维持0℃,试求温度场的表达式。
四、【15分】转速为500r/min的二冲程柴油机,气缸壁为铸铁,热扩散率为1.65×10-5m2/s,
导热系数为33W/(m.℃),气缸壁内侧的综合表面传热系数为100 W/(m2.℃),气缸内燃气温度在20℃至2000℃间波动,假定这种波动按简谐规律进行。
气缸套壁厚5mm,缸套由水冷却,水温70℃,表面传热系数为4000 W/(m2.℃)。
试求气缸套壁内的温度分布及单位面积散热量。
五、【10分】两块相同材料的半无限大物体,温度分别为t i1和t i2,τ= 0时,两物体界面紧
密接触,试求τ> 0时,两物体内的温度场t(x,τ)。
六、【10分】水在一内径为0.2m的圆管内流动,平均流速为3m/s。
假定流动已充分发展,
水的密度为998.2kg/m3,运动粘度为1.006×10-6m2/s。
试确定平均阻力系数C f、每米管长的压降及摩擦系数f。
七、【10分】飞机的油冷器装在机翼的夹层中,利用空气掠过进行冷却。
机翼表面可理性化
为一平壁。
71kPa、-4℃的空气以61m/s的速度掠过。
油冷器位于离导边0.9m处,假定其壁面为定壁温,温度为54℃。
油冷器的壁面尺寸为60×60cm,问散热量是多少?八、【20分】一无限长的正方柱体,两相邻面维持200℃,另两相邻面维持100℃,试用蒙
特卡洛法编程计算正方柱体中心线的温度。
给出源程序,并测试随机试验次数、网格剖分粗细对计算结果的影响。