大物仿真实验实验报告
生物仿真分析实验报告(3篇)

第1篇一、实验名称生物仿真分析实验二、实验目的1. 了解生物仿真的基本概念和原理。
2. 掌握使用仿真软件进行生物系统建模和模拟的方法。
3. 分析仿真结果,验证生物系统的行为和机制。
三、实验原理生物仿真是指利用计算机技术对生物系统进行建模和模拟的过程。
通过构建数学模型,模拟生物体的生理、生化过程,分析其行为和机制。
本实验采用仿真软件对某一生物系统进行建模和模拟,通过调整模型参数,观察系统行为的变化。
四、实验设备1. 仿真软件:如MATLAB、Simulink等。
2. 生物数据:实验所需的相关生物数据。
3. 计算机:运行仿真软件的计算机。
五、实验步骤1. 数据准备:收集实验所需的生物数据,包括生理参数、生化参数等。
2. 模型构建:利用仿真软件,根据实验数据构建生物系统的数学模型。
3. 模型验证:通过调整模型参数,验证模型在特定条件下的准确性和可靠性。
4. 模拟实验:在验证模型的基础上,进行模拟实验,观察系统行为的变化。
5. 结果分析:分析仿真结果,验证生物系统的行为和机制。
六、实验结果1. 模型构建:根据实验数据,成功构建了某一生物系统的数学模型。
2. 模型验证:通过调整模型参数,验证了模型在特定条件下的准确性和可靠性。
3. 模拟实验:在模型验证的基础上,进行了模拟实验,观察到了系统行为的变化。
4. 结果分析:通过分析仿真结果,验证了生物系统的行为和机制。
七、讨论和分析1. 模型构建:在构建生物系统模型时,充分考虑了实验数据的准确性和可靠性。
通过调整模型参数,验证了模型的准确性和可靠性。
2. 模拟实验:通过模拟实验,观察到了系统行为的变化,进一步验证了生物系统的行为和机制。
3. 结果分析:仿真结果与实验数据基本一致,验证了生物系统的行为和机制。
八、注意事项1. 数据收集:在收集实验数据时,应注意数据的准确性和可靠性。
2. 模型构建:在构建生物系统模型时,应充分考虑生物系统的复杂性和动态性。
3. 模拟实验:在模拟实验过程中,应注意调整模型参数,以观察系统行为的变化。
大学物理仿真实验报告

大学物理仿真实验报告大学物理仿真实验报告引言在大学物理实验中,物理仿真实验起着重要的作用。
通过仿真实验,学生可以在虚拟环境中进行各种物理实验,观察和分析实验现象,从而加深对物理原理的理解和掌握。
本文将以大学物理仿真实验为主题,探讨其在物理教学中的重要性和应用价值。
一、物理仿真实验的意义物理仿真实验是一种虚拟实验教学手段,通过计算机技术和数学模型,将真实的物理实验过程模拟到计算机软件中,使学生可以在虚拟环境中进行实验操作和观察实验现象。
与传统实验相比,物理仿真实验具有以下几个方面的意义。
1. 提供安全环境物理实验中常常涉及到高温、高压、高电压等危险因素,如果学生没有足够的实验经验和安全意识,很容易发生事故。
而物理仿真实验可以提供一个安全的环境,让学生在虚拟场景中进行实验操作,避免了实验过程中的安全隐患。
2. 提供多样实验条件物理仿真实验可以根据不同的实验要求和学生的学习进度,提供多样的实验条件。
学生可以通过调整参数、改变实验环境等方式,观察和分析不同条件下的实验现象,深入理解物理原理。
3. 提供实验重复性在传统实验中,学生可能因为操作不当或其他原因导致实验结果不准确或失败。
而物理仿真实验可以提供实验的重复性,学生可以反复进行实验,找出问题所在,并改正错误,从而提高实验的准确性和可靠性。
二、物理仿真实验的应用价值物理仿真实验在物理教学中具有广泛的应用价值,不仅可以提高学生的实验操作能力,还可以培养学生的科学思维和创新能力。
1. 提高实验操作能力物理仿真实验可以让学生熟悉实验仪器的使用方法和实验步骤,培养他们的实验操作能力。
通过虚拟实验,学生可以反复练习实验操作,掌握实验技巧,提高实验的准确性和效率。
2. 培养科学思维物理仿真实验可以培养学生的科学思维,让他们学会观察、分析和解释实验现象。
在虚拟实验中,学生需要通过观察实验现象、整理数据、分析规律等步骤,从而培养他们的科学思维和逻辑思维能力。
3. 提升创新能力物理仿真实验可以激发学生的创新能力。
大学物理仿真实验实验报告_分光计

大学物理仿真实验实验报告_分光计.大学物理仿真实验实验报告分光计土木21班2120702008崔天龙..验项目名称:分光计一、实验目的1(使学生深入了解分光计的构造和设计原理,学会调整分光计的正确方法;2(了解用最小偏向角法测棱镜材料折射率的基本原理;3(完成测量折射率实验,并正确分析实验误差。
二、实验原理1(分光计的结构分光计主要由三部分:望远镜,平行光管和主体(底座、度盘和载物台)组成。
附件有小灯泡、小灯泡的低压电源以及看度盘的放大镜。
望远镜的目镜叫做阿贝目镜,如图1所示。
2(分光计的调整原理和方法调整分光计,最后要达到下列要求:(1)平行光管发出平行光;(2)望远镜对平行光聚焦(即接收平行光);(3)望远镜、平行光管的光轴垂直仪器公共轴。
分光计调整的关键是调好望远镜,其他的调整可以以望远镜为标准。
在调整望远镜时,可以先将小灯泡的光引入分划板,当分划板的位置刚好在望远镜的焦平面上时,从载物台上放置的平面镜上反射回来的光正好落在分划板上形成一个清晰的十字象。
利用这个原理可以将望远镜调好(出射平行光以及使望远镜的主轴与仪器主轴垂直),当望远镜调好后就可以利用望远镜调节平行光管,此时就可以进行光线的角度的测量了。
3(用最小偏向角法测三棱镜材料的折射率..如下图,一束单色光以角入射到AB面上,经棱镜两次折射后,从AC面射出来,出射角为。
入射光和出射光之间的夹角称为偏向角。
当棱镜顶角A一定时,偏向角的大小随入射角的变化而变化。
而当=时,为最小(证明略)。
这时的偏向角称为最小偏向角,记为。
由上图可以看出,这时设棱镜材料折射率为n,则故..由此可知,要求得棱镜材料的折射率n,必须测出其顶角A和最小偏向角。
三、实验仪器图 1 : 分光计仪器分光计是一种基本的光学测量仪器,能准确快捷地测量各种角度,该仪器配上棱镜、光栅等可用于光谱测量。
配上偏振片、波片等,可作为椭偏仪使用。
图 2 : 分光计分光计中心为载物台,外围为刻度盘和游标盘,双游标的作用是为了消除刻度盘和游标盘中心不重合造成的偏心误差。
大学物理仿真实验报告

大学物理仿真实验报告单摆测量重力加速度一、实验目的本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。
二、实验原理单摆的结构如实验仪器中所示,其一级近似周期公式为:由此公式可知,测量周期与摆长就可以计算得到重力加速度g三、实验内容一用误差均分原理设计一单摆装置,测量重力加速度g.设计要求:(1) 根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法.(2) 写出详细的推导过程,试验步骤.(3) 用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%.可提供的器材及参数:游标卡尺、米尺、千分尺、电子秒表、支架、细线(尼龙线)、钢球、摆幅测量标尺(提供硬白纸板自制)、天平(公用).假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s.二. 对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求.三. 自拟实验步骤研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的关系,试分析各项误差的大小. 四. 自拟试验步骤用单摆实验验证机械能守恒定律.四、实验仪器实验仪器单摆仪,摆幅测量标尺,钢球,游标卡尺五、实验操作1. 用米尺测量摆线长度;测量摆线长度;测量摆线长度;2. 用游标卡尺测量小球直径;用游标卡尺测量小球直径;用游标卡尺测量小球直径;用游标卡尺测量小球直径;用游标卡尺测量小球直径;3. 把摆线偏移中心不超过把摆线偏移中心不超过把摆线偏移中心不超过5度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过度,释放单摆开始计时过50 个周期后停止计时,个周期后停止计时,个周期后停止计时,记录所用时间;记录所用时间;六、实验结果七、数据处理D(平均)=(1.722+1.702+1.732+1.662+1.682+1.692)/6=1.698cm摆线长度+摆球直径=92.00cm摆长L=(摆线长度+摆球直径)-摆球半径=92.00-D/2=91.15cm=0.9115mT1=57.55/30=1.918sT2=76.77/40=1.919sT3=96.00/50=1.920sT=(T1+T2+T3)/3=1.919s由得:g=(4**)*L/(T*T)=9.77m/s*s=9.80-9.77=0.03m/s*sE=/g*100%=0.31%<1% 满足实验要求八、误差分析、心得体会及实验建议误差分析:1、周期的测量存在较大误差,摆线来回摆,刚开始计时以及最后一次摆结束的时刻,由于人眼的反应速度会造成或大或小的偏差;2、摆长的测量存在误差,由于不是亲手拿测量仪器测量,故而有些读数不准确,由此引起一部分误差。
仿真实验报告——膨胀系数

大物仿真实验报告——固体热膨胀系数的测量班级:宗濂31学号:2132000013姓名:王蕊一、实验目的测定金属棒的线胀系数,并学习一种测量微小长度的方法。
二、实验原理1.材料的热膨胀系数各种材料热胀冷缩的强弱是不同的,为了定量区分它们,人们找到了表征这种热胀冷缩特性的物理量,线胀系数和体胀系数。
线膨胀是材料在受热膨胀时,在一维方向上的伸长。
在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L,由初温t1加热至末温t1,物体伸长了,则有上式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。
比例系数称为固体的线胀系数。
体膨胀是材料在受热时体积的增加,即材料在三维方向上的增加。
体膨胀系数定义为在压力不变的条件下,温度升高1K所引起的物体体积的相对变化,用表示。
即一般情况下,固体的体胀系数为其线胀系数的3倍,即,利用已知的,我们可测出液体的体胀系数。
2.线胀系数的测量线膨胀系数是选用材料时的一项重要指标。
实验表明,不同材料的线胀系数是不同的,塑料的线胀系数最大,其次是金属。
殷钢、熔凝石英的线胀系数很小,由于这一特性,殷钢、石英多被用在精密测量仪器中。
表1.2.1-1给出了几种材料的线胀系数。
人们在实验中发现,同一材料在不同的温度区域,其线胀系数是不同的,例如某些合金,在金相组织发生变化的温度附近,会出现线胀系数的突变。
但在温度变化不大的范围内,线胀系数仍然是一个常量。
因此,线胀系数的测量是人们了解材料特性的一种重要手段。
在设计任何要经受温度变化的工程结构(如桥梁、铁路等)时,必须采取措施防止热胀冷缩的影响。
例如,在长的蒸气管道上,可以插入一些可伸缩的接头或插入一段U型管;在桥梁中,可将桥的一端固牢在桥墩上,把另一端放在滚轴上;在铁路上,两根钢轨接头处要留有间隙等。
在式(1)中,是一个微小的变化量,以金属为例,若原长 L=300mm,温度变化,金属的线胀系数,估计。
这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。
大学物理仿真实验报告——碰撞与动量守恒

大学物理仿真实验实验报告碰撞和动量守恒班级:信息1401 姓名:龚顺学号:201401010127【实验目的】:1 了解气垫导轨的原理,会使用气垫导轨和数字毫秒计进行试验。
2 进一步加深对动量守恒定律的理解,理解动能守恒和动量守恒的守恒条件。
【实验原理】当一个系统所受和外力为零时,系统的总动量守恒,即有若参加对心碰撞的两个物体的质量分别为m1和m2 ,碰撞前后的速度分别为V10、V20和V1 、V2。
1,完全弹性碰撞在完全弹性碰撞中,动量和能量均守恒,故有:取V20=0,联立以上两式有:动量损失率:动能损失率:2,完全非弹性碰撞碰撞后两物体粘在一起,具有相同的速度,即有:仍然取V20=0,则有:动能损失率:动量损失率:3,一般非弹性碰撞中一般非弹性碰撞中,两物体在碰撞后,系统有部分动能损失,定义恢复系数:两物体碰撞后的分离速度比两物体碰撞前的接近速度即恢复系数。
当V20=0时有:e的大小取决于碰撞物体的材料,其值在0~1之间。
它的大小决定了动能损失的大小。
当e=1时,为完全弹性碰撞;e=0时,为完全非弹性碰撞;0<e<1时,为一般非弹性碰撞。
动量损失:动能损失:【实验仪器】本实验主要仪器有气轨、气源、滑块、挡光片、光电门、游标卡尺、米尺和光电计时装置等【实验内容】一、气垫导轨调平及数字毫秒计的使用1、气垫导轨调平打开气源,放上滑块,观察滑块与轨面两侧的间隙纵向水平调节双支脚螺丝,横向水平调节单支脚,直到滑块在任何位置均保持不动,或做极缓慢的来回滑动为止。
动态法调平,滑块上装挡光片,使滑块以缓慢速度先后通过两个相距60cm的光电门,如果滑块通过两光电门的时间差小于1ms,便可认为轨道已经调平。
本实验采用动态调节。
2、数字毫秒计的使用使用U型挡光片,计算方式选择B档。
二滑块上分别装上弹簧圈碰撞器。
将小滑块m2置于两个相距40cm的光电门之间,使其静止,使大滑块m1以速度V10去碰撞m2,从计时器上读出碰撞前后通过S距离所用的时间t10,t1,t2.记录数据。
大物仿真实验实验报告

物理仿真实验实验报告光电效应和普朗克常量的确定一、实验简介1905年,年仅26岁的爱因斯坦提出光量子假说,发表了在物理学发展史上具有里程碑意义的光电效应理论,10年后被具有非凡才能的物理学家密里根用光辉的实验证实了。
两位物理大师之间微妙的默契配合推动了物理学的发展,他们都因光电效应等方面的杰出贡献分别于1921年和1923年获得诺贝尔物理学奖。
光电效应实验及其光量子理论的解释在量子理论的确立与发展上,在揭示光的波粒二象性等方面都具有划时代的深远意义。
利用光电效应制成的光电器件在科学技术中得到广泛的应用,并且至今还在不断开辟新的应用领域,具有广阔的应用前景。
二、实验目的(1)了解光电效应基本规律,加深对光量子论的认识和理解;(2)了解光电管的结构和性能,并测定其基本特性曲线;(3)验证爱因斯坦光电效应方程,并测量普朗克常量。
三、实验原理当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,而另一部分则转换为物体中某些电子的能量,使电子逸出物体表面,这种现象称为光电效应,逸出的电子称为光电子。
在光电效应中,光显示出它的粒子性质,所以这种现象对认识光的本性,具有极其重要的意义。
光电效应实验原理如图1所示。
其中S为真空光电管,K为阴极,A为阳极。
当无光照射阴极时,由于阳极与阴极是断路,所以检流计G中无电流流过,当用一波长比较短的单色光照射到阴极K上时,形成光电流,光电流随加速电位差U 变化的伏安特性曲线如图2所示。
1.光电流与入射光强度的关系光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后,光电流达到饱和值H I ,饱和电流与光强成正比,而与入射光的频率无关。
当K A U U U -=变成负值时,光电流迅速减小。
实验指出,有一个遏止电位差a U 存在,当电位差达到这个值时,光电流为零。
2.光电子的初动能与入射光频率之间的关系光电子从阴极逸出时,具有初动能。
在减速电压下,光电子在逆着电场力方向由K 极向A 极运动。
大学物理仿真实验报告

扫描隧道显微镜(STM)一.实验目的1.学习和了解扫描隧道显微镜的原理和结构;2.观测和验证量子力学中的隧道效应;3.学习扫描隧道显微镜的操作和调试过程,并以之来观测样品的表面形貌;4.学习用计算机软件处理原始图象数据。
二.实验原理(一)隧道电流扫描隧道显微镜(Scanning Tunneling Microscope)的工作原理是基于量子力学中的隧道效应。
对于经典物理学来说,当一个粒子的动能E低于前方势垒的高度V0时,它不可能越过此势垒,即透射系数等于零,粒子将完全被弹回。
而按照量子力学的计算,在一般情况下,其透射系数不等于零,也就是说,粒子可以穿过比它能量更高的势垒(如图1)这个现象称为隧道效应。
隧道效应是由于粒子的波动性而引起的,只有在一定的条件下,隧道效应才会显著。
经计算,透射系数T为:由式(1)可见,T与势垒宽度a,能量差(V0-E)以及粒子的质量m有着很敏感的关系。
随着势垒厚(宽)度a的增加,T将指数衰减,因此在一般的宏观实验中,很难观察到粒子隧穿势垒的现象。
扫描隧道显微镜的基本原理是将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近(通常小于1nm) 时,在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。
隧道电流I是电子波函数重叠的量度,与针尖和样品之间距离S以及平均功函数Φ有关:式中Vb是加在针尖和样品之间的偏置电压,平均功函数Φ1和Φ2分别为针尖和样品的功函数,A为常数,在真空条件下约等于1。
隧道探针一般采用直径小于1mm的细金属丝,如钨丝、铂-铱丝等,被观测样品应具有一定的导电性才可以产生隧道电流。
(二)扫描隧道显微镜的工作原理由式(2)可知,隧道电流强度对针尖和样品之间的距离有着指数依赖关系,当距离减小0.1nm,隧道电流即增加约一个数量级。
因此,根据隧道电流的变化,我们可以得到样品表面微小的高低起伏变化的信息,如果同时对x-y方向进行扫描,就可以直接得到三维的样品表面形貌图,这就是扫描隧道显微镜的工作原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理仿真实验实验报告
光电效应和普朗克常量的确定
一、实验简介
1905年,年仅26岁的爱因斯坦提出光量子假说,发表了在物理学发展史上具有里程碑意义的光电效应理论,10年后被具有非凡才能的物理学家密里根用光辉的实验证实了。
两位物理大师之间微妙的默契配合推动了物理学的发展,他们都因光电效应等方面的杰出贡献分别于1921年和1923年获得诺贝尔物理学奖。
光电效应实验及其光量子理论的解释在量子理论的确立与发展上,在揭示光的波粒二象性等方面都具有划时代的深远意义。
利用光电效应制成的光电器件在科学技术中得到广泛的应用,并且至今还在不断开辟新的应用领域,具有广阔的应用前景。
二、实验目的
(1)了解光电效应基本规律,加深对光量子论的认识和理解;
(2)了解光电管的结构和性能,并测定其基本特性曲线;
(3)验证爱因斯坦光电效应方程,并测量普朗克常量。
三、实验原理
当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,而另一部分则转换为物体中某些电子的能量,使电子逸出物体表面,这种现象称为光电效应,逸出的电子称为光电子。
在光电效应中,光显示出它的粒子性质,所以这种现象对认识光的本性,具有极其重要的意义。
光电效应实验原理如图1所示。
其中S 为真空光电管,K 为阴极,A 为阳极。
当无光照射阴极时,由于阳极与阴极是断路,所以检流计G 中无电流流过,当用一波长比较短的单色光照射到阴极K 上时,形成光电流,光电流随加速电位差U 变化的伏安特性曲线如图2所示。
1.光电流与入射光强度的关系 光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后,光电流达到饱和值H I ,饱和电流与光强成正比,而与入射光的频率无关。
当K A U U U -=变成负值时,光电流迅速减小。
实验指出,有一个遏止电位差a U 存在,当电位差达到这个值时,光电流为零。
2.光电子的初动能与入射光频率之间的关系
光电子从阴极逸出时,具有初动能。
在减速电压下,光电子在逆着电场力方向由K 极向A 极运动。
当 a U U =时,光电子不再能达到A 极,光电流为零。
所以电子的初动能等于它克服电场力所作的功。
即
a eU mv =22
1 (1) 根据爱因斯坦关于光的本性的假设,光是一粒一粒运动着的粒子流,这些光粒子称为光子。
每一光子的能量为hv =ε,其中h 为普朗克常量,v 为光波的频率。
所以不同频率的光波对应光子的能量不同。
光电子吸收了光子的能量hv 之后,一部分消耗于克服电子的逸出功A ,另一部分转换为电子动能。
由能量守恒定律可知
A mv hv +=22
1 (2) 式(2)称为爱因斯坦光电效应方程。
由此可见,光电子的初动能与入射光频率v 成线性关系,而与入射光的强度无关。
3.光电效应有光电阈存在
实验指出,当光的频率0v v <时,不论用多强的光照射到物质都不会产生光电效应,根据式(2),h
A 0=v ,0v 称为红限。
爱因斯坦,光电效应方程同时提供了测普朗克常量的一种方法:由式(1)和(2)可得: A U e hv +=||α。
当用不同频率(n v v v v ,,,,321Λ)的单色光分别做光源时,就有
A U e hv +=||11
A U e hv +=||22
ΛΛΛΛ
A U e hv n n +=||
任意联立其中两个方程就可得到
j i j i v v U U e h --=)
(
由此若测定了两个不同频率的单色光所对应的遏止电位差即可算出普朗克常量,也可由v U -α直线的斜率求出h 。
因此,用光电效应方法测量普朗克常量的关键在于获得单色光、测得光电管的伏安特性曲线和确定遏止电位差值。
实验中,单色光可由水银灯光源经过单色仪选择谱线产生。
水银灯是一种气体放电光源,点燃稳定后,在可见光区域内有几条波长相差较远的强谱线,如表1所示。
单色仪的鼓轮读数与出射光的波长存在一一对应关系,由单色仪的定标曲线,即可查出出射单色光的波长(有关单色仪的结构和使用方法请参阅有关说明书),也可用水银灯(或白炽灯)与滤光片联合作用产生单色光。
为了获得准确的遏止电位差值,本实验用的光电管应该具备下列条件:
(1)对所有可见光谱都比较灵敏;
(2)阳极包围阴极,这样当阳极为负电位时,大部分光电子仍能射到阳极;
(3)阳极没有光电效应,不会产生反向电流;
(4)暗电流很小。
但是实际使用的真空型光电管并不完全满足以上条件。
由于存在阳极光电效应所引起的反向电流和暗电流(即无光照射时的电流),所以测得的电流值,实际上包括上述两种电流和由阴极光电效应所产生的正向电流三个部分,所以伏安曲线并不与U轴相切。
由于暗电流是由阴极的热电子发射及光电管管壳漏电等原因产生,与阴极正向光电流相比,其值很小,且基本上随电位差U呈线性变化,因此可忽略其对遏止电位差的影响。
阳极反向光电流虽然在实验中较显著,但它服从一定规律。
据此,确定遏止电位差值,可采用以下两种方法:
(1)交点法:
光电管阳极用逸出功较大的材料制作,制作过程中尽量防止阴极材料蒸发,实验前对光电管阳极通电,减少其上溅射的阴极材料,实验中避免入射光直接照射到阳极上,这样可使它的反向电流大大减少,其伏安特性曲线与图2十分接近,因此曲线与U轴交点的电位差近似等于遏止电位差,此即交点法。
(2)拐点法:
光电管阳极反向光电流虽然较大,但在结构设计上,若是反向光电流能较快地饱和,则伏安特性曲线在反向电流进入饱和段后有着明显的拐点,如图3所示,此拐点的电位差即为遏止电位差。
四、实验仪器及使用方法
1.实验仪器
光电管,光源(汞灯),滤波片组(577.0nm,546.1nm,435.8nm,404.7nm,365nm 滤波片),50%、25%、10%的滤光片,直流电源、检流计(或微电流计)、直流电压计等。
2.仪器的使用方法
(1)光源(汞灯):
双击实验桌上光源小图标弹出光源的调节窗体,单击调节窗体的光源开关可以关闭或打开光源。
光电管:
双击实验桌上光电管的小图标,弹出光电管的调节窗体;再单击调节窗体中的光电管会弹出调节光电管的方向键。
←键:光电管水平向左移动,→键,光电管水平向右移动,↑键:光电管垂直方向增加高度,↓键:光电管垂直方向减小高度。
双击调节窗体中光电管的背面(侧面中的背面),即可弹出显示光电管背面信息的窗体,以便完成实验中的线路连接。
(3)滤波片组盒子:
双击实验桌上的滤波片组盒子,弹出滤波片组盒子的调节窗体。
盒子中存放有(577.0nm,546.1nm,435.8nm,404.7nm,365nm 滤波片以及50%,25%,10%的滤光片)。
(4)电源及测试系统:
双击实验桌上的电源及测试系统,弹出电源及测试系统的调节窗体。
单击电源开关可以打开或关闭电源;左击电流档,电流调小,右击电流档,电流调大;左击电压档,电压调小,右击电压档,电压调大;单击电源极性按钮可以改变电源输出极性。
五、实验内容
1.
接线电路图如图4所示。
在577.0nm 、546.1nm 、435.8nm 、404.7nm 四种单色光下分别测出光电管的伏安特性曲线,并根据此曲线确定遏止电位差值,计算普朗克常量。
实验中光电流比较微弱,其值与光电管类型,单色光强弱等因素有关,因此应根据实际情况选用合适的测量仪器。
例如,选用GD-4、GD-5、或1977型光电管,选用的检流计的分度值应在9-810~10 A/分度左右。
如果要测量更微弱的电
流可用微电流计,可测量12-1310~10-A 的电流。
由于光电管的内阻很高,光电流如此之微弱,因此测量中要注意抗外界电磁干扰。
并避免光直接照射阳极和防止杂散光干扰。
作v U -α的关系曲线,用一元线性回归法计算光电管阴极材料的红限频率、逸出功及h 值,并与公认值比较。
2.
测定光电管的光电特性曲线,即饱和光电流与照射光强度的关系,实验室提供有透光率50% , 25% ,10%的滤光片,请用577.0nm 波长为光源,在光电管、光源位置固定时,测光电管的正向伏安特性曲线,验证饱和电流与光强关系。
六、实验数据记录
1.
2.
七、实验数据处理
1.
在四种单色光下光电管的伏安特性曲线如图
得到普朗克常量为s J 106531.634⋅⨯=-h 。
v U -α的关系曲线如图
得到光电管阴极材料的红限频率nm v 501028.8⨯=; 逸出功J A 191051.5-⨯=; s J 106531.634⋅⨯=-h ;
公认值s J 1036.6340⋅⨯=-h ,故相对误差为%34.0。
2.
光电管的光电特性曲线如图
八、结论
测得的普朗克常量s J 106531.634⋅⨯=-h ,相对误差为%34.0; 光电管阴极材料的红限频率nm v 501028.8⨯=; 逸出功J A 191051.5-⨯=。