电磁学第二章习题答案教程文件

合集下载

电磁场与电磁波(第四版)课后答案 谢处方 第二章习题

电磁场与电磁波(第四版)课后答案 谢处方 第二章习题

2)
3)
, 处于外导体内部,
4)
2. 一半径为R的电介质球内计划强度为 求(1)极化电荷的体密度和面密度。
2 自由电荷密度。 3 球内、外的电场分布。
, 其中k为一常数。
(1)极化电荷的体密度。 极化电荷的面密度
(2)根据高斯定律自由电荷密度。
(3)根据高斯定律求电场分布。 球内电场分布
球Байду номын сангаас电场分布
,d=
lcm,横截面积s =10cm2。
求:
x=0和x=d 区域内的总电荷量;
x=d/2和x=d区域内的总电荷量。
• 解: (1)
• (2)
2.8 一个点电荷 位于 处,
另一个点电荷
位于 处,
空间有没有电场强度

解:
个点电荷的电场公式为
点 ?

, 即有
由此可得个分量为零的方程组:
2
解之: 当
有一平行的圆柱形空腔,其横截面如图所示。 的磁感应强度, 并证明空腔内的磁场是均匀的。
试计算各部分
解: 将题中问题看做两个对称电流的叠加: 一个是密度为 均匀分布在半径为 的圆柱内, 另一个是密度为 均匀 分布在半径为 的圆柱内。
由安培环路定律在 磁场分别为

中分布的
b
a d
空间各区域的磁场为 圆柱外 圆柱内的空腔外 空腔内
因此, 在z>0的区域有 在z<0的区域有
表示为矢量形式
为面电流的外法 向单位矢量
2.25平行双线与一矩形回路共面,设a=0.2m,b=c=d=0.1m, 求回路中的感应电动势。 解: 先求出平行双线在回路中的磁感应强度
回路中的感应电动势为

电磁场与电磁波 第2章习题解答

电磁场与电磁波  第2章习题解答

第二章习题解答【习题2.1】101929=.=101.6102.0810e qR R mq e Cp m Ce e 解:电偶极矩p 其中 1.3可得电偶极矩p 的大小其方向为从负电荷指向正电荷,即从氯离子指向氢离子。

---´== =醋【习题2.2】解1解:由例2.2得,电偶极子所产生的电场为533()1[]4e e P R RP E RRπε=-0()R R << ……………………①其中 0e P qR = ,0R方向从负电荷指向正电荷,R是从电偶极子指向电场中任一点的矢量,起点在正负电荷连线的中点。

(如图)本题 100 1.310R m -=⨯ 1010010R m -=⨯满足 0R R << .将①式整理:32013[()]4e e E P R R P RRπε=-令 ()e m k P R R P =-(23k R=)则 304m E Rπε=…………………………②欲求E的最大值,求出m最大值即可.222222[()]()2()()e e e e e e m k P R R P k P R R P k P R P R =-=+- 2222(2)()e e k R k P R P =-+2224296()()e e R P R P R R=-+ 2223()e e P R P R=+其中 00cos e P R qR R qR R θ== , (θ是0R 和R之间的夹角)易见,当cos 1θ=,即0θ=时,2m可取最大值22222m ax 234e e e m R P P P R=+=则 m=2e P 代入②式得 m a x33m ax042e P mERRπεπε==将习题2.1中的结论 e P=2.082910c m -⨯⋅ 代入得29112103max2.08102 3.148.910(10010)EV m ----⨯=⋅⨯⨯⨯⨯⨯513.710V m-≈⨯⋅距离自由电子处的电场 191712121020 1.6101.41044 3.148.910(10010)e E V mV mRπε-----⨯==⋅≈⨯⋅⨯⨯⨯⨯⨯故 距离电偶极子处的电场最大值为 513.710V m -⨯⋅ 距离自由电子处的电场为 711.410V m -⨯⋅【习题2.2】解2解:设矢量0R e的方向从电荷C L -指向电荷H +R n 是从由C L - H +构成的电偶极子指向电场中的任一点的矢量,起点在正负电荷连线的中点,且0R 〈〈R. ( e , n 为单位矢量,θ是e , n的夹角)(1)003303cos 1[]4qR qR E n e R R θπε=- (41P )由向量减法的三角形法则及余弦定理得:=03024qR R πε⎛⎫⎪⎝⎭E =由上题得290( 2.110)e p qR cm -==⨯因此,当0θ=或θπ=时E有最大值, 03024qR E R πε==50302 3.7104qR V M R πε=⨯ (2)7201() 1.4104q R VE M R R πε==⨯【习题2.3】证明: 电偶极距qRe p =其方向为从负电荷指向正电荷。

电磁学答案第2章

电磁学答案第2章

第二章 导体周围的静电场2.1.1 证明:对于两个无限大带电平板导体来说: (1) 反; (2)同; 相向的两面(附图中2和3)上,电荷的面密度总是大小相等而符号相 相背的两面(附图中1和4)上,电荷的面密度总是大小相等而符号相 证: 斯 (1)选一个侧面垂直于带电板,端面分别在 A,B 板内的封闭圆柱形 面 E?dS E 侧?dS E A 内S E B 内 E 侧 dS 侧 E A 内 E R 内 .=E?dS 0 即:3 2 (2)在导体内任取一点 P , E p E p E 1 E 2 E 3 E 4 其中n?是垂直导体板向右的单位矢。

2.1.2两平行金属板分别带有等量的正负电荷 特,两板的面积都是平方厘米,两板相距毫米,略去边缘效应,求两板间的电场强 度和各板上所带的电量(设其中一板接地).解:设A 板带负电,其电量是-q ,B 板带正电,其电量是+q ,且A 板接地。

两板间的电场强度:E V d 160 1.6 105(伏/米) 3 0E 8.85 10 12 105 8.85 10 7(库 /米2) 根据上题结论: ,若两板的电位差为160伏 4; 2 3又由于A 板接地, 1 4 0 A 板所带电量: q 2S 8.85 10 7 3.6 10 4 3.2 10 10(库)2 3 8.85-(d x)(由A 板的电位得) 0 丄X 0 解以上方程组得出: Q(d x) 2 Sd B 板上感应电荷: Q B 2S 冬 d C 板上的感应电荷: Qx d Q c 5S x) Q(d x) Sd Qx Qx 4 Sd 5 Sd i 0 E nQ(d Sd 0 x)r AB Qx ?A C Sd 0 U i 0; U IVQ(dSd 0r)B 板所带电量: q 3S 8.85 10 7 .3.6 10 4 3.2 10 10(库)2.1.3三块平行放置的金属板 A,B,C 其面积均为S,AB 间距离为x,BC 间距离为 d,设d 极小,金属板可视为无限大平面,忽略边缘效应与A 板的厚度,当B,C 接地 (如图),且A 导体所带电荷为Q 时,试求: ⑴B,C 板上的感应电荷; (2)空间的场强及电位分布. 解:(1)根据静电平衡时,导体中的场强为零,又由 B,C 接地: 5 6 0 4)S Q(由A 板的总电量得) (2)场强分布: 电位分布:Q XU 皿 ST (d x r)其中r 是场点到板A 的距离。

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案第二章重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导岀微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。

利用亥姆霍兹定理,直接导岀真空中电场强度与电荷之间的关系。

通过书中列举的4个例子,总结归纳岀根据电荷分布计算电场强度的三种方法。

至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。

讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。

介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。

关于静电场的能量与力,应总结岀计算能量的三种方法,指岀电场能量不符合迭加原理。

介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。

至于电容和部分电容一节可以从简。

重要公式真空中静电场方程:q积分形式::i E d S E d I = 0S - - I%微分形式:'' E= —V E =O已知电荷分布求解电场强度:1,E (r )--''?(r);φ( r) -[ . (IdV4 叭J I r —r |2,r P(r )( rE (r)LV 4πε0 | r^r)d"3-r I3,r qE d S =S;0高斯定律介质中静电场方程:静电场积分形式:■. D d S =q=SE■ ld I= 0微分形式:? D=-V X E= 0线性均匀各向同性介质中静电场方程:积分形式:qE d S =-■2 SεI E d I= 0微分形式:V E =V X E= 0静电场边界条件:1,E1t =E2t。

对于两种各向同性的线性介质,贝UD1t D∑12,D2n-D1n = I。

在两种介质形成的边界上,则Dm = D2n对于两种各向同性的线性介质,则;疋仆_ ;2E2n3,介质与导体的边界条件:e n E =O ;e n D = \若导体周围是各向同性的线性介质,则;:n 静电场的能量:孤立带电体的能量:W e =IQ1GQ 2 C2库仑定律:F qq 2e r4 a : rdW eq蛋数dl 一dW e常电位系统:F= ----------------- g 数dl2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q 位于q I 及q 2的连线上时,系统处于平衡状态,试求q ■的大小及位置。

电磁学新概念物理教程(赵凯华)第二章习题课

电磁学新概念物理教程(赵凯华)第二章习题课
w
a d
s
R b c
ò
L
r r B ×dl = m 0
( L内 )
I
B ab=m0 sRw ab B= m0 sRw 方向向右
第二章 习题课
6.一无限长圆柱形铜导体(磁导率m0),半径为R,通有均匀 分布的电流I。今取一矩形平面S(长为1米,宽为2R),位置 如图中画斜线部分所示,求通过该矩形平面的磁通量。 v v dr 解: d = B× d = Bdr F B S I r v v FB =òò B× d S s r r R r 2R r 1m S = B × d + S B × d S
w d q w s 2 rdr = ws rdr p d = = I d = q 2 p T 2p
2 3 I r 磁矩:dm =pr d = pws r d ω r v r L m 受到磁力矩:d =d B A ' 3 d =d B= pws r d L m rB R pswR4B L= ò d = pws Bò r3d = L r 方向垂直纸面向内 0
3 I 29 = = 28 10 m -3 . \n = -19 -4 - 2 -5 . . evS 16 10 67 10 10 10
第二章 习题课 9.均匀带电刚性细杆AB,电荷线密度为l,绕垂直于直线 的轴O以w角速度匀速转动(O点在细杆AB延长线上) 求:(1)O点的磁感应强度;(2)磁矩;(3)若a>>b,求B 及p 0 m 解:(1)对r~r+dr段,电荷dq=ldr,旋转形成圆电流,则 dq w lw dI = = dr 2 p 2 p m dI lwm 0 dr dB = 0 = × 它在O点的磁感应强度 0 2 r 4 p r lwm0 a+bdr lm 0w a+ b B = 0 òa r = 4p ln a 4 p 1 2 2 (2) dp = pr dI = lw r dr m 2 a+ b 1 p = ò d p = ò lw 2 dr = lw [( + b 3 - a3]/6 r a ) m m a 2 mw lb m 0wq a+b b B = 0 × = (3)若a>>b,则 ln 0 a a 4 p a 4 a p

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。

利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。

通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。

至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。

讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。

介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。

关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。

介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。

至于电容和部分电容一节可以从简。

重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。

电磁场与电磁波第四版第二章部分答案

电磁场与电磁波第四版第二章部分答案

电磁场与电磁波第四版第二章部分答案习题二无限长线电荷通过点且平行于z轴,线电荷密度为ρ?,试求点P(x,y,x)处的电场强度E。

解:线电荷沿z方向为无限长,故电场分布与z无关,设P位于z=0的平面上。

则R=ex x?6 +ey y?8 , R = (x?6)2+(y?8)2ex x?6 +ey y?8 ReR== R (x?6)2+(y?8)2则P点的E为ρ?ρ?ex x?6 +ey y?8 RE=eR=?=? 222πε0RR2πε0R2πε0(x?6)+(y?8)2.10半径为a的一个半圆环上均匀分布着线电荷ρ?,如图所示。

试求垂直于半圆环所在轴线的平面上z=a处的电场强度E(0,0,a)。

解:′P(0,0,a)的位置矢量是 =eza,电荷元ρ?dl=ρ?ad?, =eacos?+x′rrρ?eyasin?′′′ ? =ea?eacos??easin? zxy′rr= a2+ acos?′ 2+ asin?′ 2= 2aez? exacos?′+eyasin?′ dE=d?=d?4πε0 2a 3a8 2 πε0ρ?E 0,0,a = dE = =ρ?8 2 aπε0? ρ?a rr′ez? exacos?′+eyasin?′ d? π2π?2ρ?(ezπ?ex2)8 2 aπε0一个很薄的无限大导体带电平面,其上的面电荷密度为ρs。

试证明:垂直于平面的z轴上z=z0处的电场强度中,有一半是平面上半径为 3z0的圆内的电荷产生的。

解:取面积元ds′=r′d?′dr′,dq=ρsds′=ρsr′d?′dr′,电荷元在z=z0处产生的电场强度dE=ρsr′d?′dr′4πε0ezz0+err′ z0322+r′ 2 d?′整个平面在z=z0处的电场强度为E=ρsz0=?ez2ε0当r ∞时,E=exρs2ε0ρs4πε0r2πezz0+err′′′rdr 3002z02+r′ 21 z02+r2ρs1+ez2ε02,当r= 3z0时,E′=ezρs4ε0=E21半径为a的导体球形体积内充满密度为ρ r 的体电荷。

电磁场与电磁波课后习题答案 第二章

电磁场与电磁波课后习题答案 第二章

1-1. (1) 叙述库仑定律,并写出数学表达式。

(2)电荷之间的作用力满足牛顿第三定律吗?请给出证明。

解:(1)库仑定律内容为:真空中两个静止的点电荷之间的相互作用力的大小,与它们的电量q 和'q 的乘积成正比,与它们之间距离R 的平方成反比。

作用力的方向沿两者连线的方向。

两点电荷同号时为斥力,异号时为吸力。

所以:(2)电荷之间的作用力不满足牛顿第三定律,请看下面的例证:1q 以速度1v 运动,q 2以速度2v运动。

如图1-2所示。

此时,2q 在1q 处产生有电场2E和磁场2H 。

而1q 在2q 处也产生电场1E和磁场1H 。

但因2q 在1q 处产生的磁场方向与1v 平行。

故由洛仑兹公式知,q 1所受的力为 )(2120112121N E q H v q E q F=⨯+=μ 只有电场力。

但q 1对q 2的作用力为:10221112H v q E q Fμ⨯+= (N) 既有电场力,又有磁场力,所以两者不相等。

1-2 (1) 洛仑磁力表达式中,哪部分做功,哪部分不做功,为什么? (2) 洛仑兹力满足迭加原理吗?为什么? 解: (1) 洛仑磁力公式为H v q E q F0μ⨯+= (N )洛仑兹力做的功为⎰⋅=csd F W,其中dt v s d = 所以有:⎰⋅=cs d F W=⎰∆⋅tdt v F=⎰∆⨯+tdt v H v q E q)(0μ=⎰⎰∆∆⋅⨯+⋅ttdt v H v q dt v E q)(0μ=⎰∆⋅tdt v E q(J)其中使用了矢量恒等式()()BA C CB A ⨯⋅=⨯⋅所以,洛仑兹力作的功为⎰∆⋅=tdt v E q W=)(J sd E qC⎰⋅所以,洛仑兹力中,因为E q 与电荷的做功无关。

而H v q0μ⨯部分总是与电荷的运动方向垂直,故E q 部分做功,而H v q0μ⨯部分不做功。

(2)因为电荷受力与E 和H间都是线性关系,所以,洛仑兹力满足迭加原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁学第二章习题答案习题五(第二章 静电场中的导体和电介质)1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳内表面所带的电量为 - q ,外表面所带电量为 q +Q 。

2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小204/r Q E πε=,球壳的电势R Q V 04/πε=。

3、导体静电平衡的必要条件是导体内部场强为零。

4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。

现使它们互相接触,则这两个金属球上的电荷( B )。

(A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多5、半径分别R 和r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B )(A) R/r (B) r/R (C) R 2/r 2 (D) 16、有一电荷q 及金属导体A ,且A 处在静电平衡状态,则( C )(A)导体内E=0,q 不在导体内产生场强; (B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。

7、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量Q ,在球壳空腔内距离球心为r 处有一点电荷q ,设无限远 处为电势零点。

试求: (1)球壳外表面上的电荷;(2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。

解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a <R <b )的高斯球面S,由高斯定理01εqq dS E S +=⋅⎰⎰ ,根据导体静电平衡条件,当a <R <b 时,0=E。

则0=⋅⎰⎰SdS E ,即01=+q q ,得q q -=1根据电荷守恒定律,金属球壳上的电量为21q q Q +=q Q q Q q +=-=∴12(2)在内表面上任取一面元,其电量为dq ,在O 点产生的电势adq dV o πε411=q 1在O 点产生的电势aq aq adq dV V o o o πεπεπε4441111-====⎰⎰内内(3) 同理,外球面上的电荷q 2在O 点产生的电势bqQ bq V o o πεπε4422+== 点电荷q 在O 点产生的电势rq V o q πε4=∴ O 点的总点势o q V V V V πε41210=++=(bq Q a q r q ++-) 8、点电荷Q 放在导体球壳的中心,球的内、外半径分别为a 和b ,求场强和电势分布。

解:根据静电平衡条件,球壳内、外球面分别带 电量-Q 、Q 。

其场强分布为:2014/ , r πεQ E a r =<0 , 2=<<E b r a2034/ , r πεQ E b r =>电场中的电势分布:)111(4 ,03211ba r Qdr E dr E dr E V a r bbaar+-=++=<⎰⎰⎰∞πεb Q dr E V b r a b0324 ,πε==<<⎰∞rQdr E V b r r0334 ,πε==>⎰∞习题六(第二章 静电场中的导体和电介质)1、分子的正负电荷中心重合的电介质叫 无极分子 电介质,在外电场的作用下,分子正负电荷中心发生相对位移,形成 位移极化 。

2、一平板电容器始终与端电压一定的电源相联,当电容器两极板间为真空时,电场强度为 0E,电位移为0D,而当极板间充满相对电容率为r ε的各向同性均匀电介质时,电场强度为E ,电位移为D,则( B )(A)00 , /D D E E r ==ε (B)00 , D D E E rε==(C)000/ , /εεD D E E r== (D)00 , D D E E ==3、两个完全相同的电容器,把一个电容器充电,然后与另一个未充电的电容器并联,那么总电场能量将( C )(A)增加 (B)不变 (C)减少 (D)无法确定4、一空气平行板电容器,接电源充电后电容器中储存的能量为W 0,在保持电源接通的条件下,在两极板间充满相对电容率为r ε的各向同性均匀电介质,则该电容器中储存的能量W 为( A )(A) 0W W r ε= (B) r W W ε/0= (C) 0)1(W W r ε+= (D) 0W W =5、一平行板电容器,其极板面积为S ,间距为d ,中间有两层厚度各为d 1和d 2,相对电容率分别为εr1和εr2的电介质层(且d 1+d 2 = d )。

两极板上自由电荷面密度分别为±σ,求:(1)两介质层中的电位移和电场强度; (2)极板间的电势差;(3)电容解:(1) 电荷分布有平面对称性,可知极板间D 是均匀的,方向由A 指向B 。

⎰⎰⎰⎰⎰⎰⎰⎰⋅+⋅+⋅=⋅右侧左S d D S d D S d D S d D S 111100S S D S d D ∆σ∆=⋅=⋅++=⎰⎰左∴ σD =1⎰⎰⎰⎰⎰⎰⎰⎰⋅+⋅+⋅=⋅右侧左S d D S d D S d D S d D S2⎰⎰⎰⎰+-=右左dS D dS D 2102221=+⋅-=S D S D ∆∆ ∴ σD D ==21由σεσε====222111 E D E D ,得 2022210111 r r D E D E εεσεεεσε====, 且有 121221 r r εεεεE E == (2) 12112012111d E d E l d E l d E V V d d dd B A +=⋅+⋅=-⎰⎰+⎪⎪⎭⎫ ⎝⎛+=2211εd εd σ210211222110)(r r r r r r εεεσd εd εεd εd εσ+=⎪⎪⎭⎫ ⎝⎛+= (3) B A V V q C -=B A V V S σ-=2112210d εd εS εεεr r r r +=0211221C d εd εdεεr r r r +=6、如图,在半径为a 的金属球外有一层外半径为b 的均匀电介质球壳,电介质的相对电容率为εr ,金属球带电Q ,求:(1)介质层内外的场强大小; (2)介质层内外的电势; (3)金属球的电势; (4)电场的总能量; (5)金属球的电容。

解:(1)电量Q 均匀分布在半径为a 的球面上,作一半径为r 的球面为高斯面,利用高斯定理可求得场强分布r < a : 1=0E ; a < r < b : 220=4r Q E r πεε; r > b : rQ E 034πε=(2) r < a : bQb a Qdr E dr E dr E V r b ba ar 0032114)11(4πεεπε+-=++=⎰⎰⎰∞a < r <b : bQ b r Qdr E dr E V r bb r003224)11(4πεεπε+-=+=⎰⎰∞r > b : rQ dr E V r0334πε==⎰∞(3) 金属球的电势 aba b Q b Qb a QV V r r r επεεπεεπε00014)]1([4)11(4-+=+-==球(4) ab a b Q ab a b Q Q QV W r r r r επεεεπεε0208)]1([4)]1([2121-+=-+==球(5) )1(40-+==r r a b ab V Q C εεπε球或由221球CV W =得: 2220022)]1([)4(4)]1([2-+-+==r r r r a b Q ab ab a b Q V W C εεπεεπεε球)1(40-+=r r a b ab εεπε 7、一球形电容器,内球壳半径为R 1外球壳半径为R 2,两球壳间充满了相对电容率为r ε的各向同性均匀电介质,设两球壳间电势差为V 12,求: (1)电容器的电容;(2)电容器储存的能量。

解:(1) 设内外极板带电量为±Q 作与球壳同心的任意半径r 的高斯球面由 ==⋅=⋅∑⎰⎰q r πD S d D S 24得 =D0, ( r > R 2 )0, ( r < R 1 ) r πQ 4, ( R 1< r < R 2) 0, ( r > R 2 )0, ( r < R 1 )-r επεQ r 04, ( R 1< r < R 2 ) 0, ( r < R 1 )==rεεDE 0∴∵ 21012214)(21R R R R Q dr E V V r R R επε-=⋅=-⎰∴ 12210214R R R R V V Q C r -=-=επε (2) 12212210212221R R V R R CV W r -==επε 习题七(第二章 静电场中的导体和电介质)1、一个平行板电容器的电容值C =100Pf ,面积S =100cm 2,两板间充以相对电容率为εr =6的云母片,当把它接到50V 的电源上时,云母中电场强度大小E =9.42×103v/m ,金属板上的自由电荷量q =5.00×10-9C 。

解:)m (1031.5300-⨯==⇒=CS d dS C r r εεεε,)m/V (1042.91031.55033⨯=⨯==-d V E )C (1000.55010100912--⨯=⨯⨯==CV q2、一空气平行板电容器,电容为C ,两极板间距离为d ,充电后,两极板间相互作用力为F ,则两极板间的电势差为C Fd 2,极板上的电荷量大小为FCd 2。

解:CFdV dCV CV d V Q E F 222122=⇒===,FCd CFdCCV Q 2 2===3、一平行板电容器,两极板间电压为U 12,其间充满相对电容率为εr 的各向同性均匀电介质,电介质厚度为d ,则电介质中的电场能量密度为221202d U w r εε=。

解:将 d U E /12= 代入 20E w r εε=得结果。

4、如图在与电源连接的平行板电容器中,填入两种不同的均匀的电介质,则两种电介质中的场强相等,电位移不相等。

(填相等或不相等) (解法见课件)5、平行板电容器在接入电源后,把两板间距拉大,则电容器( D )(A)电容增大; (B)电场强度增大;(C)所带电量增大 (D)电容、电量及两板内场强都减小。

解:d 增大,V 不变,由d S C /ε=,CV q =和d V E /=可得结果D6、一真空平行板电容器的两板间距为d ,(1)若平行地插入一块厚度为d/2的金属大平板,则电容变为原来的几倍?(2)如果插入的是厚度为d/2的相对电容率为εr =4的大介质平板,则电容变为原来的几倍? 解:原电容器的电容d S C /00ε= (1) 电容器由两个电容器串联而成101d S εC =,202d SεC =,(d 1+d 2=d /2) 121212000001111122d d d d d C C C S S S S C εεεε+=+=+=== ∴ 02C C = (2) 由电荷分布的平面对称性可知电位移垂直极板从A 到B在两极板间的三个区域分别作三个高斯柱面S 1、S 2、S 3。

相关文档
最新文档