代数变形
2023届高考数学二轮复习导数经典技巧与方法:代数变形

第11讲代数变形知识与方法代数变形是利用代数知识实施形变而质不变的一种手段,将一个问题等价地变为另一个问题,由一种复杂的形式转变为一种简单的形式,将整个数学问题转变为一个较为容易处理或熟悉的问题.在处理含对数或指数式时,有如下两个技巧:1.对数处理技巧——对数靠边走设f(x)是可导函数,不难得到(f(x)lnx)′=f′(x)lnx+f(x)1x,若f(x)不是常函数,则所得的导数式中含有lnx,往往需要再次甚至多次求导.对于这类含有对数式lnx的不等式问题时,通常要让对数型的函数分离出来,把对数型函数前面所乘的代数式或分母中的代数式处理掉,让对数型函数形成单独的一项,这样再对新函数求导,只需要求导一次即可求出函数的极值点,从而避免了多次求导的麻繁.这种让对数函数“孤军奋战”的代数变形过程,我们称其为对数处理技巧,即“对数靠边走”.相关的转化如下:情形1设f(x)>0,f(x)lnx+g(x)>0⇔lnx+g(x)f(x)>0;情形2设f(x)≠0,f(x)lnx+g(x)=0⇔lnx+g(x)f(x)=0.点睛意到:(f(x)lnx+g(x))′=f′(x)lnx+f(x)x+g′(x)(lnx+g(x)f(x))′=1x+(g(x)f(x))比较(1)(2)两式中等号右边的部分,可知(1)式含有对数lnx,但(2)式中不含对数lnx,这将为后续的解题带来方便.2.指数处理技巧——指数找朋友在证明或处理含指数型函数的不等式时,通常要让指数型函数乘以或除以一个多项式函数(让多项式除以指数也一样),这样就很容易求出新函数的极值点,从而可以避免多次求导.这种相当于给指数函数寻找了一个合作伙伴的变形过程,我们称之为指数处理技巧,即“指数找朋友”.相关的转化如下:情形1设f(x)>0,则f(x)+g(x)e x>0⇔g(x)f(x)e x+1>0;情形2设g(x)>0,则f(x)+g(x)e x>0⇔f(x)g(x)e−x+1>0;情形3设f(x)≠0,则f(x)+g(x)e x=0⇔g(x)f(x)e x+1=0;情形4设g(x)≠0,则f(x)+g(x)e x=0⇔f(x)g(x)e−x+1=0.因为(f(x)e x)′=(f(x)+f′(x))e x,(f(x)e−x)′=(f′(x)−f(x))e−x.所以(f(x)e x)′>0⇔(f(x)+f′(x))e x>0⇔f(x)+f′(x)>0, (f(x)e−x)′>0⇔(f′(x)−f(x))e−x>0⇔f′(x)−f(x)>0.使用上述变形,可以减少求导次数,优化解题过程.典型例题对数靠边走【例1】当x>1时,求证:(x+1)lnx>2(x−1).【解析】因为x>1,所以(x+1)lnx>2(x−1)⇔lnx>2(x−1)x.令f(x)=lnx−2(x−1)x (x>1),f′(x)=1x−4(x+1)2=(x−1)2x(x+1)2>0,所以f(x)在(1,+∞)上为增函数.所以f(x)>f(1)=0,所以x>1时,lnx>2(x−1)x+1,即(x+1)lnx>2(x−1).【例2】若不等式xlnx⩾a(x−1)对所有x⩾1成立,求实数a的取值范围.【解析】原问题等价于lnx−a(x−1)x ⩾0对所有的x⩾1都成立.令f(x)=lnx−a(x−1)x(x⩾1),则f′(x)=x−ax2.(1)当a⩽1时,f′(x)=x−ax2⩾0恒成立,即f(x)在[1,+∞)上单调递增,因而f(x)⩾f(1)=0恒成立;(2)当a >1时,令f ′(x)=0,得x =a,f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,所以f(x)min =f(a)=lna −a +1<0,不符合题意. 综上所述,实数a 的取值范围是(−∞,1].【例3】设二次函数g(x)对任意实数x 都满足g(x −1)+g(1−x)=x 2−2x −1,且g(1)=−1,令f(x)=g (x +12)+mlnx +98(m ∈R,x >0). (1)求g(x)的表达式;(2)设1<m ⩽e,H(x)=f(x)−(m +1)x .证明:对任意x 1,x 2∈[1,m],恒有|H (x 1)−H (x 2)|<1【解析】(1)设g(x)=ax 2+bx +c ,所以g(x −1)+g(1−x)=a(x −1)2+b(x −1)+c +a(1−x)2+b(1−x)+c =2a (x 2−2x +1)+2c =2ax 2−4ax +2a +2c =x 2−2x −1. 比较两边的系数得{2a =1,−4a =−2,2a +2c =−1,所以{a =12,c =−1,所以g(x)=12x 2+bx −1. 又因为g(1)=−1,所以12+b −1=−1,所以b =−12,所以g(x)=12x 2−12x −1.(2)H(x)=12(x +12)2−12(x +12)−1+mlnx +98−(m +1)x =12(x 2+x +14)−12x −14−1+mlnx +98−mx −x =12x 2−(m +1)x +mlnx .H ′(x)=x −(m +1)+m x=x 2−(m+1)x+mx=(x−1)(x−m)x<0.所以H(x)在[1,m]上单调递减,所以H(x)min =H(m)=12m 2−(m +1)m +mlnm =−12m 2−m +mlnm ,H(x)max =H(1)=12−m −1=−12−m .所以|H (x 1)−H (x 2)|⩽H(x)max −H(x)min =12m 2−mlnm −12.下面只需证12m 2−mlnm −32<0.(可采用对数靠边走,将对数lnm 独立出来)即证明12m −lnm −32m<0.令g(m)=12m −lnm −32m,g ′(m)=12−1m+32m2=m 2−2m+32m 2>0.所以g(m)在(1,e]上单调递增,所以g(m)⩽g(e)=12e −1−32e =e 2−2e−32e.而e 2−2e −3<2.82−2×2.8−3=2.24−3<0, 所以g(e)<0,所以g(m)<0,即|H (x 1)−H (x 2)|<1.【点睛】上面解法的优势在于,将lnx 的系数化为“1”后,就可以有效避免求导后再出现对数函数,避免了隐零点出现,这是解决对数型函数的精华所在.指数找朋友【例4】已知函数f(x)=lnx +x −1(a ∈R).求证:e −x +xf(x)⩾0. 【解析】解法1:以指数处理技巧为主线 要证e −x +xf(x)⩾0,只需证1+xe x f(x)⩾0. 令g(x)=1+e x (xlnx +x 2−x )(x >0),g ′(x)=e x (xlnx +x 2−x +lnx +1+2x −1)=e x (x +1)(lnx +x). 令ℎ(x)=lnx +x ,在(0,+∞)上单调递增, 又因为ℎ(1)=1>0,ℎ(1e )=−1+1e<0,所以存在t ∈(1e ,1),使得ℎ(t)=lnt +t =0,即lnt =−t ,即e t =1t . 当x ∈(0,t)时,ℎ(x)<0,g ′(x)<0,g(x)单调递减; 当x ∈(t,+∞)时,ℎ(x)>0,g ′(x)>0,g(x)单调递增.所以g(x)⩾g(t)=1+e t (tlnt +t 2−t )=1+lnt +t −1=0, 所以1+xe x f(x)⩾0,即e −x +xf(x)⩾0. 解法2:以对数的处理技巧为主线要证e −x +xf(x)⩾0成立,只需证e −x x+f(x)⩾0即可.令g(x)=e −x x+lnx +x −1(x >0),则g ′(x)=−(x+1)x 2e x+1x +1=(x+1)(xe x −1)x 2e x,令ℎ(x)=xe x −1,ℎ′(x)=(x +1)e x >0,所以ℎ(x)单调递增; 又因为ℎ(1)=e −1>0,ℎ(12)=√e 2−1<0,所以存在t ∈(12,1),使得ℎ(t)=te t −1=0,即e t =1t ,即t =ln1t =−lnt , 当x ∈(0,t)时,ℎ(x)<0,g ′(x)<0,g(x)单调递减; 当x ∈(t,+∞)时,ℎ(x)>0,g ′(x)>0,g(x)单调递增. 所以,g(x)⩾g(t)=e −t t+lnt +t −1=lnt +t =0,所以e −x x+f(x)⩾0,即e −x +xf(x)⩾0.解法3:虚设零点+同构令g(x)=e −x +x(lnx +x −1)=e −x +xlnx +x 2−x(x >0), g ′(x)=−e −x +lnx +2x 在(0,+∞)上单调递增,且g ′(1e )=−e−1e+ln1e +2e =−e−1e−1+2e <0,g ′(1)=−e −1+ln1+2=2−1e >0.所以存在t ∈(1e ,1),使得g ′(t)=−e −t +lnt +2t =0,所以e −t =lnt +2t,lnt +t =e −t −t ,即lnt +e lnt =e −t +(−t). 令G(x)=e x +x 在(0,+∞)单调递增,且G(lnt)=G(−t),所以lnt =−t . 当x ∈(0,t)时,g ′(x)<0,g(x)单调递减; 当x ∈(t,+∞)时,g ′(x)>0,g(x)单调递增.g(x)⩾g(t)=e −t +tlnt +t 2−t =lnt +2t +tlnt +t 2−t =(1+t)(lnt +t)=0, 所以e −x +xf(x)⩾0.【点睛】解法3看似行云流水,思维直接,但是仔细品味,暗流汹涌,思维含量非常大,主要表现在以下三个方面:1.没有明显的零点,需要利用函数的单调性以及零点存在性定理,虚设零点;2.虚设零点后,出现了指数、对数以及多项式同时存在的情况,这样难以利用零点的关系式一次把指数以及对数全部消除;3.本题目需要较强的技巧性构造同构式,借助于单调性,找出对数与多项式的关系,万一想不到这一点,这道题目就不容易处理.实际上,本题之所以难,是因为指数、对数以及多项式的同时出现,将题目提升了一个难度.对于这种指、对混合形式出现的试题,利用指数或对数的处理技巧,可以帮助我们提高“求导效率”,将指数与多项式结合起来,或者将对数分离出来.【例5】已知函数f(x)=ax 21+lnx (a ≠0),e 是自然对数的底数.若f(x)的极大值为−2,求不等式f(x)+e x <0的解集.【解析】解法1:巧用对数、指数处理技巧对方程变形 f(x)的定义域为(0,e −1)∪(e −1,+∞), 由f ′(x)=2ax(1+lnx)−ax 2⋅1x(1+lnx)2=2ax(12+lnx)(1+lnx)2.当a >0时,f(x)在(0,e −1)上单调递减;在(e −1,e −12)单调递减;在(e −12,+∞)上单调递增;显然f(x)有极小值,无极大值.显然,当a <0时,f(x)有极大值,此时f (e −12)=−2,所以a =−e ,此时f(x)=−ex 21+lnx ,−ex 21+lnx +e x <0. 显然,当x ∈(0,1e ),−ex 21+lnx +e x >0,矛盾.故当x ∈(1e ,+∞)时,e x <ex 21+lnx ,即1+lnx −ex 2e x <0(对数靠边走)令F(x)=1+lnx −ex 2e x,F ′(x)=1x −2x−x 2e x−1.下证F ′′(x)>0,ex−1⩾2x2−x 3,2x 2−x 3e x−1⩽1(指数找朋友) 令G(x)=2x 2−x 3e x−1,G ′(x)=x (x 2−5x+4)e x−1=x(x−1)(x−4)e x−1.令G ′(x)=0,解得x =1,或x =4,所以G(x)权大值=G(1)=1,G(x)权小鹪=G(4)=−32e 3<0.当x >4时,G(x)<0,所以G(x)⩽1,所以F ′(x)⩾0,F(x)在(1e ,+∞)上单调递增. 因为F(1)=0,所以当1e <x <1时,F(x)<0,当x >1时,F(x)>0. 所以f(x)+e x <0的解集为(1e ,1).解法2:构造同构式当x ∈(0,1e )时,−ex 21+lnx +e x >0,矛盾;当x ∈(1e,+∞)时,−x 21+lnx+e x−1<0,所以x1+lnx >e x−1x=e x−11+lne x−1(构造同构式) 令ेF(x)=x 1+lnx,F ′(x)=1+lnx−1(1+lnx)2=lnx (1+lnx)2.当1e <x <1时,F ′(x)<0,F(x)单调递减;由于x <e x−1<1,所以F(x)>F (e x−1),即x1+lnx >e x−11+lne x−1,满足题意;当x ⩾1时,F ′(x)⩾0,F(x)单调递增,而e x−1⩾x ⩾1,所以F(x)⩽F (e x−1),矛盾. 综上可知,不等式f(x)+e x <0的解集为(1e ,1).【例6】求证:e x −2x >x 2lnx . 【解析】解法1:要证e x−2x>x2lnx,只需证e x−2xx2−lnx>0(对数靠边走)设f(x)=e x−2xx2−lnx(x>0),f′(x)=(x−2)(e x−x)x3,令f′(x)=0,得x=2.当x∈(0,2)时,f′(x)<0,f(x)单调递减;当x∈(2,+∞)时,f′(x)>0,f(x)单调递增.所以f(x)min=f(2)=e2−44−ln2=e2−(4+4ln2)4.由于e2>2.72=7.29,4+4ln2=4+ln16<4+lne3=7,所以e2−(4+4ln2)>0,从而不等式得证.解法2:要证e x−2x>x2lnx,只需证x2lnx+2xe x<1.设g(x)=x 2lnx+2xe x,则g′(x)=(2−x)(xlnx+1)e x,又因为xlnx+1>0(证明略),从而当x∈(0,2)时,g(x)单调递增,x∈(2,+∞)时,g(x)单调递增.从而g(x)max=g(2)=4ln2+4e2<3+4e2<1,从而原不等式得证.指对处理技巧的综合运用【例7】已知函数f(x)=e x−a(x−1)(a∈R,e为自然对数的底数).(1)若存在x0∈(1,+∞),使得f(x0)<0,求实数a的取值范围;(2)若f(x)有两个零点x1,x2.证明:x1+x2>x1x2.【解析】(1)解法1;指数变对数,方便求导令ेt=e x,g(t)=t−alnt+a,当x>1时,t>e.原题等价于g(t)=t−alnt+a,存在t0∈(e,+∞),使得g(t0)<0,求a的取值范围.g′(t)=1−at =t−at,令g′(t)=0,得t=a.当a⩽e时,g′(t)⩾0,g(t)单调递增,所以g(t)⩾g(e)=e−a+a=e>0,不符合题意;当a<e时,g(t)在(e,a)上单调递减,在(a,+∞)上单调递增,所以g(t)min=g(a)=a−alna+a=a(2−lna).因为存在t0∈(e,+∞),使得g(t0)<0,所以g(a)=a(2−lna)<0,解得a>e2.综上知a>e2.解法2:指数处理技巧e x−a(x−1)<0⇔g(x)=1−ae−x(x−1)<0,g′(x)=ae−x(x−1)−ae−x=ae−x(x−2),g′(2)=0.当a⩽0时,g(x)在(1,2)上单调递增,在(2,+∞)上单调递减,g(1)=1>0,当x→+∞时,g(x)=1−a x−1e x→1,所以g(x)⩾min{g(1),lim x→+∞g(x)}>0,不合题意.当a>0时,g(x)在(1,2)上单调递减,在(2,+∞)上单调递增,所以g(x)⩾g(2)=1−ae2.因为存在x0∈(1,+∞),使得f(x0)<0,所以g(2)=1−ae2<0,解得a>e2.综上知a>e2.解法3:直接法f′(x)=e x−a.(1)若a⩽0,因为e x>0,则f′(x)>0,此时f(x)在R上单调递增.当x∈(1,+∞)时,f(x)>f(1)=e>0,不合题意;(2)若a>0,由f′(x)>0,得e x>a,即x> lna,则f(x)在(lna,+∞)上单调递增,在(−∞,lna)上单调递减,所以f(x)min =f(lna)=e lna −a(lna −1)=a(2−lna),根据题意,有a(2−lna)<0,则lna >2,即a >e 2,且此时lna >ln 2>1, 所以a 的取值范围是(e 2,+∞). 解法4:分离变量法当x ∈(1,+∞)时,由f(x)<0,得e x <a(x −1),即a >e xx−1.设g(x)=e x x−1(x >1),根据题意,当x ∈(1,+∞)时,a >g(x)能成立,则a >g(x)min . 因为g ′(x)=(x−2)e x (x−1)2(x >1),则当x >2时,g ′(x)>0,g(x)单调递增; 当1<x <2时,g ′(x)<0,g(x)单调递减.所以,g(x)min =g(2)=e 2,所以a 的取值范围是(e 2,+∞). (2)由题设,f (x 1)=f (x 2)=0,即{e x 1=a (x 1−1),e x 2=a (x 2−1),则e x 1+x 2=a 2(x 1−1)(x 2−1),即e x 1+x 2=a 2(x 1x 2−x 1−x 2+1).要证x 1+x 2>x 1x 2,只需要证e x 1+x 2<a 2,即证x 1+x 2<2lna ,即证x 1<2lna −x 2. 不妨设x 1<x 2,由(1)可知a >e 2,且x 1<lna <x 2,从而2lna −x 2<lna . 因为f(x)在(−∞,lna)上单调递减,所以只要证f (x 1)>f (2lna −x 2),即证f (x 2)>f (2lna −x 2). 设ℎ(x)=f(x)−f(2lna −x),则ℎ′(x)=f ′(x)+f ′(2lna −x)=e x −2a +e 2lna−x =e x +a 2e x −2a ⩾2√e x ⋅a 2e x −2a =0, 所以ℎ(x)在R 上单调递增.因为x 2>lna ,则ℎ(x 2)>ℎ(lna)=f(lna)−f(lna)=0,即f (x 2)−f (2lna −x 2)>0,即f (x 2)>f (2lna −x 2),所以原不等式成立.【点睛】有些问题用直接法做,反而会更简单,比如本例第(1)小问,在使用“指数处理技巧”后,刧必须要使用洛必达法则才能解决问题.从另外一个层面上来讲,若指数、对数函数同时出现的能成立问题、恒成立问题常见的处理方法主要有:1.设而不求,隐零点法;2.一凸一凹,分离函数法;3.化直为曲,切线法或放缩法;4.必要性探路,缩小范围法.典型例题1.证明:当x>0时,e x>x2.【解析】要证e x>x2,只需证:x2e x<1令f(x)=x 2e x ,f′(x)=2xe x−e x⋅x2e2x=x(2−x)e x当0<x<2时,f′(x)>0,f(x)单调递增;当x>2时,f′(x)<0,f(x)单调递减所以f(x)max=f(2)=4e2<1,所以f(x)<1,即x2e x<1,所以e x>x2.2.已知函数f(x)=e x−sinx−cosx,g(x)=e x+sinx+cosx.(1)证明:当x>−5π4时,f(x)⩾0;(2)若g(x)⩾2+ax,求a.【解析】(1)f(x)⩾0⇔sinx+cosxe x⩽1,记ℎ(x)=sinx+cosxe x ,ℎ′(x)=−2sinxe x.(1)当x∈(−5π4,−π)时,ℎ′(x)<0;x∈(−π,0),ℎ′(x)>0;x∈(0,π),ℎ′(x)<0.又ℎ(−5π4)=0,ℎ(0)=1,所以在(−54π,π)上,ℎ(x)⩽ℎ(0)=1;(2)当x∈[π,+∞)时,e x⩾eπ,而sinx+cosx⩽√2,所以e x⩾sinx+cosx,则有f(x)⩾0.综合(1)(2)可知当x>−5π4时,不等式f(x)⩾0成立.(2)由题可知H(x)=g(x)−(ax+2)=e x+sinx+cosx−ax−2⩾0恒成立,且H(0)=0,所以H(x)⩾H(0),故x=0是H(x)的最小值点,也是极小值点.所以H′(0)=0,又H′(x)=e x+cosx−sinx−a,所以H′(0)=2−a=0,故a=2.下证当a=2时不等式成立.H(x)⩾0⇔sinx+cosx−2x−2e x+1⩾0记m(x)=sinx+cosx−2x−2e x +1,m′(x)=2(x−sinx)e x.易得当x>0时,x−sinx>0;当x<0时,x−sinx<0.所以当x<0时,m′(x)<0,m(x)单调递减;当x>0时,m′(x)>0,m(x)单调递增.所以m(x)⩾m(0)=0.故H(x)⩾0成立.。
不等式证明的基本方法与策略总结

不等式证明的基本方法与策略总结不等式证明在数学研究、数学建模以及各种工程问题中都有重要的应用价值。
同时,不等式证明也是各种数学竞赛中的重头戏。
本文将总结不等式证明的基本方法与策略,以便读者更好地理解不等式证明的思路和套路。
一、基本方法1. 套路化:对于一些经典不等式如柯西不等式等,可以先了解它的证明方法,将其归纳总结出来,然后通过类比去证明其他不等式。
2. 变形:对于一个不等式,可以通过一些代数变形,将其转换为其他形式,更容易被证明出来。
如将两个不等式的左侧相乘,右侧相乘,再相减,得到新的不等式。
或者将一个不等式的左右两侧都平方,再相减,也可以得到新的不等式。
3. 等价转换:将不等式转化为等价形式,然后再利用已有的定理进行证明。
如将一个不等式的等号两侧同时加上一个数,就可以转化为另一个不等式,然后再进行证明。
4. 递推:递推是一种常用的证明方法,它可以将一个复杂的不等式转化为一个比较简单的不等式,然后通过多次递推证明出原不等式。
递推的关键在于找到一个递推式和一个初始条件。
二、基本策略1. 二分法:二分法是一种常用的证明策略,它将一个不等式的左右两侧分别处理,然后比较两侧的大小关系得到证明的结论。
2. 置换对称法:置换对称法指的是将一组变量按照一定的置换方式进行对称化,然后证明得到不等式后,再通过恢复变量之间的关系,得到原始不等式。
3. 大杀器策略:大杀器策略指的是使用一些已知的定理和公式来证明不等式。
如柯西不等式、阿贝尔不等式、托肯不等式等,这些定理都是不等式证明中比较重要的工具。
4. 分段讨论法:分段讨论法是一种常用的证明策略,适用于证明一些具有特定性质的不等式。
它将不等式的变量进行合理的分段,然后分别证明每个分段中的不等式。
三、小结总的来说,不等式证明的基本方法和策略都比较常用和灵活,在实际应用中需要根据具体问题进行灵活运用。
同时,在证明不等式之前,需要对不等式的基本定义和定理进行系统化的学习和掌握,才能更好地利用这些理论工具进行证明。
代数变形常用技巧及其应用

教学方法 课程教育研究·71·练习是为教学目的服务的,因此课堂练习的设计要实实在在地根据一节课的教学目标,从教学内容和学生实际两方面出发,围绕教学重点难点是练习设计的核心所在。
在此基础上,还要求教师在练习素材的选择上尽量贴近学生熟悉的现实生活,联系生活实际进行练习设计,使生活和数学融为一体。
这样的数学练习才能体会数学是“源于生活,用于生活”,切身感受数学可以解决实际问题,使他们对学习数学更感兴趣达到事半功倍的效果。
例如:学习了《方向与位置》的知识后,让学生将周围同学位置表示出来,或者尝试画出学校与自己家之间的位置与方向地图,并进行分析。
这样的实践性作业,不但培养了学生学习数学的兴趣,而且提高了学生分析问题,解决问题的能力。
2.“兴趣”与“乐趣” 现代教育心理学曾说:“当学生对学习产生兴趣时,学生的心理活动就会处于激活状态,富有满足感和愉悦感,从而积极性高涨,思维活跃,注意力集中,自主学习意识增强,反之,则产生消极情感”。
这就充分说明,我们设计的有效的课堂练习内容时应在“趣”上下工夫。
从学生的生活经验出发固然可以挖掘快乐因素,而练习的形式和对习题处理方法上下功夫更会有独特作用。
例如根据学生的年龄和心理特点,设计让学生“动一动”、“猜一猜”、“判一判”、“比一比”类能调动学生各个感官参与的练习。
这样生动有趣、直观形象的数学练习可以寓练于乐,练中生趣,既能减轻学生练习的心理负担,又能提高课堂练习的效率。
【案例】问:鸡兔同笼,有头45只,鸡兔各有多少? 师:“全班兔子立正!提起前面两足” 全班哄堂大笑。
师:“现在,兔子和鸡的足数一样多了,上面有45个头,下面该有多少只脚呢?”生齐声回答:“四十五乘以二等于90只” 师:“和先前比,少了多少只脚呢?” 生马上叫起来:“少了26只” 师:“这26只脚去哪了?” 生:“被兔子们提起来了” 师:“那你们现在知道笼子里有多少只兔子了吧?” 生:“有13只兔子”(三)提高课堂练习有效性要注重练习与发展同步 小学数学课堂练习的核心是“发展”,学生的知识面能否得到拓宽,能力能否得到发展,是有效练习首要考虑的因素。
解绝对值方程的方法

解绝对值方程的方法绝对值方程是初中数学中常见的一种方程类型,解绝对值方程的方法有多种,本文将介绍其中的两种常用方法:分情况讨论法和代数法。
一、分情况讨论法分情况讨论法是解绝对值方程的常用方法之一,它的基本思想是将绝对值的取值范围分成几个情况,然后分别讨论每种情况下的方程解。
举个例子来说明分情况讨论法的具体步骤。
假设我们要解方程|2x-1|=3。
首先,我们将绝对值的取值范围分为两种情况:当2x-1≥0时,|2x-1|=2x-1;当2x-1<0时,|2x-1|=-(2x-1)。
对于第一种情况,即2x-1≥0,我们可以得到2x-1=3,解得x=2。
对于第二种情况,即2x-1<0,我们可以得到-(2x-1)=3,解得x=-1。
因此,原方程的解为x=2和x=-1。
使用分情况讨论法解绝对值方程时,我们需要根据绝对值的取值范围进行合理的分情况讨论,并对每种情况下的方程进行求解。
这种方法的优点是思路清晰,能够将问题分解为若干个简单的子问题,但对于复杂的绝对值方程,可能需要分的情况较多,计算量较大。
二、代数法代数法是解绝对值方程的另一种常用方法,它的基本思想是利用绝对值的定义进行代数变形,从而得到方程的解。
举个例子来说明代数法的具体步骤。
假设我们要解方程|2x-1|=3。
根据绝对值的定义,当2x-1≥0时,|2x-1|=2x-1;当2x-1<0时,|2x-1|=-(2x-1)。
对于第一种情况,即2x-1≥0,我们可以得到2x-1=3,解得x=2。
对于第二种情况,即2x-1<0,我们可以得到-(2x-1)=3,解得x=-1。
通过代数变形,我们得到了与分情况讨论法相同的结果。
使用代数法解绝对值方程时,我们需要根据绝对值的定义进行代数变形,并将方程转化为一元一次方程进行求解。
这种方法的优点是计算量相对较小,适用于简单的绝对值方程。
综上所述,解绝对值方程的方法有分情况讨论法和代数法两种常用方法。
在实际应用中,我们可以根据具体情况选择合适的方法进行求解。
高一不等式恒成立问题3种基本方法

高一不等式恒成立问题3种基本方法文章标题:探讨高一不等式恒成立问题的三种基本方法在高中数学学习中,不等式恒成立问题是一个很常见的题型。
学生们通常需要掌握多种方法来解决这类问题,而这些方法通常可以分为三种基本类型。
本文将会详细介绍这三种基本方法,帮助读者全面理解这一数学概念。
1. 方法一:代数法我们来介绍代数法。
这种方法是在不等式两边进行代数变换,使得不等式变成一个容易解决的形式。
代数法通常包括加减变形、乘除变形以及平方去根等技巧。
以不等式ax+b>0为例,我们可以通过移项得到ax>-b,然后再除以a的正负来确定不等式的方向,从而得到不等式的解集。
代数法在解决不等式恒成立问题中应用广泛,能够快速简便地找到解的范围和规律。
2. 方法二:图像法我们介绍图像法。
图像法是通过绘制不等式所代表函数的图像,来直观地找出不等式恒成立的区间。
对于一元一次不等式ax+b>0,我们可以画出函数y=ax+b的图像,从而通过观察图像的上升或下降趋势来确定不等式的解集。
图像法能够帮助我们更直观地理解不等式的性质和范围,提高我们的思维逻辑和空间想象能力。
3. 方法三:参数法我们介绍参数法。
参数法是通过引入一个或多个参数,将不等式转化为一个有参数的等式问题,进而进行求解。
参数法的典型应用包括辅助角法、二次函数法等。
以不等式ax²+bx+c>0为例,我们可以引入Δ=b²-4ac,然后根据Δ的正负来确定不等式的解集。
参数法在解决不等式问题中能够简化问题的复杂度,将不等式的求解转化为参数的求解,从而提高解题的效率和准确度。
总结回顾通过对以上三种基本方法的介绍,我们可以发现它们各有特点,应用范围和解题思路有所不同。
代数法能够利用代数变形快速求解不等式问题,图像法能够帮助我们直观地理解不等式的性质,而参数法则能够将问题转化为参数的求解,提高解题的效率。
个人观点和理解在实际解题中,我们应该根据具体情况灵活选用这三种方法,结合题目的特点和自身的掌握程度来选择合适的解题方法。
浅谈数学中的代数变形技巧

/ (
)1 函 ) 区 [+ ) 不 单 函 . :, 数 在 间 0 。上 是 调 数 所以 ,。
综 上 , 且 仅 当 a ≥ 1 , 数 f x 在 区 间 [,o) 当 时 函 () 0+。上
是 单 调 递 减 函数 . 评注 分 子 有 理 化 在 无 理 式 的大 小 比较 、不 等式 的证 明、 数列 的求 和 与证 明 中都 有 用 武 之 地 .
解
由 Y= () / 和 +1 , ) 可 得 +1 + + = ) :
c由题 意 知 它 是 关 于 Y的恒 等 式 , . 故可 知 a=1 b=0 C=1 , , ,
从 而 gx = _ ) =( +1。 = +2 . () / ) ( )+1 x +2 评 注 通法 通则 使人 有章 可 循 .数 学 中 的 “ 简 形式 ” 最 、
“
一
4 指 数 变 形 : 同底 。 . 变 即减 少 底 数 的 种 类 . 进 行 此 类 是 运 算 的 重 要 途 径
寨 拣
4 10 ) 6 5 0
根 式 的 分 子有 理化 , 可 继 续 推 演 . 则
的而 采 用 的 “ 段 ” 是 化 归 、 化 和 联 想 的 准 备 阶 段 , 属 手 , 转 它 于 技 能 性 的 知 识 , 要 在 实 践 中 反 复 操 练 才 能 把 握 , 至 需 乃 灵 活 与 综 合 应 用. 文 旨在展 现 代 数运 算 和 解 题 中 常见 的变 本
, 一 变 根 . 为 式 > 1(
— 一
5 对数变形 : . 换底 例 5 讨 论 函数 fx =l o b )b>a>0 在 定 义 域 内 () o  ̄ x ( g( ) 的单 调 性 , 证 明你 的结 论 . 并
1.代数变形—基本公式
代数变形一(基本公式)话说天下代数式分久必合,合久必分。
高中数学解题的本质就是通过不断的代数变形将问题划归转化为一个很简单、一般性的问题。
因此,代数变形能力的高低直接决定你高中数学成绩。
今天我们介绍一些基本的代数变形公式。
分久必合、合久必分、左右平移、上下求索。
1.化简下列代数式 (1).22(1)(1)(2)(24)x x x x x x +-++-++;(2).322322233])())[(2(b a b b a a a ab a b a b a ----++-++;(3).33333333(21)(31)(41)(101)(21)(31)(41)(101)----++++. 解:(1)22333(1)(1)(2)(24)129x x x x x x x x +-++-++=++-=。
(2).22232233333(2)[()()]33()()a b a b a ab a a a b b a b a b a a b a ++-++----=++-+=。
(3).因为33(1)1(1)12a a a a --=+++,从而有3333333333(21)(31)(41)(1001)(21)(31)(41)(1001)3367(21)(31)(41)(1001)(21)(21)(31)(991)5050--------==++++++++ 2.(1)已知1=-y x ,求42233433y xy y x y x xy x ++---;(2).自然数y x <,且满足x y y x 191933+=+,求y x +的值.解:(1)33333322()()3()321x x y y y x xy x y x y xy x y xy -+---=--=+-= (2).3319()0x y x y ---=.即22()(19)0x y x y xy -++-=。
又y x <有2219x y xy ++=。
代数变形总结知识点归纳
代数变形总结知识点归纳1. 代数基本概念首先我们需要了解代数基本概念。
在数学中,代数主要研究数与其运算、结构及其运算规则的一门数学分支。
它通常包括整数、有理数、实数和复数等的运算,可以表示为一个数或数字的计算。
代数以字母表示数,并运用字母进行运算。
2. 代数基本运算代数变形的核心是代数基本运算,包括加法、减法、乘法和除法。
这些基本运算是进行代数变形的基础,需要我们熟练掌握。
3. 代数变形基本原则代数变形的基本原则包括等式变形和不等式变形。
等式变形需要保持等式两边的平衡,并逐步进行变形推导;不等式变形则需要关注不等式号的方向,保持不等式变形的方向一致。
4. 代数变形的运用代数变形广泛运用于数学各个领域,如解方程、化简表达式、证明恒等式等。
在解方程中,我们可以通过代数变形将一个方程式转化为另一个等价的方程式,从而求得方程的解;在化简表达式中,代数变形可以将一个复杂的表达式转化为更简洁的形式,便于计算和分析;在证明恒等式中,代数变形可以帮助我们推导出一个恒等式的证明过程。
5. 代数变形的基本技巧代数变形的基本技巧包括合并同类项、分配律、因式分解、配方法、移项、等价变形等。
这些基本技巧在代数变形中经常被使用到,它们是进行变形的重要手段。
6. 代数变形的应用举例代数变形在数学中有着广泛的应用。
比如在解决实际问题时,我们常常需要建立方程模型,并通过代数变形来解决问题;在微积分中,代数变形是求导和积分的基础;在抽象代数中,代数变形是分析和研究代数结构的重要工具;在线性代数中,代数变形是求解线性方程组和计算矩阵运算的基础。
7. 代数变形的重要性和必要性代数变形是数学中的一个重要概念,它在数学学科中有着广泛的应用。
通过代数变形,我们可以将复杂的数学问题简化,使其更易于处理和理解。
因此,代数变形是数学学习的重要组成部分,也是数学解题的重要方法。
综上所述,代数变形是数学中一个重要的基础概念,它通过数学运算和变形规则,使复杂的数学问题变得更易于处理。
高中代数变形规律总结
高中代数变形规律总结高中代数是数学学科的重要组成部分,掌握代数变形规律对于提高学生的数学素养和解题能力具有重要意义。
本文将总结高中代数中的一些常见变形规律,以帮助学生更好地理解和应用代数知识。
一、等式的性质和变形等式是代数中最重要的概念之一,掌握等式的性质和变形规律是解决代数问题的关键。
等式的性质包括:等式的两边加上或减去同一个数,等式仍成立;等式的两边乘以或除以同一个非零数,等式仍成立。
基于这些性质,我们可以进行以下变形:1.移项:将等式的一边移到另一边,同时改变符号。
例如,从2x + 3 = 5中,我们可以得到2x = 2。
2.合并同类项:将等式中的同类项合并在一起。
例如,从2x + 3x = 5中,我们可以得到5x = 5。
3.提取公因数:从等式中提取公因数,简化表达式。
例如,从2x(x + 3) = 5中,我们可以得到2(x + 3) = 5。
二、不等式的性质和变形不等式是描述两个数之间大小关系的数学符号。
不等式的性质包括:不等式的两边加上或减去同一个数,不等式仍然成立;不等式的两边乘以或除以同一个正数,不等式仍然成立;不等式的两边乘以或除以同一个负数,不等式反向。
基于这些性质,我们可以进行以下变形:1.移项:将不等式的一边移到另一边,同时改变不等号的方向。
例如,从2x > 3中,我们可以得到2x - 3 > 0。
2.合并同类项:将不等式中的同类项合并在一起。
例如,从2x > 3x + 1中,我们可以得到-x > 1。
3.提取公因数:从不等式中提取公因数,简化表达式。
例如,从2x(x + 3) >5中,我们可以得到2(x + 3) > 5。
三、指数和幂的变形指数和幂是代数中的重要概念,掌握它们的变形规律对于解决复杂问题具有重要意义。
指数的变形包括:指数的乘法法则、指数的除法法则、指数的乘方法则等。
幂的变形包括:幂的乘法法则、幂的除法法则、幂的乘方法则等。
从动脑思考转为动手思考的代数变形——以巧用拼图因式分解教学设计为例
从动脑思考转为动手思考的代数变形——以巧用拼图因式分
解教学设计为例
赵建平;方秀娟
【期刊名称】《数理化解题研究》
【年(卷),期】2024()11
【摘要】文章以巧用拼图因式分解为例,思考如何将初中数学课堂教学中的动脑思考一步步转向动手思考,再从动手操作里逆向抽象出简约的数学模型,从不同纸片的拼接或者叠放的探究来解决代数变形问题,对基本图形的拼接、叠加和优化,将初中数学中的十字相乘法分解因式巧妙转化为拼图游戏课.通过抓住面积不变的关键点,让学生进行动手操作并深度思考,从而在图形的变化探寻中感受代数式变形的奥秘,激发学生的数学兴趣,培养其核心素养.
【总页数】3页(P53-55)
【作者】赵建平;方秀娟
【作者单位】浙江省湖州市吴兴区教育局教学研究与培训中心;浙江省湖州市吴兴实验中学
【正文语种】中文
【中图分类】G632
【相关文献】
1.拼图:“因式分解”教学的另类尝试——一节数学实验课的设计、实践与思考
2.循循善诱促思考,动手构建探新知——以\"蛋白质—蛋白质的结构\"教学片段设计
为例3.5G时代数学实验混合式教学的设计与思考——以“拼图与乘法公式”为例4.指向代数推理的单元教学设计与思考——以“一元二次方程的解法”教学为例
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年江苏省数学奥林匹克夏令营讲座
代数变换、代数变形的方法与技巧
蔡玉书
1.将一些结构各异的式子看成一个整体,用一个字母或用另外的式、量来替换表示,易于使复杂问题明朗化、简单化。
这种解决问题的方法叫做替换法。
(1) 整式替换
例1 分解因式(x 4+x 2-4)( x 4+x 2+3)+10.(第12届“五羊杯”竞赛题)
例2 已知x ,y 是正整数,并且xy +x +y =23,x 2y +xy 2=120,则x 2+y 2= .(2001年全国初中联赛)
例3已知实数a ,b 满足a 3+b 3+3ab =1,则a +b = .(2004年全国初中联赛)
(2) 分式替换
例4已知关于x 的方程(a 2-1)(x x -1)2-(2a +7)(x x -1
)+1=0有实数根. ①求a 的取值范围;
②若原方程的两个实数根为x 1,x 2,且x 1x 1-1 + x 2x 2-1
= 311,求a 的值.
(3) 根式替换
例5 计算9a
9a +a +9
a 29a 2+a +9
a 39a 3+a +…+9
a 89a 8+a
= . (第16届“五羊杯”竞赛题)
(4) 常值替换
例6 证明1997×1998×1999×2000+1是一个整数的平方,并求出这个整数.(1997年安徽省数学竞赛)
例7 计算(74+64)(154+64)(234+64)(314+64)(394+64)(34+64)(114+64)(194+64)(274+64)(354+64)
.(第9届华罗庚金杯赛)
例8 计算1+112+122+1+122+122+1+132+142+…+1+120032+120042
. (第9届华罗庚金杯赛) 2.代数式的恒等变形包括整体代入、因式分解、配方、配对、分母有理化、分子有理化等。
例9 若3x 2-x =1,则9x 4+12x 3-3x 2-7x +2001的值等于 .(2001年武汉市数学竞赛)
例10 设x 3-32x 2+6x -22-8=0,则x 5-41x 2+1的值为 .(2002年“五羊杯”竞赛题)
例11设a <b <0,a 2+b 2=4ab , 求a + b a -b
的值.(2002年全国初中数学竞赛)
例12 分解因式(xy -1)2+(x +y -2)( x +y -2xy ).(1996年天津市数学竞赛)
例13 已知实数a 满足a 2-a -1=0,求a 8+7a 4的值.(2003年河北省初中数学竞赛)
例14 已知a ,b ,c 满足ab a +b = 13, bc b +c = 14 ,ca c +a = 15,求abc ab +bc +ca
的值.(1997年希望杯数学竞赛)
例15 已知abc ≠0,且a +b +c =0,则a (1b +1c )+b (1c +1a )+c (1a +1b
)的值.(2004年安庆市数学竞赛)
例16 已知x ,y ,z ,a ,b ,c 均为实数, 且x a +y b +z c =1, a x +b y +c z =0,求x 2a 2+y 2b 2+z 2
c 2的值.(2003年合肥市数学竞赛)
例17 已知x =4-2,求分式x 4―6x 3―2x 2+18x +23x 2+8x +15
的值.(2004年湖南省高中理科实验班招生)
例18 已知2a 2-7a =-2,2b 2
-7b =-2,求a 2b -b 2a 的值.(2002年沈阳市数学竞赛)
例19 已知函数f (x )=1
3x 2+2x +1+3x 2-1+
3x 2-2x +1,求f (1)+f (3)+f (5)+…+f (999)的值.(1997年上海市数学
竞赛)
例20 设1995x 3=1996y 3=1997z 3,xyz >0,且31995x 2+1996y 2+1997z 2 =31995+31996+3
1997,求1x +1y +1z
的值. (1996年全国初中数学竞赛)
例21 已知x +y =1,x 2+y 2=2,求x 7+y 7的值.(1998年江苏省数学竞赛)
例22 已知a , b 是方程x 2-4x +1=0的两个根, c , d 是方程x 2-5x +2=0的两个根,记t = a b +c +d + b c +d +a
+ c b +d +a + d a +b +c , 则用t 表示a 2b +c +d + b 2 c +d +a + c 2b +d +a + d 2
a +
b +c
.(1996年上海市数学竞赛)
例23 已知实数a ,b ,c 满足a b +c + b c +a + c a +b =1,求a 2b +c + b 2c +a + c 2
a +b
的值.(2002年北京市数学竞赛)
例24 已知xyz =1,x +y +z =2,x 2+y 2+z 2=6,求1xy +2z + 1yz +2x + 1zx +2y
的值.(2003年北京市数学竞赛)
例25 计算1997(1997-1999)(1997-2001) + 1999(1999-2001)(1999-1997) + 2001(2001-1997)(2001-1999)
. (1997年希望杯数学竞赛)
例26 已知(x +x 2+2002)(y +y 2+2002)=2002,求x 2-3xy -4y 2―6x ―6y +58的值. (2002年江苏省数学竞赛)
例27 已知x = 1-52,求x 3-1x
3的值.(2000年湖南省高中理科实验班招生)
例28 已知a 是方程x 2-x -2000=0的一个正根,求代数式3+2001+2001+2000a
的值.(2003年河北省数学竞赛)
例29 已知a 是方程x 2+x -14 =0的根,则a 3-1a 5+a 4-a 3-a 2 = .
例30繁分数1-11-
11-…1-11-113155
(共2004个分数线)的值是 . 练习题
1. 已知14(b -c )2=(a -b )(c -a ),且a ≠0, 求b +c a
的值.(1999年全国数学竞赛) 2. 计算1+31×(1+2)+1+3+5(1+2)×(1+2+3) +1+3+5+7(1+2+3)×(1+2+3+4)+...+ 1+3+5+...+29(1+2+3+...+14)×(1+2+3+ (15)
.(2003年五羊杯数学竞赛)
3. 若x +1x =a ,则x 6+1x
6 = .(2004年西安市数学竞赛)
4. 不为零的三个数a ,b ,c 满足1a + 1b + 1c = 1a +b +c
, 求证:a ,b ,c 中至少有两个互为相反数.(1999年北京市数学竞赛)
5. 计算
1+112+122+1+122+122+1+132+142+…+1+119992+120002
. (2000年太原市数学竞赛)
A .1 999
B .2 001
C .2 003
D .2 005
6. 若3x 3-x =1, 则9x 4+12x 3-3x 2-7x +2001的值等于 .
7. 已知abc ≠0, 且a +b +c =0. 则代数式a 2 bc + b 2ca + c 2 ab 的值等于 .
8. 已知A=48×(132
-4 + 142-4 + … + 11002-4). 则与A 最近的正整数是 .
9. 若实数a 、b 、c 满足a 2+b 2+c 2=9,则代数式(a -b )2+(b -c )2+(c -a )2的最大值是 .(1996年全国数
学竞赛)
10. 已知a ,b ,c ,d 是正数,且满足a 4+b 4+c 4+d 4=4abcd , 求证:以为边的四边形,不是菱形就是正方形.(沈阳市数
学竞赛)
11. 若a +b -2a -1-4b -2=3c -3-12
c -5,求a +b +c 的值.
12. 解方程组⎩⎨⎧x +1
y -x +y -3=32x +y +1y =6
(1998年山东省数学竞赛)
13. 解方程组⎩⎨⎧x +y+R((x +2)(y +3))=34(x +2)2+(y +3)2=741-(x +2)(y +3)(第4届全国数学通讯赛)
14. 若x >0,求1+x 2+x 4-1+x 4
x
的最大值.(1992年全国数学竞赛)
15. 已知x +y =2,x 2+y 2=52
,求x 4+y 4的值.(1995年重庆市数学竞赛)
16. 已知x 2-x -1=0,则代数式x 3-2x +1的值是 .(1998年全国数学竞赛)
17. 若实数x,y,z 满足x + 1y = 4,y + 1z = 1,z + 1x = 73
,则xyz 的值是 .(2003年TRULY 杯全国数学竞赛)
18. 分解因式a 4+b 4+(a +b )4.(2000年山东省数学竞赛)
19. 已知α,β是方程x 2-x -1=0的两个根,求α4+3β的值.(2003年天津市数学竞赛)
20. 已知非零实数a 、b 、c 满足a +b +c =0,求证:
(1) a 3+b 3+c 3=3abc ;
(2)(a -b c +b -c a +c -a b )(c a -b +a b -c +b c -a
)=9. (2005年北京市数学竞赛)。