空间几何体经典习题

空间几何体经典习题
空间几何体经典习题

正视图 俯视图

侧视图

空间几何体(经典习题)

一、选择题:

1、半径为R 的半圆卷成一个圆锥,则它的体积为()

A

3R B

3R C

3R D

3R 2、一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A.28cm π B.212cm π C.216cm π D.220cm π

3、圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则

圆台较小底面的半径为() A .7B.6C.5D.3

4、棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成两部分的体积之比是() A .1:7B.2:7C.7:19D.5:16

5、一简单组合体的三视图及尺寸如图示(单位:cm )则该组合 体的体积为()

A.720003cm

B.640003cm

C.560003cm

D.440003cm

6、如图是某几何体的三视图,其中正视图是腰长为2的 等腰三角形,俯视图是半径为1的半圆,则该几何体的 体积是() A

.3

B .12π

C

3D

.6

A

B

D C

E

F 2

2

2 正视侧视

1 1 俯视

俯视图

2

2

正(主)视图

2

2 2

侧(左)视图 2

2

2

7、如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32

EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为()

A .92

B.5 C.6D.

15

2

8、一个棱锥的三视图如图,则该棱锥的体积是() A.34B.3

8C.4D.8

9、如图是一个空间几何体的三视图,则该几何体的侧面积为()

A.43

B.43

第8题第9题

10、如图为一平面图形的直观图,则此平面图形可能是选项中的( ) 11、棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8 个三棱锥后

,剩下的凸多面体的体积是() A 、23B 、76C 、45D 、56

12、在一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞D 、E 、F ,且知

SD :DA=SE :EB=CF :FS=2:1,若仍用这个容器盛水,则最多可盛原来水的() A 、

2923B 、2719C 、3130D 、27

23

13、一空间几何体的三视图如图所示则该几何体的体积为(). A.223π+ B.423π+ C.232π+

D.23

4π+ 2 2

侧(左)视

2 2

2 正(主)

俯视

14、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为(). (A )48+122 (B )48+242 (C )36+122 (D )36+242

15、正六棱锥P-ABCDEF 中,G 为PB 的中点,则三棱锥

D-GAC 与三棱锥P-GAC 体积之比为() (A )1:1(B)1:2(C)2:1(D)3:2

16、如右图,某几何体的正视图与侧视图都是边长为1的正方形, 且体积为12

。则该几何体的俯视图可以是()

17、如图,在半径为3的球

面上有,,A B C 三点,90,ABC BA BC ?∠==, 球心O 到平面ABC 的距离是32

2

,则B C 、两点的球面距离是()

A.3

πB.πC.

43

π

D.2π 18、若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸

多面体的体积为()A.

26 B.23 C.33 D.2

3

19、(2008海南、宁夏理)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为() A .22 B .23 C .4 D .25

20、(2007宁夏理?8)已知某个几何体的三视图如下,根据图中标出的尺寸(单位:

cm ),可得这个几何体的体积是()

A.

34000cm 3B.3

8000cm 3

C.32000cm D.34000cm 21、(2005全国卷Ⅰ)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且

BCF ADE ??、均为正三角形,EF ∥AB ,EF=2,

则该多面体

的体积为() A.

3

2 B.

3

3 C.3

4 D.2

3

22、(2012年高考(新课标理))已知三棱锥S ABC -的所有顶点都在球O 的求面

上,ABC ?是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为 ( ) A .

2

6

B .

3 C .

23

D .

22

23、(2012年高考(课标文理))如图,网格上小正

方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体

积为( ) A.6B .9

C .12

D .18

24、(2012年高考(陕西文))将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为( )

20

20正视图

20侧视图

10

10

20俯视图

25、(2012年高考(广东文))(立体几何)某几何体的三视图如图1所示,

它的体积为( )A .72πB .48π

C .30π

D .24π

26、(2012年高考(湖北理))我国古代数学名着《九章算术》中“开立圆术”曰:

置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式3

169

d V 人们还用过一些

类似的近似公式.根据π =3.14159L 判断,下列近似公式中最精确的一个是( ) A .3

169

d V ≈

B .32d V ≈

C .3

300

157d V ≈

D .3

2111

d V ≈

27、(2013年广东理)某四棱台的三视图如图1所示,则该四棱台的体积是()

A.4

B.

314C.3

16

D.6 28、(2012年广东理)某几何体的三视图如图1所示,它的体积为() A .12πB.45πC.57πD.81π

29、(2011年广东理)如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为(). A .3.3.3.330、(2014年新课标Ⅱ理)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值

为() A.1727

B.59

C.1027

D.13

31、(2014新课标1)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为()

A .62

B .42

C .6

D .4

32、(2015新课标1)《九章算术》是我国古代内容极为丰富的数学名着,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在

屋内墙角处堆放

米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有() (A )14斛 (B )22斛 (C )36斛 (D )66斛

33、(2015新课标2)一个正方体被一个平面截去一部分后,剩余

分的三视图如右,则截去部分体积和剩余部分体积的比

值为()

(A )81(B )71

(C )61(D )5

1

34、(2016新课标1)如图,某几何体的三视图是三个半径相等的圆

及每个圆中

两条互相垂直的半径.若该几何体的体积是

3

28

,则它的表面积是()

(A )17π(B )18π(C )20π(D )28π

35、(2016新课标2)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()

(A)20π(B)24π

(C)28π(D)32π

36、(2016新课标3)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()

(A)185

+

(B)545

+

(C)90

(D)81

37、(2017新课标1)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()

A.10 B.12

C.14 D.16

38、(2017新课标2)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何

体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()

A.90π

B.63π

C.42π

D.36π

39、(2017新课标3)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球

的球面上,则该圆柱的体积为()

A.πB.3π

4C.π

D.π

4

40、如图1,已知某品牌墨水瓶的外形三视图和尺寸,

则该墨水瓶的容积为(瓶壁厚度忽略不计)() A .π8+ B .π48+ C .π16+ D .π416+

二、填空题:

1、如下图,水平放置的△ABC 的斜二测直观图是图中的 △A ′B ′C ′,已知A ′C ′=6,B ′C ′=4,则

AB 边的实际长度是________.

2、一个几何体的三视图如右图所示,则这个几何体的体积是______.

3、两平行平面截半径为13的球,若截面面积分别为、

,则这两个平面间的

距离是_______________。

4、如图1-13所示,三棱柱ABC-A 1B 1C 1中,若E 、F 分别为AB 、AC 的中点,平面EB 1GF 将三棱柱分成体积V 1、V 2的两部分,那么 V 1:V 2=

5、设某几何体的三视图如下(尺寸的长度单位为m )则该几何体的体积为3m 。

6、(2006辽宁)如图,半径为2的

半球内有一

内接正六棱锥P ABCDEF -,则此正六棱锥

的侧面积是________.正视图

侧视图

俯视图

2

2

2

2

2

C

P

D E

F

121

22

1正视图 侧视图

俯视图

7、(2009南京一模)如图,在正三棱柱111C B A ABC -中,D 为棱1AA 的中点,若截面D BC 1?是面积为6的直角三角形,则此三棱柱的体积为.8、(2012年高考(山东文))如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____. 9、(2009珠海二模)一个五面体的三视图如下,

正视图与侧视图是等腰直角三角形,俯视图为直角梯形,部分

边长如图所示,则此五面体的体积为___________.

10、(2012年深二模)某机器零件的俯视图是直径为24 mm 的圆(包括圆

心),主视图和侧视图完全相同,如图2所示.则该机器零件的体 积是______mm 3

(结果保留π).

三、解答题:

1、如图所示,已知正方体ABCD —A 1B 1C l D l 的棱长为a ,E 为棱AD 的中点,求点A 1到平面BED 1的距离.

2、如图,在长方体ABCD-A ‘B ‘C ‘D ‘中用截面截下一个棱锥C-A ‘DD ’,求棱锥C-A ‘DD

的体积与剩余部分的体积之比。

3、如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,边长AB =a ,且PD =a ,PA =PC =2a ,(1)若在这个四棱锥内放一个球,求球的最大半径.(2)求四棱锥外接球的半径。

*4、过半径为R 的球面上一点P 引三条长度相的弦PA 、PB 、PC ,它们间两两夹角相等。 (1)若∠APB=2α,求弦长关于α的函数表达式; (2)求三棱锥P —ABC 体积的最大值。

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

空间几何体经典试题

空间几何体 考点一:空间几何体与三视图 1.一个物体的三视图的排列规则 俯视图放在正视图的下面,长度与正视图的长度一样,侧视图放在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”. 2.要熟悉各种基本几何体的三视图.同时要注意画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线. 例题1.(2016·高考天津卷)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为() 例题2.(2015·高考北京卷)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为() A.1 B.2C.3D.2 练习1.已知某几何体的正视图和侧视图均如图所示,给出下列5个图形: 其中可以作为该几何体的俯视图的图形个数是() A.5B.4 C.3 D.2 练习2.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是()

考点二 空间几何体的表面积与体积 1.求解几何体的表面积或体积 (1)对于规则几何体,可直接利用公式计算. (2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解. (3)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用. ★1.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面; 2.在求几何体的表面积和体积时,注意等价转化思想的运用,如用“割补法”把不规则几何体转化为规则几何体、立体几何问题转化为平面几何问题等. 例题3.(2016·高考全国Ⅲ卷)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( ) A .18+365 B .54+185 C .90 D .81 练习3.(2016·高考全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的 半径.若该几何体的体积是 28π3,则它的表面积是( ) A .17π B .18π C .20π D .28π 练习4.(2016·高考山东卷)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )

高中空间立体几何典型例题

高中空间立体几何典型 例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E=C 1F. 求证:EF ∥平面ABCD. 证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN. ∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN. 又∵B 1E=C 1F ,∴EM=FN , 故四边形MNFE 是平行四边形,∴EF ∥MN. 又MN ?平面ABCD ,EF ?平面ABCD , 所以EF ∥平面ABCD. 方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则B B G B A B E B 1111=, ∵B 1E=C 1F ,B 1A=C 1B , ∴B B G B B C E C 1111=,∴FG ∥B 1C 1∥BC , 又EG ∩FG =G ,AB ∩BC =B , ∴平面EFG ∥平面ABCD ,而EF ?平面EFG , ∴EF ∥平面ABCD . 2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.

(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △3 21G G G ∶S △ABC . (1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F , 连接DE 、EF 、FD ,则有PG 1∶PD =2∶3, PG 2∶PE =2∶3,∴G 1G 2∥DE . 又G 1G 2不在平面ABC 内, ∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC . 又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC . (2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE . 又DE =21AC ,∴G 1G 2=31 AC . 同理G 2G 3=31AB ,G 1G 3=3 1BC . ∴△G 1G 2G 3∽△CAB ,其相似比为1∶3, ∴S △3 21G G G ∶S △ABC =1∶9. 3如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA =SB =SC ,SG 为△SAB 上的高, D 、 E 、 F 分别是AC 、BC 、SC 的中点,试判断S G 与平面DEF 的位置关系,并给予证明. 解 SG ∥平面DEF ,证明如下: 方法一 连接CG 交DE 于点H , 如图所示.

空间几何体的表面积和体积考点讲解及经典例题解析

空间几何体的表面积和体积习题讲解 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 考查形式: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 表中S表示面积,c'、c分别表示上、下底面周长,h表斜高,h'表示斜高,l表示侧棱长。 2.旋转体的面积和体积公式

表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,1r 、2r 分别表示圆台 上、下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420)(2z y x zx yz xy )2() 1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

空间几何体经典习题

正视图 俯视图 侧视图 空间几何体(经典习题) 一、选择题: 1、半径为R 的半圆卷成一个圆锥,则它的体积为() A 3R B 3R C 3R D 3R 2、一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A.28cm π B.212cm π C.216cm π D.220cm π 3、圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则 圆台较小底面的半径为() A .7B.6C.5D.3 4、棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成两部分的体积之比是() A .1:7B.2:7C.7:19D.5:16 5、一简单组合体的三视图及尺寸如图示(单位:cm )则该组合 体的体积为() A.720003cm B.640003cm C.560003cm D.440003cm 6、如图是某几何体的三视图,其中正视图是腰长为2的 等腰三角形,俯视图是半径为1的半圆,则该几何体的 体积是() A .3 B .12π C . 3D .6

A B D C E F 2 2 2 正视侧视 1 1 俯视 俯视图 2 2 正(主)视图 2 2 2 侧(左)视图 2 2 2 7、如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32 EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为() A .92 B.5 C.6D. 15 2 8、一个棱锥的三视图如图,则该棱锥的体积是() A.34B.3 8C.4D.8 9、如图是一个空间几何体的三视图,则该几何体的侧面积为() A.43 B.43 第8题第9题 10、如图为一平面图形的直观图,则此平面图形可能是选项中的( ) 11、棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8 个三棱锥后 ,剩下的凸多面体的体积是() A 、23B 、76C 、45D 、56 12、在一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞D 、E 、F ,且知 SD :DA=SE :EB=CF :FS=2:1,若仍用这个容器盛水,则最多可盛原来水的() A 、 2923B 、2719C 、3130D 、27 23 13、一空间几何体的三视图如图所示则该几何体的体积为(). A.223π+ B.423π+ C.232π+ D.23 4π+ 2 2 侧(左)视 2 2 2 正(主) 俯视

立体几何题型归类总结

立体几何题型归类总结(总8 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

立体几何专题复习 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 ① ???????? →???????→?? ??? 底面是正多形 棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为正方形 2. 棱锥 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3.球 球的性质: ①球心与截面圆心的连线垂直于截面; ★② r =d 、 球的半径为R 、截面的半径为r ) ★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.

注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2 3 44,3 S R V R ππ== 球球(其中R 为球的半径)

俯视图 二、【典型例题】 考点一:三视图 1.一空间几何体的三视图如图1所示,则该几何体的体积为_________________. 第1题 2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________. 第2题 第3题 3.一个几何体的三视图如图3所示,则这个几何体的体积为 . 4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 . 第4题 第5题 2 2 侧(左)视图 2 2 2 正(主)视 3 俯视图 1 1 2 a

52知识讲解_空间几何体结构及其三视图(提高)

空间几何体结构及其三视图 编稿:孙永钊审稿: 【考纲要求】 (1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,会用材料(如纸板)制作模型,并会用斜二测法画出它们的直观图. (3)通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式. (4)了解球、棱柱、棱锥、台的表面积和体积的计算公式. 【知识网络】 【考点梳理】 考点一、空间几何体的结构及其三视图和直观图 1、多面体的结构特征 (1)棱柱(以三棱柱为例) 如图:平面ABC与平面A1B1C1间的关系是平行,ΔABC与 ΔA1B1C1的关系是全等。 各侧棱之间的关系是:A1A∥B1B∥C1C,且A1A=B1B=C1C。 (2)棱锥(以四棱锥为例) 如图:一个面是四边形,四个侧面是有一个公共顶点的三 角形。

(3)棱台 棱台可以由棱锥截得,其方法是用平行于棱锥底面的平面截棱锥,截面和底面之间的部分为棱台。 2、旋转体的结构特征 旋转体都可以由平面图形旋转得到,画出旋转出下列几何体的平面图形及旋转轴。 3、空间几何体的三视图 空间几何体的三视图是用正投影得到,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的开关和大小是完全相同的,三视图包括正视图、侧视图、俯视图。 4、空间几何体的直观图

空间几何体的直观图常用斜二测画法来画,其规则是: (1)原图形中x轴、y轴、z轴两两垂直,直观图中,x’轴、y’轴的夹角为45o(或135o),z’轴与x’轴和y’轴所在平面垂直; (2)原图形中平行于坐标轴的线段,直观图中仍平行。平行于x轴和z轴的线段长度在直观图不变,平行于y轴的线段长度在直观图中减半。 5、平行投影与中心投影 平行投影的投影线互相平行,而中心投影的投影线相交于一点。 要点诠释:空间几何体的三视图和直观图在观察角度和投影效果上的区别是:(1)观察角度:三视图是从三个不同位置观察几何体而画出的图形;直观图是从某一点观察几何体而画出的图形;(2)投影效果:三视图是正投影下的平面图形,直观图是在平行投影下画出的空间图形。 考点二、空间几何体的表面积和体积 1、旋转体的表面积 名称图形表面积 圆柱S=2πr(r+l) 圆锥S=πr(r+l)

空间几何体的结构的教学设计

人教版必修2“空间几何体的结构(一)”的教学设计 一、设计思想 立体几何初步是几何学的重要组成部分,也是新课程改动较大的内容之一.《空间几何体的结构》是新课程立体几何部分的起始课程,是立体几何课程的重要内容,根据新课程的要求,这一部分的教学,就是加强几何直观的教学,适当进行思辨论证,引入合情推理.基于这样的要求,《空间几何体的结构》一课的设计,笔者以培养学生的几何直观能力,抽象概括,合情推理能力,空间想象能力为指导思想,运用建构主义教学原理,用观察实物抽象出空间图形----用文字描述空间图形-----用数学语言定义空间图形这三部曲来构建课堂主框架.每一个概念的得出都与实物相结合,让学生经历观察、归纳、分类、抽象、概括这一过程.整个设计从增强学生参与数学学习的意愿入手,在学生明确学习任务的基础上,在有序列地解决问题中展开学习,运用激活、展示、应用、和整合策略,以师、生、文本三者间的多维对话为手段,最终达到提高学生参与数学学习能力的目标,取得教学的实效性.过程中让学生体验有关的数学思想,提高学生自主学习、分析问题和解决问题的能力,培养学生合作学习的意识. 二、教材分析 本节课《空间几何体的结构》选自普通高中课程标准实验教科书《数学》人教A版必修2第一章的第一节,课标对空间几何体的结构的教学要求为:认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构,发展几何直观能力.教材首先让学生观察现实世界中实物的图片,引导学生将观察到的实物进行归纳、分类、抽象、概括,得出柱体、锥体、台体的结构特征,在此基础上给出由它们组合而成的简单几何体的结构特征.《省学科教学指导意见》将这一节内容安排为两课时,笔者的设计的是第一课时,本节内容在义务教育数学课程“空间与图形”已有所涉及,但要求不同,素材更为丰富,即区别在于学习的深度和概括程度.笔者认为教学时,不能认为这部分的要求是降低了,讲课时一带而过,要领会新课标的意图,加强几何直观的训练,在引导学生直观感受空间几何体结构特征的同时,学会类比,学会推理,学会说理. 三、学情分析 学生在义务教育阶段学习“空间与图形”时,已经认识了一些具体的棱柱(如正方体、长方体等),对圆柱、圆锥和球的认识也比较具体,能从具体的物体抽象出相应的几何体模型,但没有学习柱体、锥体的定义,只停留在“看”的层面.本节课对它们的研究的更为深入,给出了它们的结构特征.同时,还学习了棱台的有关知识,比义务教育阶段数学课程“空间与图形”部分呈现的组合体多,复杂程度也加大.学生在学习本课时,通过观察实物抽象出空间图形是容易的,但要上升到用数学语言定义空间图形就比较困难.所以笔者让学生在课前先做一些柱体、锥体、台体的模型,教学过程中,每一个空间图形的定义,都通过学生观察他们自己所做的模型,结合教师、教材提供的图片,再讨论得出.

空间立体几何高考知识点总结与经典题目

空间立体几何 知识点归纳: 1. 空间几何体的类型 (1)多面体:由若干个平面多边形围成的几何体,如棱柱、棱锥、棱台。 (2)旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。 如圆柱、圆锥、圆台。 2. 一些特殊的空间几何体 直棱柱:侧棱垂直底面的棱柱。正棱柱:底面多边形是正多边形的直棱柱。 正棱锥:底面是正多边形且所有侧棱相等的棱锥。 正四面体:所有棱都相等的四棱锥。 3. 空间几何体的表面积公式 棱柱、棱锥的表面积:各个面面积之和 _ 2 圆柱的表面积:S =2 rl 2 r2圆锥的表面积:S =理「I ?二r 2 2 圆台的表面积:S =理rl 7 r?二RI ?二R 球的表面积:s= 4 R2 4 ?空间几何体的体积公式 1 柱体的体积:V = S底 h 锥体的体积:v = - S底h 3底 1 ---------- 、, 4 3 台体的体积:V = —( S上?S上S T S下)h 球体的体积:V R 3 '3 5.空间几何体的三视图 正视图:光线从几何体的前面向后面正投影,得到的投影图。 侧视图:光线从几何体的左边向右边正投影,得到的投影图。 俯视图:光线从几何体的上面向右边正投影,得到的投影图。 画三视图的原则: 长对正、宽相等、高平齐。即正视图和俯视图一样长,侧视图和俯视图一样宽,侧视图和正视图一样高。 6 .空间中点、直线、平面之间的位置关系 (1) 直线与直线的位置关系:相交;平行;异面。

(2)直线与平面的位置关系:直线与平面平行;直线与平面相交;直线在平面内。 (3)平面与平面的位置关系:平行;相交。 7. 空间中点、直线、平面的位置关系的判断 (1)线线平行的判断: ①平行公理:平行于同一直线的两直线平行。 ②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相 交,那么这条直线和交线平行。 ③面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 ④线面垂直的性质定理:垂直于同一平面的两直线平行。 (2)线线垂直的判断: ①线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。 ②线线垂直的定义:若两直线所成角为,则两直线垂直 ③一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 (3)线面平行的判断: ①线面平行的判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平 面平行。 ②面面平行的性质定理:两个平面平行,其中一个平面内的直线必平行于另一个平面。 (4)线面垂直的判断: ①线面垂直的判定定理:如果一直线和平面内的两相交直线垂直,这条直线就垂直于这 个平面。 ②如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 ③一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ④如果两个平面垂直,那么在一个平面内垂直于交线的直线必垂直于另一个 (5)面面平行的判断:

专题一立体几何经典练习题

2 专题一 立体几何 班级: _____ 姓名: _____ 学号: _____ 一、选择题(4 分×10=40 分) 1.直线 l , l 和 α , l // l , a 与 l 平行,则 a 与 l 的关系是 1 2 1 2 1 2 A .平行 B .相交 C .垂直 D .以上都可能 2.若线段 AB 的长等于它在平面内射影长的 3 倍,则这条斜线与平面所成角的余弦值为 A . 1 3 B . 2 2 2 2 C . D . 3 3 3.在正方体 ABCD-A 1B 1C 1D 1 中,B 1C 与平面 DD 1B 1B 所成的角的大小为 A .15 B . 30 C . 45 D . 60 4.有下列命题:①空间四点共面,则其中必有三点共线;②空间四点不共面,则其中 任何三点不共线;③空间四点中有三点共线,则此四点共面;④空间四点中任何三点 不共线,则此四点不共面.其中正确的命题是 A .②③ B .①②③ C .①③ D .②③④ 5.有一山坡,倾斜度为 300,若在斜坡平面上沿着一条与斜坡底线成 450 角的直线前进 1 公里,则升高了 A . 250 2 米 B . 250 3 米 C . 250 6 米 D . 500 米 6.已知三条直线 a , b , l 及平面 α , β ,则下列命题中正确的是 A . 若b ? α , a // b , 则a // α B .若 a ⊥ α , b ⊥ α ,则 a // b C . 若 a ? α ,α β = b ,则 a // b D .若 a ? α , b ? α , l ⊥ a , l ⊥ b , 则 l ⊥ α 7.已知 P 是△EFG 所在平面外一点,且 PE=PG ,则点 P 在平面 EFG 内的射影一定在△EFG 的 A .∠FEG 的平分线上 B .边 EG 的垂直平分线上 C .边 EG 的中线上 D .边 EG 的高上 8.若一正四面体的体积是18 2 cm 3,则该四面体的棱长是 A . 6cm B . 6 3 cm C .12cm D . 3 3 cm 9.P 是△ABC 所在平面α 外一点,PA ,PB ,PC 与α 所成的角都相等,且 PA ⊥BC ,则 △ABC 是 A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形 3 10.如图,在多面体 ABCDEF 中,已知 ABCD 是边长为 3 的正方形,EF//AB ,EF= ,EF 2 与面 AC 的距离为 2,则该多面体的体积为 E F A .2 B .4 C . 2 2 D . 4 2 D C 二、填空题(4 分×4=16 分) A B 11.空间四边形 ABCD 中,AB=6,CD=8,E 、F 、G 分别是 BD ,AC ,BC 的中点,若异面直

§8.1 空间几何体的结构及其三视图和直观图

§8.1空间几何体的结构及其三视图和直观 图 1.多面体的结构特征 (1)棱柱的上下底面________,侧棱都________且____________,上底面和下底面是 ________的多边形. (2)棱锥的底面是任意多边形,侧面是有一个____________的三角形. (3)棱台可由________________________的平面截棱锥得到,其上下底面的两个多边 形________. 2.旋转体的结构特征 (1)圆柱可以由矩形绕其________________旋转得到. (2)圆锥可以由直角三角形绕其________________________________旋转得到. (3)圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上下底中点的连线旋转得 到,也可由______________________的平面截圆锥得到. (4)球可以由半圆或圆绕其________旋转得到. 3.空间几何体的三视图 空间几何体的三视图是用__________得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是____________的,三视图包括____________、__________、________. 4.空间几何体的直观图 画空间几何体的直观图常用________画法,基本步骤是: (1)在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画

成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=__________. (2)已知图形中平行于x轴、y轴的线段,在直观图中分别平行于____________. (3)已知图形中平行于x轴的线段,在直观图中长度____________,平行于y轴的线段,长度变为______________. (4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度________. [难点正本疑点清源] 1.画空间几何体的三视图的两个步骤 第一步,确定三个视图的形状;第二步,将这三个视图摆放在平面上.在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”. 2.三视图与空间几何体中的几何量的关系 空间几何体的数量关系也体现在三视图中,正视图和侧视图的“高平齐”,正视图和俯视图的“长对正”,侧视图和俯视图的“宽相等”.其中,正视图、侧视图的高就是空间几何体的高,正视图、俯视图中的长就是空间几何体的最大长度,侧视图、俯视图中的宽就是空间几何体的最大宽度.要尽量按照这个规则画空间几何体的三视图. 1.利用斜二测画法得到的以下结论,正确的是__________.(写出所有正确的序号) ①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观 图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形. 2.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角) 是________. 3.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号). ①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥; ⑥圆柱. 4.以下命题: ①直角三角形绕一边所在直线旋转得到的旋转体是圆锥; ②夹在圆柱的两个平行截面间的几何体还是圆柱; ③圆锥截去一个小圆锥后剩余部分是圆台; ④棱锥截去一个小棱锥后剩余部分是棱台. 其中正确的命题序号是________.

空间几何体的三视图经典例题

空间几何体的三视图经典例题

————————————————————————————————作者:————————————————————————————————日期: ?

一、教学目标 1. 巩固空间几何体的结构及其三视图和直观图 二、上课内容 1、回顾上节课内容 2、空间几何体的结构及其三视图和直观图知识点回顾 3、经典例题讲解 4、课堂练习 三、课后作业 见课后练习 一、上节课知识点回顾 1.奇偶性 1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。 如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。 2)利用定义判断函数奇偶性的格式步骤:

\o\ac(○,1) 首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论: 若f(-x)=f(x) 或f(-x)-f(x) =0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)= 0,则f(x)是奇函数 3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称; 2.单调性 1)定义:一般地,设函数y=f(x)的定义域为I,?如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1f(x2)),那么就说f(x)在区间D上是增函数(减函数); 2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。 3)设复合函数y= f[g(x)],其中u=g(x) , A是y=f[g(x)]定义域的某个区间,B 是映射g:x→u=g(x) 的象集: ①若u=g(x) 在A上是增(或减)函数,y=f(u)在B上也是增(或减)函数,则函数y= f[g(x)]在A上是增函数; ②若u=g(x)在A上是增(或减)函数,而y=f(u)在B上是减(或增)函数,则函数y= f[g(x)]在A上是减函数。 4)判断函数单调性的方法步骤 利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤: 错误!任取x1,x ∈D,且x1<x2;错误!作差f(x1)-f(x2);错误!变形 2 (通常是因式分解和配方);

立体几何典型例题精选(含答案)

F E D C B A 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形, EF ∥平面ABCD , 1EF =,,90FB FC BFC ?=∠=,3AE =. (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值. 变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示. (1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2. (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.

高中数学空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B C D .23 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =. 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 13OA AB AO AB ?=u u u u r u u u r u u u r u u u r . 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D -- M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

空间几何体的表面积和体积经典例题(教师讲义打印一份)

空间几何体的表面积和体积 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2016年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 侧棱长。 2.旋转体的面积和体积公式 12 上、下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:?? ?=++=++24 )(420)(2z y x zx yz xy )2()1(

由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。 ∴点O 在∠BAD 的平分线上。 (2)∵AM=AA 1cos 3 π =3×21=23 ∴AO=4 cos πAM =223 。 又在Rt △AOA 1中,A 1O 2=AA 12 – AO 2=9- 29=2 9, ∴A 1O= 223,平行六面体的体积为2 2 345? ?=V 230=。 题型2:柱体的表面积、体积综合问题 例3.一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是( ) A .2 3 B .3 2 C .6 D . 6 解析:设长方体共一顶点的三边长分别为a =1,b = 2,c =3,则对角线l 的长为

立体几何知识点+经典习题

立体几何知识点和典型例题 1、柱、锥、台、球的结构特征 (1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱ABCDE A'B'C'D'E'或用对角线的端点字母,如五棱柱AD ' 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥P A'B'C'D'E' 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。 (3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台P A'B'C'D'E' 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转, 其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图

相关文档
最新文档