空间几何体经典习题

合集下载

空间几何体(经典习题)

空间几何体(经典习题)

正视图 俯视图侧视图空间几何体(经典习题)一、选择题:1、半径为R 的半圆卷成一个圆锥,则它的体积为( )A .3R B .3R C .3R D .3R 2、一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A. 28cm π B. 212cmπC. 216cmπD. 220cm π3、圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则 圆台较小底面的半径为( )A . 7 B. 6 C. 5 D. 34、棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成两部分的体积之比是( ) A . 1:7 B. 2:7 C. 7:19 D. 5:165、一简单组合体的三视图及尺寸如图示(单位: cm )则该组合 体的体积为( )A. 720003cmB. 640003cmC. 560003cmD. 440003cm62的等腰三角形,俯视图是半径为1的半圆,则该几何体的 体积是( )A. C 7、如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为( )A .92B. 5 C. 6 D. 152侧视图俯视图8、一个棱锥的三视图如图,则该棱锥的体积是( ) C.4 D.89、如图是一个空间几何体的三视图,则该几何体的侧面积为( )第8题 第9题10、如图为一平面图形的直观图,则此平面图形可能是选项中的( )11、棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8 个三棱锥后,剩下的凸多面体的体积是( )A、23 B 、76 C 、45 D 、5612、在一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞D 、E 、F ,且知SD :DA=SE :EB=CF :FS=2:1,若仍用这个容器盛水,则最多可盛原来水的( )A 、2923 B 、2719 C 、3130 D 、2723 13、 一空间几何体的三视图如图所示,A.2π+B. 4π+C. 23π+D. 43π+俯视图14、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为( ).(A )(B )(C )(D )15、正六棱锥P-ABCDEF 中,G 为PB 的中点,则三棱锥D-GAC 与三棱锥P-GAC 体积之比为( )(A )1:1 (B) 1:2 (C) 2:1 (D) 3:216、如右图,某几何体的正视图与侧视图都是边长为1的正方形, 且体积为12。

(完整版)空间几何体练习题含答案

(完整版)空间几何体练习题含答案

第一章空间几何体一、选择题1.下图是由哪个平面图形旋转得到的()A B C D2.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为()A. B. C. D.1:2:31:3:51:2:41:3:93.在棱长为的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去个三18棱锥后,剩下的几何体的体积是()A. B. C. D.237645564.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为和,则(1V2V12:V V=)A. B. C. D.1:31:12:13:15.如果两个球的体积之比为,那么两个球的表面积之比为( )8:27A. B. C. D.8:272:34:92:96.有一个几何体的三视图及其尺寸如下(单位),则该几何体的表面积及体积为:cmA. ,B. ,224cmπ212cmπ215cmπ212cmπC. ,D. 以上都不正确224cmπ236cmπ二、填空题1. 若圆锥的表面积是,侧面展开图的圆心角是,则圆锥的体积是_______。

15π0602.一个半球的全面积为,一个圆柱与此半球等底等体积,则这个圆柱的全面积是.Q3.球的半径扩大为原来的倍,它的体积扩大为原来的_________ 倍.24.一个直径为厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高厘米329则此球的半径为_________厘米.5.已知棱台的上下底面面积分别为,高为,则该棱台的体积为___________。

4,163三、解答题1. (如图)在底半径为,母线长为的圆柱,求圆柱的表面积242.如图,在四边形中,,,,,ABCD 090DAB ∠=0135ADC ∠=5AB =CD =,求四边形绕旋转一周所成几何体的表面积及体积.2AD =ABCD AD参考答案一、选择题1.A 几何体是圆台上加了个圆锥,分别由直角梯形和直角三角形旋转而得2.B 从此圆锥可以看出三个圆锥,123123::1:2:3,::1:2:3,r r r l l l == 12312132::1:4:9,:():()1:3:5S S S S S S S S =--=3.D 111115818322226V V -=-⨯⨯⨯⨯⨯=正方体三棱锥4.D 121:():()3:13V V Sh Sh ==5.C 121212:8:27,:2:3,:4:9V V r r S S ===6.A 此几何体是个圆锥,23,5,4,33524r l h S πππ====⨯+⨯⨯=表面 2134123V ππ=⨯⨯=二、填空题1. 设圆锥的底面半径为,母线为,则,得,r l 123r l ππ=6l r =,得,圆锥的高226715S r r r r ππππ=+⋅==r =h =21115337V r h ππ==⨯=2. 109Q 22223,S R R R Q R πππ=+===全 32222221010,,2233339V R R h h R S R R R R Q πππππ==⋅==+⋅==3. 821212,8r r V V ==4. 12234,123V Sh r h R R ππ=====5. 28'11()(416)32833V S S h =++=⨯+⨯= 三、解答题1.解:圆锥的高,h ==1r =22(2S SS πππ=+=+=侧面表面底面 2.解:S S S S=++表面圆台底面圆台侧面圆锥侧面25(25)2πππ=⨯+⨯+⨯⨯⨯1)π=+ V V V=-圆台圆锥222112211()331483r r r r h r h πππ=++-=。

空间几何体的综合计算测试题

空间几何体的综合计算测试题

空间几何体的综合计算测试题1. 综合计算题求以下空间几何体的表面积和体积:1.1 直方体已知直方体的长、宽、高分别为10 cm、6 cm、8 cm,求其表面积和体积。

解答:该直方体的表面积可通过公式2*(长×宽 + 长×高 + 宽×高)计算,代入数值计算得:表面积 = 2*(10 × 6 + 10 × 8 + 6 × 8) = 2*(60 + 80 + 48) = 376 cm²。

该直方体的体积可通过公式长×宽×高计算,代入数值计算得:体积 = 10 × 6 × 8 = 480 cm³。

1.2 正方体已知正方体的边长为5 cm,求其表面积和体积。

解答:该正方体的表面积可通过公式6×边长²计算,代入数值计算得:表面积 = 6×5² = 6×25 = 150 cm²。

该正方体的体积可通过公式边长³计算,代入数值计算得:体积 = 5³ = 125 cm³。

1.3 圆柱体已知圆柱体的底面半径为4 cm,高为10 cm,求其表面积和体积(π取3.14)。

解答:该圆柱体的表面积可分为两部分计算:侧面积和底面积。

侧面积可通过公式2×π×半径×高计算,代入数值计算得:侧面积 = 2×3.14×4×10 = 251.2 cm²。

底面积为圆的面积,可通过公式π×半径²计算,代入数值计算得:底面积 = 3.14×4² = 50.24 cm²。

因此,该圆柱体的表面积为251.2 + 50.24 = 301.44 cm²。

该圆柱体的体积可通过公式π×半径²×高计算,代入数值计算得:体积 = 3.14×4²×10 = 502.4 cm³。

(完整word版)经典:空间几何大题

(完整word版)经典:空间几何大题
(Ⅰ)求证: ;
(Ⅱ)求 与平面 所成角的正弦值;
(Ⅲ)求点 到平面 的距离.
16、如图所示四棱锥 中, 底面 ,四边形 中, , , , , 为 的中
点, 为 中点。
(1)求四棱锥P-ABCD的体积;(2)求证: 平面 ;
(3)在棱PC上是否存在点M(异于点C),使得BM∥平面PAD,
若存在,求 的值,若不存在 ,说明理由.;
10如图,在直三棱柱 中, , ,且 是 中点.
(I)求证: 平面 ;(Ⅱ)求证: 平面 .
11如图, 在四棱锥P—ABCD中, AB∥CD, AB⊥AD, CD=2AB, 平面PAD⊥底面ABCD, PA⊥AD. E和F分别是CD和PC的中点。 求证:
(Ⅰ) PA⊥底面ABCD;(Ⅱ) BE∥平面PAD;
6。如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,PA⊥PB, BP=BC,E为PC的中点.(1)求证:AP∥平面BDE;(2)求证:BE⊥平面PAC.
7如图, 是边长为 的正方形, 平面 , , 且 。
(1)求证: ∥平面 ;(2)求证: 平面 平面(3)求几何体ABC NhomakorabeaEF的体积
8。如图,在正三棱锥 中, , 分别为 , 的中点。
(1)求证: 平面 ;(2)求证:平面 平面 .
9。 如图, 直三棱柱ABC—A1B1C1中, D, E分别是AB, BB1的中点.
(Ⅰ) 证明: BC1∥平面A1CD;(Ⅱ) 设AA1=AC=CB=2, AB=2 , 求三棱锥C—A1DE的体积。
(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.
3。 如图,四棱锥P—ABCD的底面ABCD是平行四边形,BA=BD= ,AD=2,PA=PD= ,E,F分别是棱AD,PC的中点.

空间几何练习题

空间几何练习题

空间几何练习题题一:求直线与平面的交点坐标已知直线L的方程为:x=2t+1y=3t-4z=-t-2平面P的方程为:2x+y-3z+4=0求直线L与平面P的交点坐标。

解答:直线与平面的交点满足直线上的点同时满足平面的方程,即直线上的点代入平面的方程后等式成立。

将直线L的方程代入平面P的方程,得:2(2t+1)+(3t-4)-3(-t-2)+4=04t+2+3t-4+3t+6+t+6+4=011t+14=011t=-14t=-14/11将t的值代入直线L的方程,得:x=2(-14/11)+1=-28/11+1=-28/11+11/11=-17/11y=3(-14/11)-4=-42/11-4=-42/11-44/11=-86/11z=-(14/11)-2=-14/11-22/11=-36/11所以,直线L与平面P的交点坐标为:(-17/11, -86/11, -36/11)。

题二:平面中两直线的位置关系已知平面P的方程为:2x-3y+z+4=0直线L1的方程为:x=2t+3y=t+1z=-t-2直线L2的方程为:x=3t-1y=t+2z=2t-1判断直线L1和直线L2在平面P中的位置关系。

解答:直线在平面中的位置关系可以通过将直线的方程代入平面的方程,判断等式是否成立。

将直线L1的方程代入平面P的方程,得:2(2t+3)-3(t+1)+(-t-2)+4=04t+6-3t-3-t-2+4=0t+5=0t=-5将t的值代入直线L1的方程,得:x=2(-5)+3=-10+3=-7y=-5+1=-4z=-(-5)-2=5-2=3将直线L2的方程代入平面P的方程,得:2(3t-1)-3(t+2)+(2t-1)+4=06t-2-3t-6+2t-1+4=05t-5=0t=1将t的值代入直线L2的方程,得:x=3(1)-1=3-1=2y=1+2=3z=2(1)-1=2-1=1所以,直线L1和直线L2在平面P中的位置关系为:直线L1和直线L2相交于点(-7, -4, 3)。

高中空间立体几何经典例题精选全文完整版

高中空间立体几何经典例题精选全文完整版

可编辑修改精选全文完整版立体几何一、选择题1.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是 ( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D2 2.(20XX 年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:16【答案】C 【答案】A3 3.(20XX 年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A4 4.(20XX 年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1B .2C .2-12D .2+12【答案】C5.(20XX 年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,底面是边长为3.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为( )A.512πB .3πC.4πD.6π【答案】B6.(20XX年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为()A.5603B.5803C.200D.240【答案】C7.(20XX年高考江西卷(理))如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为,m n,那么m n+=()A.8 B.9 C.10 D.11【答案】A二、填空题8.(20XX年高考北京卷(理))如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为__________.1D1BPD1CCEBA1A【答案】2559.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2410.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π-11.(20XX 年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π12.(20XX 年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_______AB C1A D EF1B 1C【答案】3π三、解答题13.(20XX 年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB是圆的直径,PA 垂直圆所在的平面,C 是圆上的点. (I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值D 1 C 1 B 1A 1D C AB14.(20XX 年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 与1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 与1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,113tan 6233BC CC BC C =⋅∠==从而2333ABC S BC ∆==因此该三棱柱的体积为1336183ABC V S AA ∆=⋅==15.(20XX 年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))B 1 A 1C 1ACB如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点 ∵E.F 分别是SA.SB 的中点 ∴EF ∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF ∥平面ABC 同理:FG ∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC ∴平面//EFG 平面ABC (2)∵平面⊥SAB 平面SBC 平面SAB 平面SBC =BC AF ⊆平面SAB AF ⊥SB∴AF ⊥平面SBC 又∵BC ⊆平面SBC ∴AF ⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC ⊥平面SAB 又∵SA ⊆平面SAB ∴BC ⊥SA16.(20XX 年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离.C 11A【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C; 直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯=而1AD C ∆中,11AC DC AD ==故132AD C S ∆= AB CSGFE所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23.17.(20XX 年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE =O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B '--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD=由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角. 结合图1可知,H 为AC 中点,故2OH =,从而2A H '== 所以cos OH A HO A H '∠=='所以二面角ACD B '--向量法:以O 点为原点,建立空间直角坐标系O -.CO BDEA CDOBE'A图1图2C DO BE'AH则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=- 设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y ⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩,令1x =,得(1,1,n =- 由(Ⅰ)知,(OA '=为平面CDB 的一个法向量,所以3cos ,3n OA n OA n OA'⋅'===',即二面角A CD B '--的平面角的余弦值为5.18.(20XX年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD = CD = 1, AA1 = AB = 2, E为棱AA1的中点.(Ⅰ) 证明B1C1⊥CE;(Ⅱ) 求二面角B1-CE-C1的正弦值.(Ⅲ) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为2, 求线段AM的长.6【答案】19.(20XX年高考陕西卷(理))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,12AB AA==(Ⅰ) 证明: A1C⊥平面BB1D1D;(Ⅱ) 求平面OCB1与平面BB1D1D的夹角θ的大小.1A【答案】解:(Ⅰ) BDOAABCDBDABCDOA⊥∴⊂⊥11,,面且面;又因为,在正方形AB CD 中,BDCAACACAACABDAACOABDAC⊥⊂⊥=⋂⊥11111,,故面且面所以;且.在正方形AB CD中,AO = 1 . .111=∆OAOAART中,在OECAOCEAEDB1111111⊥为正方形,所以,则四边形的中点为设.,所以由以上三点得且,面面又OOBDDDBBODDBBBD=⋂⊂⊂111111E.E,DDBBCA111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O为原点,以OC为X轴正方向,以OB为Y轴正方向.则)1,0,1()1,1,1(),10(),1(,0,1,0111-=⇒CABACB,,,,)(.由(Ⅰ)知, 平面BB1D1D的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OCOBCAn设平面OCB1的法向量为,则0,0,2122=⋅=⋅OCnOBnn).1-,1,0(法向量2=n为解得其中一个21221||||||,cos|cos212111=⋅=⋅=><=nnnnnnθ.所以,平面OCB1与平面BB1D1D的夹角θ为3π1A。

空间几何体练习试题及参考含答案

空间几何体练习试题及参考含答案

空间几何体部分1、假如一个水平搁置的图形的斜二测直观图是一个底面为45o,腰和上底均为1的等腰梯形,那么原平面图形的面积是()A. 2 2B. 1 2C. 2 2D. 1 22 22、半径为 R的半圆卷成一个圆锥,则它的体积为()A. 3 R3B. 3 R3C. 5 R3D. 5 R324 8 24 83、一个棱柱是正四棱柱的条件是A 、底面是正方形,有两个侧面是矩形B 、底面是正方形,有两个侧面垂直于底面C、底面是菱形,且有一个极点处的三条棱两两垂直D、每个侧面都是全等矩形的四棱柱4.有一个几何体的三视图以下列图所示,这个几何体应是一个A、棱台 B 、棱锥 C 、棱柱 D 、都不对5.在棱长为 1 的正方体上,分别用过共极点的三条棱中点的平面截该正方形,则截去8 个三棱锥后,剩下的几何体的体积是()A. 2B. 7C. 4D. 53 6 5 66.长方体的一个极点上三条棱长分别是 3、4、5,且它的 8 个极点都在同一球面上,则这个球的表面积是A、25 B 、 50 C 、125 D、都不对7. 正方体的内切球和外接球的半径之比为()A. 3 :1B. 3 : 2C. 2 : 3D. 3 : 3o8. 在△ ABC中,AB=2,BC=,∠ABC=120, 若使绕直线 BC旋转一周,则所形成的几何体的体积是A. 9B. 7C. 5D. 322 2 29、圆台的一个底面周长是另一个底面周长的 3 倍,母线长C 为 3,圆台的侧面积为84,则圆台较小底面的半径为A、7 B 、6 C、5 D、310. 直三棱柱 ABC—A1B1C1的体积为 V,点 P、Q分别在V侧棱 AA 和 CC上, AP=CQ,则四棱锥 B—APQC的体积 ED1 1 1FA CPB为A 、VB 、 VC 、 VD 、V234511、如图,在多面体 ABCDEF 中, 已知平面 ABCD 是边长为 3 的正方形 ,EF ∥AB, EF 3 ,且 EF 与平面 的距离为 2, 则该多面体的体2 ABCD积为 ( )A 、9、5 C 、6 D 、152212、如右图所示,正三棱锥V-ABC中,D,E,F分别是 VC ,VA,AC 的中点,P为VB上随意一点,则直线DE与P F 所成的角的大小是()ABCD 随P点的变化而623变化。

人教版高中数学第一章空间几何体练习题及答案(全)

人教版高中数学第一章空间几何体练习题及答案(全)

第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。

8、一个棱柱有10个顶点,所有侧棱长的和为60,则每条侧棱长为————————————9、把等腰三角形绕底边上的高旋转1800,所得的几何体是——————10、水平放置的正方体分别用“前面、后面、上面、下面、左面、右面”表示。

图中是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。

则“祝”“你”“前”分别表示正方体的—————祝你前程似锦三、解答题:11、长方体ABCD —A 1B 1C 1D 1中,AB =3,BC =2,BB 1=1,由A 到C 1在长方体表面上的最短距离为多少?AA 1B 1BCC 1D 1D12、说出下列几何体的主要结构特征(1)(2)(3)1.2空间几何体的三视图和直观图一、选择题1、两条相交直线的平行投影是( ) A 两条相交直线 B 一条直线C 一条折线D 两条相交直线或一条直线 2、如图中甲、乙、丙所示,下面是三个几何体的三视图,相应的标号是( )① 长方体 ② 圆锥 ③ 三棱锥 ④ 圆柱 A ②①③ B ①②③ C ③②④ D ④③②正视图侧视图俯视图 正视图 侧视图 俯视图 正视图 侧视图 俯视图甲 乙 丙3、如果一个几何体的正视图和侧视图都是长方形,则这个几何体可能是( )A 长方体或圆柱B 正方体或圆柱C 长方体或圆台D 正方体或四棱锥 4、下列说法正确的是( )A 水平放置的正方形的直观图可能是梯形B 两条相交直线的直观图可能是平行直线C 平行四边形的直观图仍然是平行四边形D 互相垂直的两条直线的直观图仍然互相垂直5、若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A 21倍 B42倍 C 2倍 D 2倍 6、如图(1)所示的一个几何体,,在图中是该几何体的俯视图的是( )(1) 二、选择题7、当圆锥的三视图中的正视图是一个圆时,侧视图与俯视图是两个全等的———————三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正视图 俯视图侧视图空间几何体(经典习题)一、选择题:1、半径为R 的半圆卷成一个圆锥,则它的体积为()A3R B3R C3R D3R 2、一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A.28cm π B.212cm π C.216cm π D.220cm π3、圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为() A .7B.6C.5D.34、棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成两部分的体积之比是() A .1:7B.2:7C.7:19D.5:165、一简单组合体的三视图及尺寸如图示(单位:cm )则该组合 体的体积为()A.720003cmB.640003cmC.560003cmD.440003cm6、如图是某几何体的三视图,其中正视图是腰长为2的 等腰三角形,俯视图是半径为1的半圆,则该几何体的 体积是() A.3B .12πC.3D.6ABD CEF 222 正视侧视1 1 俯视俯视图22正(主)视图22 2侧(左)视图 2227、如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为()A .92B.5 C.6D.1528、一个棱锥的三视图如图,则该棱锥的体积是() A.34B.38C.4D.89、如图是一个空间几何体的三视图,则该几何体的侧面积为()A.43B.43第8题第9题10、如图为一平面图形的直观图,则此平面图形可能是选项中的( ) 11、棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8 个三棱锥后,剩下的凸多面体的体积是() A 、23B 、76C 、45D 、5612、在一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞D 、E 、F ,且知SD :DA=SE :EB=CF :FS=2:1,若仍用这个容器盛水,则最多可盛原来水的() A 、2923B 、2719C 、3130D 、272313、一空间几何体的三视图如图所示则该几何体的体积为(). A.223π+ B.423π+ C.232π+D.234π+ 2 2侧(左)视2 22 正(主)俯视14、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为(). (A )48+122 (B )48+242 (C )36+122 (D )36+24215、正六棱锥P-ABCDEF 中,G 为PB 的中点,则三棱锥D-GAC 与三棱锥P-GAC 体积之比为() (A )1:1(B)1:2(C)2:1(D)3:216、如右图,某几何体的正视图与侧视图都是边长为1的正方形, 且体积为12。

则该几何体的俯视图可以是()17、如图,在半径为3的球面上有,,A B C 三点,90,ABC BA BC ︒∠==, 球心O 到平面ABC 的距离是322,则B C 、两点的球面距离是()A.3πB.πC.43πD.2π 18、若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为()A.26 B.23 C.33 D.2319、(2008海南、宁夏理)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为() A .22 B .23 C .4 D .2520、(2007宁夏理?8)已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是()A.34000cm 3B.38000cm 3C.32000cm D.34000cm 21、(2005全国卷Ⅰ)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为() A.32 B.33 C.34 D.2322、(2012年高考(新课标理))已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为 ( ) A .26B .3 C .23D .2223、(2012年高考(课标文理))如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为( ) A.6B .9C .12D .1824、(2012年高考(陕西文))将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为( )2020正视图20侧视图101020俯视图25、(2012年高考(广东文))(立体几何)某几何体的三视图如图1所示,它的体积为( )A .72πB .48πC .30πD .24π26、(2012年高考(湖北理))我国古代数学名着《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式3169d V 人们还用过一些类似的近似公式.根据π =3.14159L 判断,下列近似公式中最精确的一个是( ) A .3169d V ≈B .32d V ≈C .3300157d V ≈D .32111d V ≈27、(2013年广东理)某四棱台的三视图如图1所示,则该四棱台的体积是()A.4B.314C.316D.6 28、(2012年广东理)某几何体的三视图如图1所示,它的体积为() A .12πB.45πC.57πD.81π29、(2011年广东理)如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为(). A .3.3.3.330、(2014年新课标Ⅱ理)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为() A.1727B.59C.1027D.1331、(2014新课标1)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为()A .62B .42C .6D .432、(2015新课标1)《九章算术》是我国古代内容极为丰富的数学名着,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有() (A )14斛 (B )22斛 (C )36斛 (D )66斛33、(2015新课标2)一个正方体被一个平面截去一部分后,剩余部分的三视图如右,则截去部分体积和剩余部分体积的比值为()(A )81(B )71(C )61(D )5134、(2016新课标1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是328,则它的表面积是()(A )17π(B )18π(C )20π(D )28π35、(2016新课标2)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A)20π(B)24π(C)28π(D)32π36、(2016新课标3)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()(A)185+(B)545+(C)90(D)8137、(2017新课标1)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12C.14 D.1638、(2017新课标2)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A.90πB.63πC.42πD.36π39、(2017新课标3)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.3π4C.π2D.π440、如图1,已知某品牌墨水瓶的外形三视图和尺寸,则该墨水瓶的容积为(瓶壁厚度忽略不计)() A .π8+ B .π48+ C .π16+ D .π416+二、填空题:1、如下图,水平放置的△ABC 的斜二测直观图是图中的 △A ′B ′C ′,已知A ′C ′=6,B ′C ′=4,则AB 边的实际长度是________.2、一个几何体的三视图如右图所示,则这个几何体的体积是______.3、两平行平面截半径为13的球,若截面面积分别为、,则这两个平面间的距离是_______________。

4、如图1-13所示,三棱柱ABC-A 1B 1C 1中,若E 、F 分别为AB 、AC 的中点,平面EB 1GF 将三棱柱分成体积V 1、V 2的两部分,那么 V 1:V 2=5、设某几何体的三视图如下(尺寸的长度单位为m )则该几何体的体积为3m 。

6、(2006辽宁)如图,半径为2的半球内有一内接正六棱锥P ABCDEF -,则此正六棱锥的侧面积是________.正视图侧视图俯视图22222CPD EF121221正视图 侧视图俯视图7、(2009南京一模)如图,在正三棱柱111C B A ABC -中,D 为棱1AA 的中点,若截面D BC 1∆是面积为6的直角三角形,则此三棱柱的体积为.8、(2012年高考(山东文))如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____. 9、(2009珠海二模)一个五面体的三视图如下,正视图与侧视图是等腰直角三角形,俯视图为直角梯形,部分边长如图所示,则此五面体的体积为___________.10、(2012年深二模)某机器零件的俯视图是直径为24 mm 的圆(包括圆心),主视图和侧视图完全相同,如图2所示.则该机器零件的体 积是______mm 3(结果保留π).三、解答题:1、如图所示,已知正方体ABCD —A 1B 1C l D l 的棱长为a ,E 为棱AD 的中点,求点A 1到平面BED 1的距离.2、如图,在长方体ABCD-A ‘B ‘C ‘D ‘中用截面截下一个棱锥C-A ‘DD ’,求棱锥C-A ‘DD‘的体积与剩余部分的体积之比。

相关文档
最新文档