最新2移位寄存器及其应用汇总

合集下载

移位寄存器及其应用实验报告

移位寄存器及其应用实验报告

移位寄存器及其应用实验报告1. 背景在数字电路中,移位寄存器是一种常见的基本电路元件。

它可以将输入数据按照一定规则进行移位操作,并输出处理后的数据。

移位寄存器通常由触发器构成,分为串行移位寄存器和并行移位寄存器。

在实际应用中,移位寄存器常用于数据存储、数据传输、脉冲发生器等方面。

本实验旨在通过设计移位寄存器电路及其应用电路的实验,加深对移位寄存器工作原理的理解,掌握其应用。

2. 实验目的1.了解移位寄存器的基本原理;2.学会设计移位寄存器电路及其应用电路;3.掌握移位寄存器的应用方法。

3. 实验原理与方法3.1 移位寄存器原理移位寄存器将输入数据按照一定规则进行移位操作,并输出处理后的数据。

常见的移位规则包括:左移、右移、循环左移、循环右移等。

移位寄存器通常由触发器构成,触发器的状态决定了寄存器中存储的数据。

本实验主要探究两种常用的移位寄存器:串行移位寄存器和并行移位寄存器。

3.1.1 串行移位寄存器串行移位寄存器中,数据是按照位的顺序逐个进行移位的。

串行移位寄存器可以通过级联多个D触发器实现,每个D触发器的输出与下一个D触发器的输入相连。

3.1.2 并行移位寄存器并行移位寄存器中,数据的位同时进行移位。

并行移位寄存器可以通过级联多个D 触发器实现,每个D触发器的输入都与移位数据的对应位相连。

3.2 实验所用材料与方法3.2.1 材料•移位寄存器芯片•发光二极管(LED)•电路连接线3.2.2 方法1.实验预备:准备实验所需的移位寄存器芯片、LED和电路连接线。

2.按照移位寄存器原理,设计移位寄存器电路并进行布线连接。

3.使用示波器检查电路的正确性。

4.进行实验验证,观察移位寄存器的运行情况,并记录实验结果。

4. 实验结果与分析本实验设计了一个4位串行移位寄存器电路,并进行了验证实验。

首先,按照原理部分的描述,我们选择了一个基于D触发器的4位串行移位寄存器芯片。

通过连接四个D触发器,将其串联起来,即可构成一个4位的串行移位寄存器。

移位寄存器及应用

移位寄存器及应用

实验3.6 移位寄存器及应用一、实验目的1.掌握中规模4位双向移位寄存器逻辑功能及使用方法。

2.熟悉移位寄存器的应用,实现数据的串行、并行转换和构成环行计数器。

二、实验原理时序功能组件常用的有计数器和移位寄存器等,借助于器件手册提供的功能表和工作波形图,就能正确地使用这些器件。

对于一个使用者,关键在于合理地选用器件,灵活地使用器件的各控制输入端,运用各种设计技巧,完成任务要求的功能,在使用MSI器件时,各控制输入端必须按照逻辑要求接入电路,不允许悬空。

1.移位寄存器74LS194是一个4位双向移位寄存器,它的逻辑符号如图3.6.1所示,功能表见表3.6.1,其中D0D1D2D3和QQ1Q2Q3是并行数据输入端和输出端;CP是时钟输入端;CR是直接清零端;D SR和D SL分别是右移和左移时的串行数据输入端;S1和S0是工作状态控制输入端。

移位寄存器还可用来构成计数器,典型的有环形计数器和扭环形计数器。

三、实验仪器1.数字逻辑实验箱一台2.双踪示波器一台3.数字万用表一块图3.6.1 74LS194逻辑符号4.集成块若干207表3.6.1 74LS194功能表四、实验任务及步骤1.双向移位寄存器⑴逻辑功能测试①清除:先将CR端接+5V,检查Q端输出情况,再将CR端接0电平,所有Q 端输出应为0,清零后再将CR端接+5V。

②并行输入:S1S置入11,D端置入一组代码(如1011),给 CP端送单次脉冲,观察 Q端的状态。

此时若将DSL 或DSR置入1或0,Q端的状态是否改变?③右移:令S1S=“01”,CP接1Hz方波脉冲,再令DSL=“0”,观察Q端的变化,待4个LED全灭以后(此时输入的串行码是什么?),再令DSR=“l”,观察此时Q端LED点亮的次序。

当 4个LED都点亮时,输入的串行码又如何?若要串行输入代码1010(或其它非全0、非全1码),在DSR端置入一位数码(低位先送),给 CP端送单次脉冲,经过4个脉冲之后立即将S置成0以使寄存器工作于保存状态。

通信电子中的移位寄存器方法

通信电子中的移位寄存器方法

通信电子中的移位寄存器方法移位寄存器是一种在通信电子中广泛应用的数字电路,它能够将数据按照一定的规则进行移位、转换和存储。

移位寄存器广泛应用于数字信号处理、通信传输、控制电路等领域,具有占用空间少、成本低、速度快等优势。

本文将针对移位寄存器在通信电子中的具体应用方法进行重点阐述。

一、移位寄存器的基本原理移位寄存器可以将二进制数据串按照指定的逻辑规则进行移位操作,从而实现数据的转换和存储。

在移位寄存器中,数据输入端和数据输出端都是串行信号,同时还具有一个时钟输入端,用于控制移位操作的时序。

移位寄存器的基本原理就是在每个时钟周期内,将输入的数据按照指定的位移规则向左或向右移动一位,并在移位后将上一次的输出作为本次的输入。

移位寄存器的位数有很多种,最常见的有4位、8位、16位和32位等。

在移位寄存器中,位数越多,能够存储的数据就越多,但是位数也越多,占用的空间也就越大,成本也就越高。

二、移位寄存器的应用方法1、移位寄存器在通信传输中的应用在通信传输中,移位寄存器常常用于实现数据的差错编码和解码。

例如,CRC校验就是一种常用的差错检测技术,它通过在数据中添加冗余的校验位来检测数据传输过程中可能导致的误码和漏码。

在CRC校验中,移位寄存器的作用就是按照指定的移位规则对数据进行处理,然后将校验结果与接收到的数据进行比较,从而判断数据是否正确。

2、移位寄存器在数字信号处理中的应用在数字信号处理中,移位寄存器具有非常广泛的应用。

例如,在噪声抑制和滤波处理中,移位寄存器可以用于实现数字滤波器,通过不断地移位、存储和转换数据来滤除信号中的噪声和杂波。

此外,移位寄存器还可以用于实现数字时钟等功能,其中最常用的是移位寄存器和反相器组成的倒置器,可以实现二进制计数和定时等功能。

3、移位寄存器在控制电路中的应用在控制电路中,移位寄存器可以用于实现状态机和定时器等功能。

例如,在调制解调器中,移位寄存器被广泛应用于实现状态机,通过不断地移位和变换状态来控制模拟信号和数字信号之间的转换。

实验七---移位寄存器及其应用

实验七---移位寄存器及其应用

集成移位寄存器74LS194功能表:
附:74LS194引脚图
四、实验内容
1、测试四位双向移位寄存器74LS194的逻 辑功能:(测试数据记录表5中)
(1)清除功能 (2)送数功能 (3)右移、左移功能 (4)保持功能 注:CR、S1、S0、SL、SD以及D0-D7分别
接数据开关,CP接逻辑开关,Q0-Q7接发 光二极管显示器。
2、根据实验内容2的结果,画出4 位 环形计数器的状态转换图及波形图。
3、分析串/并行、并/串行转换器所 得结果的正确性。
实验七、移位 寄存器
一、实验目的
1、掌握中规模4位双向移位寄存 器的逻辑功能及使用方法。
2、掌握移位寄存器的典型应用。 3、熟悉移位寄存器的调试方法。
二、实验设备
1、电子技术实验箱
一台
2、数字示波器
一台
3、数字万用表
一块
4、芯片:74LS194*2、74LS00
三、理论准备
移位寄存器是一种由触发器链 型连接的同步时序网络 ,每个 触发器的输出连到下一级触发 器的控制输入端,在时钟脉冲 作用下,存贮在移位寄存器中 的信息逐位左移或右移。
2、环形计数器:自拟实验电路及数据 记录表格。
3、实现数据的串/并转换:按图3、图 4连接电路,输入数码自定,自拟记录 表格。
注:串行输入/并行输出及并行输入/ 串行输出转换电路中只做右移部分; 改接电路,用左移方式的内容放在实 验报告中完成(画出电路图)
波形图:
五、实验报告要求
ห้องสมุดไป่ตู้、分析表5的实验结果,总结移位寄 存器的逻辑功能,并写入表格总结功 能一栏中。

电路中的移位寄存器与计数器的原理与应用

电路中的移位寄存器与计数器的原理与应用

电路中的移位寄存器与计数器的原理与应用在现代科技中,电路是一个不可或缺的组成部分。

电路可以用于各种领域,其中移位寄存器和计数器是最为常见且重要的电路之一。

本文将深入探讨这两种电路的原理与应用。

一、移位寄存器的原理与应用移位寄存器是一种能够将输入数据连续地移位、保留并输出的电路。

其原理主要基于逻辑门电路的组合与连接。

1. 原理移位寄存器通常由多个触发器构成,触发器是一种能够存储一个二进制位的设备。

当输入数据进入移位寄存器时,触发器会按照一定的时序规律将数据进行移位,并输出。

移位寄存器可以实现向左(左移)或向右(右移)移动数据的功能。

2. 应用移位寄存器在数字系统中有广泛的应用。

例如,在串行通信中,移位寄存器可以将并行数据转化为串行数据进行传输;在移位加法器中,移位寄存器可以实现两个二进制数的相加;在移位寄存器阵列中,移位寄存器可以用于存储、处理和传输图像等。

二、计数器的原理与应用计数器是一种能够将输入的时钟信号进行计数并输出的电路。

计数器能够记录输入信号的数量,并根据设定的计数规则输出对应的结果。

1. 原理计数器通常由触发器和逻辑门电路构成。

当计数器接收到时钟信号时,触发器会根据时钟信号的上升沿或下降沿进行状态变换,从而实现计数功能。

计数器可以分为二进制计数器、十进制计数器等,根据不同的计数规则可以实现不同的计数功能。

2. 应用计数器在数字电路中有广泛的应用。

例如,在计算机中,计数器可以用于指示程序执行的步骤;在测量仪器中,计数器可以用于计算输入信号的频率或脉冲个数;在定时器中,计数器可以实现定时功能等。

综上所述,移位寄存器和计数器都是数字电路中重要的组成部分。

移位寄存器可以将输入数据按照一定的规律移位输出,广泛应用于数字系统中;计数器则可以根据输入的时钟信号进行计数输出,实现不同的计数功能。

这两种电路的原理与应用相互关联且互相补充,为数字电路的设计与实现提供了强大的工具与方法。

总之,了解移位寄存器和计数器的原理与应用对于理解和应用数字电路至关重要。

(整理)2移位寄存器及其应用.

(整理)2移位寄存器及其应用.

实验七移位寄存器及其应用一、实验目的1.移位寄存器74LS194的逻辑功能及使用方法;2.熟悉4位移位寄存器的应用。

二、实验预习要求1.了解74LS194的逻辑功能;2.用4位移位寄存器构成8位移位寄存器;3.了解移位寄存器构成环形计数器的方法。

三、实验原理1. 移位寄存器是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。

74LS194是一个4位双向移位寄存器,最高时钟脉冲为36MHz,其逻辑符号及引脚排列如图实验7.1所示。

图实验7.1 74 LS194逻辑符号及引脚排列其中:D0~D1为并行输入端;Q0~Q3为并行输出端;SR-右移串引输入端;SL-左移串引输入端;S1、S0-操作模式控制端;/CR-为直接无条件清零端;CP-为时钟脉冲输入端。

74LS194模式控制及状态输出如表实验7.1所示。

2. 用74LS194构成8位移位寄存器电路如图实验7.2所示,将芯片(1)的Q3接至芯片(2)的SR,将芯片(2)的Q4接至芯片(1)的SL,即可构成8位的移位寄存器。

注意:/CR端必须正确连接。

3. 74LS194构成环形计数器把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如图实验7.3所示。

设初态为Q3Q2Q1Q0=1000,则在CP作用下,模式设为右移,输出状态依次为:表实验7.1 74LS194工作状态表2. 用74LS194构成8位移位寄存器电路如图实验7.2所示,将芯片(1)的Q3接至芯片(2)的SR,将芯片(2)的Q4接至芯片(1)的SL,即可构成8位的移位寄存器。

注意:/CR端必须正确连接。

图实验7.2 8位移位寄存器3. 74LS194构成环形计数器把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如图实验7.3所示。

设初态为Q3Q2Q1Q0=1000,则在CP作用下,模式设为右移,输出状态依次为:图实验7.3 环形计数器图实验7.3电路是一个有四个有效状态的计数器,这种类型计数器通常称为环形计数器。

电路中的移位寄存器及其应用

电路中的移位寄存器及其应用

电路中的移位寄存器及其应用电路中的移位寄存器是一种重要的数字逻辑元件,它可以实现数据的移动和存储功能。

通过移动数据位,可以在电路中实现各种有趣的应用,从而扩展数字逻辑的功能。

在本文中,我们将探讨移位寄存器的原理、分类以及一些实际应用。

移位寄存器是一种特殊的寄存器,它可以用来存储和移动一串二进制数据。

它由一组触发器构成,每个触发器代表一个二进制位。

这些触发器可以分为串行和并行两种类型。

串行移位寄存器是将数据位顺序连接在一起形成一个串行的数据路径。

当时钟信号到来时,数据位会按照顺序依次移动。

最常见的是移位寄存器的左移和右移操作,左移时数据位向左移动一位,右移时数据位向右移动一位。

当移出的数据位被丢弃时,新的数据位会从移入端进入寄存器。

串行移位寄存器的优点是结构简单,占用空间小,但是移位速度较慢。

并行移位寄存器是将数据位同时移动的一种寄存器。

它的结构比串行移位寄存器复杂,需要更多的触发器来实现。

并行移位寄存器可以同时移动多个数据位,因此移位速度较快。

在并行移位寄存器中,移位操作是通过输入信号来控制的。

通过控制输入信号的状态,可以实现不同的移位模式,如循环移位、位反转等。

移位寄存器在数字逻辑中有着广泛的应用。

其中,最常见的应用是数据的存储与传输。

通过移位寄存器,可以将数据从一个地方传输到另一个地方,实现数据的存储和传递。

移位寄存器还可以用于实现数据的压缩和解压缩。

例如,在图像处理中,可以使用移位寄存器将图像数据进行压缩,从而减小图像文件的大小,并且可以在需要时恢复原始图像。

此外,移位寄存器还可以用于实现密码算法。

通过将数据进行移位和混合,可以实现数据的加密和解密,保证数据的安全性。

除了上述应用外,移位寄存器还被广泛用于时序控制电路中。

时序控制电路是一种通过控制信号来实现特定操作顺序的电路。

移位寄存器可以用于存储各种控制信号,并根据时钟信号的到来按照特定的顺序输出这些信号。

通过移位寄存器的组合和控制信号的变化,可以实现复杂的时序控制功能,如状态机和序列识别等。

移位寄存器及其应用实验报告

移位寄存器及其应用实验报告

移位寄存器及其应用实验报告一、实验目的1.了解移位寄存器的基本原理和工作方式;2.掌握移位寄存器的应用场景和使用方法;3.通过实验验证移位寄存器的功能和性能。

二、实验原理移位寄存器是一种特殊的寄存器,它可以将数据按照一定的规律进行移位操作。

移位操作可以分为左移和右移两种方式,左移是将数据向左移动一定的位数,右移则是将数据向右移动一定的位数。

移位寄存器可以用于数据的移位、数据的存储和数据的转换等多种应用场景。

移位寄存器的基本原理是利用触发器和门电路实现数据的移位操作。

触发器是一种存储器件,可以存储一个二进制位的数据。

门电路则是一种逻辑电路,可以实现数据的逻辑运算。

移位寄存器通常由多个触发器和门电路组成,可以实现多位数据的移位操作。

移位寄存器的工作方式是通过时钟信号来控制数据的移位操作。

当时钟信号为高电平时,移位寄存器开始工作,数据按照一定的规律进行移位操作。

当时钟信号为低电平时,移位寄存器停止工作,数据保持不变。

移位寄存器还可以通过控制输入端和输出端的电平来实现不同的功能。

三、实验内容本次实验主要是通过实验板上的移位寄存器模块,实现数据的移位和存储操作。

具体实验内容如下:1.将实验板上的移位寄存器模块连接到开发板上;2.使用开发板上的按键控制移位寄存器的工作方式,包括左移、右移、存储和清零等操作;3.使用示波器观察移位寄存器的时钟信号和数据输出信号,验证移位寄存器的工作状态和性能。

四、实验步骤1.将实验板上的移位寄存器模块连接到开发板上,按照连接图进行连接;2.使用开发板上的按键控制移位寄存器的工作方式,具体操作如下:(1)按下左移按键,移位寄存器开始向左移动数据;(2)按下右移按键,移位寄存器开始向右移动数据;(3)按下存储按键,移位寄存器将当前数据存储到寄存器中;(4)按下清零按键,移位寄存器将当前数据清零。

3.使用示波器观察移位寄存器的时钟信号和数据输出信号,具体操作如下:(1)将示波器的探头连接到移位寄存器的时钟输入端,观察时钟信号的波形;(2)将示波器的探头连接到移位寄存器的数据输出端,观察数据输出信号的波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2移位寄存器及其应

实验七移位寄存器及其应用
一、实验目的
1.移位寄存器74LS194的逻辑功能及使用方法;
2.熟悉4位移位寄存器的应用。

二、实验预习要求
1.了解74LS194的逻辑功能;
2.用4位移位寄存器构成8位移位寄存器;
3.了解移位寄存器构成环形计数器的方法。

三、实验原理
1. 移位寄存器是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或
右移。

74 LS194是一个4位双向移位寄存器,最高时钟脉冲为36MHz,其逻辑符号及引脚排列如图实验7.1所示。

图实验7.1 74 LS194逻辑符号及引脚排列
其中:D0~D1为并行输入端;Q0~Q3为并行输出端;SR-右移串引输入端;SL-左移串引输入端;S1、S0-操作模式控制端;/CR-为直接无条件清零端;CP-为时钟脉冲输入端。

74LS194模式控制及状态输出如表实验7.1所示。

2. 用74LS194构成8位移位寄存器
电路如图实验7.2所示,将芯片(1)的Q3接至芯片(2)的SR,将芯片(2)的Q4接至芯片(1)的SL,即可构成8位的移位寄存器。

注意:/CR端必须正确连接。

3. 74LS194构成环形计数器
把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如图实验7.3所示。

设初态为Q3Q2Q1Q0=1000,则在CP作用下,模式设为右移,输出状态依次为:
表实验7.1 74LS194工作状态表
2. 用74LS194构成8位移位寄存器
电路如图实验7.2所示,将芯片(1)的Q3接至芯片(2)的SR,将芯片(2)的Q4接至芯片(1)的SL,即可构成8位的移位寄存器。

注意:/CR 端必须正确连接。

图实验7.2 8位移位寄存器
3. 74LS194构成环形计数器
把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如图实验7.3所示。

设初态为Q3Q2Q1Q0=1000,则在CP作用下,模式设为右移,输出状态依次为:
图实验7.3 环形计数器
图实验7.3电路是一个有四个有效状态的计数器,这种类型计数器通常称为环形计数器。

同时输出端输出脉冲在时间上有先后顺序,因此也可以作为顺序脉冲发生器。

四、实验仪器设备
1.TPE-AD数字实验箱 1台
2.四位双向移位寄存器74LS194 2片
3. 四两输入集成与非门74LS00 1片
五、实验内容及方法
1. 测试74LS194(或CC40194)的逻辑功能
参图实验7.1接线,/CR 、S1、S0、SL、SR、D3、D2、D1、D0分别接逻辑电平开关输出插孔;Q3Q2Q1Q0用LED电平显示,CP接单脉冲源输出插孔。

按表实验7.1进行逐项对比测试。

(1)清零:令 =0,此时Q3Q2Q1Q0=0000。

之后置 =1
(2)送数:令=S1=S0=1,D3D2D1D0=0101,加CP脉冲,观察CP=0、CP由 0→1、CP由1→0,三种情况下寄存器输出状态的变化。

结果应该是输出状态的变化应发生在CP的上升沿。

(3)右移:令 =1,S1=0,S0=1,由右移输入端SR送入二进制码
0100,由CP端加入4个单脉冲信号,观察输出情况。

(4)左移:先清零或预置,再令 =1,S1=1,S0=0,从SL送入1010;连续输入4个CP脉冲,观察输出情况。

(5)保持:令 =1,S1=S0=0,加CP脉冲,观察寄存器的输出状态是否变化。

2.8位移位寄存器
(1)参照图实验7.2连接电路, Q0~Q7用LED显示;
(2)用并行送数法预置寄存器为某一个二进制数码(如: = 1,
S1=S0=1,送11);
(3)设定S1S0移位模式(S1S0=01右移),用单脉冲源依次输入CP脉冲,观察Q0 ~Q7的变化情况。

移位寄存器中的数据可以在移位脉冲作用下一次逐位右移或左移,数据既可以并行输入、并行输出,也可以串行输入、串行输
出,还可以并行输入、串行输出,串行输入、并行输出,十分灵
活,用途也很广。

目前常用的集成移位寄存器种类很多,如74164、74165、74166均为
八位单向移位寄存器,74195为四位单向移存器,74194为四位双向
移存器,74198为八位双向移存器。

3.环型计数器
(1)参照图实验7.3连接电路, Q0~Q3用LED显示;
(2)参照实验内容2进行,观察输出状态的变化情况。

电路简单,N位移位寄存器可以计N个数,实现模N计数器。

状态为1的输出端的序号等于计数脉冲的个数,通常不需要译码电路。

缺点:状态利用率低,无效循环多。

六、实验报告
1.总结74LS194的逻辑功能;
双向移位寄存器74LS194具有左移、右移、保持、复位和置数等功能,通过对S1和S0的设置可实现不同功能。

D0、D1、D2和D3是数据输入端主要用于置数使用,可接至VCC或GND实现不同的二进制组合;DSR和DSL 分别是右移和左移的数据输入端,也可接至VCC或GND输入1或0;Q0、Q1、Q2和Q3接发光小灯泡观察其输出情况。

2.画出相应的电路图,画出环型计数器的输出波形图。

相关文档
最新文档