高二数学二项式定理的应用PPT优秀课件
合集下载
6.3 二项式定理(课件)高二数学(人教A版2019选择性必修第三册)

n (0
n 1
n
C
k n)
k nk k
C
b
k 1
na
(2)各项的统一表达式为____________,这是展开式的第_____项.
a降幂(n→0),b升幂(0→n)
(3)a的幂、b的幂的变化规律:_________________________
二项式定理:即(a+b)n的展开式
n 1
[( x 1) 1]5 1 x 5 1
新知:二项式系数的性质
n 1
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C
2
n 1
n
ab
n 1
C b
n
n
n
(1)令a b 1, 得(a b) n 的二项式系数之和为2n ,
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C b
2
n
n
n
二项式定理:即(a+b)n的展开式
n 1
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C b
2
n
n
n
k
(1)展开式共_____项,各项次数是___,各项系数是____.
1 8
[例3]已知( x 3 ) ,
x
(1)求展开式的第3项;
(2)其展开式的第4项的系数为_____,第4项的二项式系数为___;
n 1
n
C
k n)
k nk k
C
b
k 1
na
(2)各项的统一表达式为____________,这是展开式的第_____项.
a降幂(n→0),b升幂(0→n)
(3)a的幂、b的幂的变化规律:_________________________
二项式定理:即(a+b)n的展开式
n 1
[( x 1) 1]5 1 x 5 1
新知:二项式系数的性质
n 1
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C
2
n 1
n
ab
n 1
C b
n
n
n
(1)令a b 1, 得(a b) n 的二项式系数之和为2n ,
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C b
2
n
n
n
二项式定理:即(a+b)n的展开式
n 1
( a b) C a C a b C a
n
0
n
n
1
n
2
n
n2
b C b
2
n
n
n
k
(1)展开式共_____项,各项次数是___,各项系数是____.
1 8
[例3]已知( x 3 ) ,
x
(1)求展开式的第3项;
(2)其展开式的第4项的系数为_____,第4项的二项式系数为___;
二项式定理ppt课件

1
答案:10
课堂小结
1.二项式定理的概念、特点,用二项式定理解决整除问题.
2.通项的应用.利用通项求二项展开式的某一项,特定项和特定项的系数.
3.简单了解二项式系数.
点击进入
课时作业
(2)解:0.998 =(1-0.002) =1+ ×(-0.002)+ ×(-0.002) +…+ ×(-0.002) .
2
2
由题意知 T3= ×(-0.002) =15×0.002 =0.000 06<0.001,
且第 3 项以后(包括第 3 项)的项的绝对值都远小于 0.001,
探究点一
角度1
通项公式及其应用
求二项展开式中的特定项
[例 1] ( -
10
) 的展开式中,所有的有理项为
.
解析:二项展开式的通项为
-
Tk+1= (- ) .
-
由题意知
令
∈Z,且 0≤k≤10,k∈N.
-
=r(r∈Z),则 10-2k=3r,k=5- r.
n
答案:(-1)n
.
4.已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k=
.
解析:x 是(1+kx ) 的展开式的第 5 项,x 的系数为 k =15k .由已知得
4
4
15k <120,即 k <8.又 k 是正整数,故 k=1.
8
答案:1
2 6
8
4
4
课堂探究·素养培育
6
6
答案:10
课堂小结
1.二项式定理的概念、特点,用二项式定理解决整除问题.
2.通项的应用.利用通项求二项展开式的某一项,特定项和特定项的系数.
3.简单了解二项式系数.
点击进入
课时作业
(2)解:0.998 =(1-0.002) =1+ ×(-0.002)+ ×(-0.002) +…+ ×(-0.002) .
2
2
由题意知 T3= ×(-0.002) =15×0.002 =0.000 06<0.001,
且第 3 项以后(包括第 3 项)的项的绝对值都远小于 0.001,
探究点一
角度1
通项公式及其应用
求二项展开式中的特定项
[例 1] ( -
10
) 的展开式中,所有的有理项为
.
解析:二项展开式的通项为
-
Tk+1= (- ) .
-
由题意知
令
∈Z,且 0≤k≤10,k∈N.
-
=r(r∈Z),则 10-2k=3r,k=5- r.
n
答案:(-1)n
.
4.已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k=
.
解析:x 是(1+kx ) 的展开式的第 5 项,x 的系数为 k =15k .由已知得
4
4
15k <120,即 k <8.又 k 是正整数,故 k=1.
8
答案:1
2 6
8
4
4
课堂探究·素养培育
6
6
人教版高中数学选修2-3二项式定理 (共16张PPT)教育课件

人
的
一
生
说
白
了
,
也
就
是
三
万
余
天
,
贫
穷
与
富
贵
,
都
是
一
种
生
活
境
遇
。
懂
得
爱
自
己
的
人
,
对
生
活
从
来
就
没
有
过
高
的
奢
望
,
只
是
对
生
存
的
现
状
欣
然
接
受
。
漠
漠
红
尘
,
芸
芸
众
生
皆
是
客
,
时
光
深
处
,
流
年
似
水
,
转
瞬
间
,
光
阴
就
会
老
去
,
留
在
心
头
的
,
只
是
弥
留
在
时
光
深
处
的
无
边
落
寞
。
轻
拥
沧
桑
,
淡
看
流
年
,
掬
一
捧
岁
月
,
握
一
份
懂
得
,
红
尘
口
罗
不
–■
① 项: a 3
a 2b ab 2 b 3
a3kbk
二项式定理及应用ppt课件

• 【答案】 C
4.已知二项式(x-1x)n的展开式中含x3的项 是第4项,则n的值为________.
【解析】 ∵通项公式Tr+1=Crn(-1)rxn-2r, 又∵第4项为含x3的项, ∴当r=3时,n-2r=3,∴n=9.
• 【答案】 9
5.若(x2+
1 ax
)6的二项展开式中x3的系数为
联立①②得
a1+a3+…+a99=(2-
3)100-(2+ 2
3)100 .
(3)原式=[(a0+a2+…+a100)+(a1+a3+… +a99)]·[(a0+a2+…+a100)-(a1+a3+…+
a99)] =(a0+a1+a2+…+a100)(a0-a1+a2-a3 +…+a98-a99+a100) =(2- 3)100(2+ 3)100=1.
52,则a=________(用数字作答).
【解析】 Tr+1=Cr6a-rx12-3r, 当12-3r=3时,r=3,∴C63a-3=52,∴a=2.
• 【答案】 2
求特定的项或特定项的系数
已知在(3 x- 1 )n的展开式中,第6 3
2x 项为常数项. (1)求n; (2)求含x2的项的系数; (3)求展开式中所有的有理项.
(4)方法一:∵展开式中,a0,a2, a4,…,a100大于零,而a1,a3,…,a99小 于零,
∴原式=a0-a1+a2-a3+…+a98-a99+
a100 =(2+ 3)100.
方法二:|a0|+|a1|+|a2|+…+|a100|, 即(2+ 3x)100展开式中各项的系数和, ∴|a0|+|a1|+|a2|+…+|a100|=(2+ 3)100.
• 【思路点拨】 本题给出二项式及其二项展开式求各系
4.已知二项式(x-1x)n的展开式中含x3的项 是第4项,则n的值为________.
【解析】 ∵通项公式Tr+1=Crn(-1)rxn-2r, 又∵第4项为含x3的项, ∴当r=3时,n-2r=3,∴n=9.
• 【答案】 9
5.若(x2+
1 ax
)6的二项展开式中x3的系数为
联立①②得
a1+a3+…+a99=(2-
3)100-(2+ 2
3)100 .
(3)原式=[(a0+a2+…+a100)+(a1+a3+… +a99)]·[(a0+a2+…+a100)-(a1+a3+…+
a99)] =(a0+a1+a2+…+a100)(a0-a1+a2-a3 +…+a98-a99+a100) =(2- 3)100(2+ 3)100=1.
52,则a=________(用数字作答).
【解析】 Tr+1=Cr6a-rx12-3r, 当12-3r=3时,r=3,∴C63a-3=52,∴a=2.
• 【答案】 2
求特定的项或特定项的系数
已知在(3 x- 1 )n的展开式中,第6 3
2x 项为常数项. (1)求n; (2)求含x2的项的系数; (3)求展开式中所有的有理项.
(4)方法一:∵展开式中,a0,a2, a4,…,a100大于零,而a1,a3,…,a99小 于零,
∴原式=a0-a1+a2-a3+…+a98-a99+
a100 =(2+ 3)100.
方法二:|a0|+|a1|+|a2|+…+|a100|, 即(2+ 3x)100展开式中各项的系数和, ∴|a0|+|a1|+|a2|+…+|a100|=(2+ 3)100.
• 【思路点拨】 本题给出二项式及其二项展开式求各系
《二项式定理》ppt课件

பைடு நூலகம்
A.15
������ ������������
B.20������
-
������ ������
C.15
������
2
D.20
������ ������������
【解析】T3=������������ ������ ( ������) ( ) =15,故选 C.
4
������
2
10 (x- ������y) 的展开式中第 5 项的系数是( A ). A.840 B.-840 C.210 D.-210
二项展开式的通项和二项式系数 n 在二项式定理中,右边的多项式叫作(a+b) 的二 项展开式,展开式的第 r+1 项为 n-r r Tr+1=������������ a b (r=0,1,2…n),其中的系数 ������ 二项式系数 ������������ . ������ (r=0,1,2…n)叫作
������
������
n
于 37,求展开式中的第 5 项的系数.
������ ������ 【解析】由������������ ������ +������������ +������������ =37 得 1+n+ n(n-1)=37, ������ ������
得 n=8.
������������ 4 ������������ 4 ������ ������ 又∵T5=������������ ������(2x) = x ,∴该项的系数为 . ������ ������ ������
������ ������ b) +������������ (4a) (b) + ������ (4a) (b) + ������ ������ ������ ������ (4a) (1 3 2 2 3 1
A.15
������ ������������
B.20������
-
������ ������
C.15
������
2
D.20
������ ������������
【解析】T3=������������ ������ ( ������) ( ) =15,故选 C.
4
������
2
10 (x- ������y) 的展开式中第 5 项的系数是( A ). A.840 B.-840 C.210 D.-210
二项展开式的通项和二项式系数 n 在二项式定理中,右边的多项式叫作(a+b) 的二 项展开式,展开式的第 r+1 项为 n-r r Tr+1=������������ a b (r=0,1,2…n),其中的系数 ������ 二项式系数 ������������ . ������ (r=0,1,2…n)叫作
������
������
n
于 37,求展开式中的第 5 项的系数.
������ ������ 【解析】由������������ ������ +������������ +������������ =37 得 1+n+ n(n-1)=37, ������ ������
得 n=8.
������������ 4 ������������ 4 ������ ������ 又∵T5=������������ ������(2x) = x ,∴该项的系数为 . ������ ������ ������
������ ������ b) +������������ (4a) (b) + ������ (4a) (b) + ������ ������ ������ ������ (4a) (1 3 2 2 3 1
二项式定理说课PPT优秀课件

x
简析:本题是一道利用二项式定理对某个二项式进行展 开的问题,.
(2x1 x)6(2 x x1 )6x 1 3(2 x 1 )6
6x 3 4 1x 9 2 2 2x 4 10 6 6 x 0 0 1 x 2 2 x 1 3
二项式定理
x 例题2:求
(x
1 x
3 、重点难点分析:
重点:(1)使学生参与并深刻体会二项式定理形成过程,掌握二项式, 系数,字母的幂次,展开式项数的规律。
(2)能够应用二项式定理对二项式进行展开。
难点:掌握运用多项式乘法以及组合知识推导二项式定理的过程。
二﹑说教学目标
A.知识与技能
(1)使学生参与并探讨二项式定理的形成过程,掌握二项式系数、字母的 幂次、展开式项数的规律.
C
2 2
下一页
二项式定理
(a b ) ? 3
c3 0 a 3 c3 1 a 2 b 1 c3 2 a2b c3 3 b 3
( a b ) 4 ?C 4 0 a 4 C 4 1 a 3 b C 4 2 a 2 b 2 C 4 3 a3 C b 4 4 b 4
二项式定理
(2)能够应用二项式定理对所给出的二项式进行正确的展开.
B.过程与方法 :(1)通过二项式定理的推导过程,培养学生观察,猜想, 归纳的能力以及分类讨论的能力.
(2)培养学生化归的意识和知识迁移的能力.
C.情感态度与价值观:
(1)通过学生自主参与和探讨二项式定理的形成过程, 培养学生解决数学问题的兴趣和信心.
是升幂排列, anrbr 指数和为n。
(3)二项展开式的通项公式 Tr1Cnranrbr (4)二项式系数:
依次为 Cn0 ,Cn1 ,Cn2 , … ,Cnr , … ,C,nn 这里 Cnr ( r 0 ,1,2 , …,n )称为二项式系数
简析:本题是一道利用二项式定理对某个二项式进行展 开的问题,.
(2x1 x)6(2 x x1 )6x 1 3(2 x 1 )6
6x 3 4 1x 9 2 2 2x 4 10 6 6 x 0 0 1 x 2 2 x 1 3
二项式定理
x 例题2:求
(x
1 x
3 、重点难点分析:
重点:(1)使学生参与并深刻体会二项式定理形成过程,掌握二项式, 系数,字母的幂次,展开式项数的规律。
(2)能够应用二项式定理对二项式进行展开。
难点:掌握运用多项式乘法以及组合知识推导二项式定理的过程。
二﹑说教学目标
A.知识与技能
(1)使学生参与并探讨二项式定理的形成过程,掌握二项式系数、字母的 幂次、展开式项数的规律.
C
2 2
下一页
二项式定理
(a b ) ? 3
c3 0 a 3 c3 1 a 2 b 1 c3 2 a2b c3 3 b 3
( a b ) 4 ?C 4 0 a 4 C 4 1 a 3 b C 4 2 a 2 b 2 C 4 3 a3 C b 4 4 b 4
二项式定理
(2)能够应用二项式定理对所给出的二项式进行正确的展开.
B.过程与方法 :(1)通过二项式定理的推导过程,培养学生观察,猜想, 归纳的能力以及分类讨论的能力.
(2)培养学生化归的意识和知识迁移的能力.
C.情感态度与价值观:
(1)通过学生自主参与和探讨二项式定理的形成过程, 培养学生解决数学问题的兴趣和信心.
是升幂排列, anrbr 指数和为n。
(3)二项展开式的通项公式 Tr1Cnranrbr (4)二项式系数:
依次为 Cn0 ,Cn1 ,Cn2 , … ,Cnr , … ,C,nn 这里 Cnr ( r 0 ,1,2 , …,n )称为二项式系数
第十章 第三节 二项式定理 课件(共47张PPT)

赋值法求系数和的应用技巧 (1)“赋值法”对形如(ax+b)n,(ax2+bx+c)m(a,b,c∈R)的式子求其展 开式的各项系数之和,常用赋值法,只需令 x=1 即可;对形如(ax+by)n(a, b∈R)的式子求其展开式各项系数之和,只需令 x=y=1 即可. (2)若 f(x)=a0+a1x+a2x2+…+anxn,则 f(x)展开式中各项系数之和为 f(1), 偶次项系数之和为 a0+a2+a4+…=f(1)+2f(-1) ,奇次项系数之和为 a1+a3+a5+…=f(1)-2f(-1) .令 x=0,可得 a0=f(0).
令
x=1
代入2x-
1 x
6
=1;
故所有项的系数之和为 1;故选 AC.]
求形如(a+b)n(n∈N*)的展开式中与特定项相关的量 (常数项、参数值、特定项等)的步骤
(1)利用二项式定理写出二项展开式的通项公式 Tr+1=Crn an-rbr,常把字 母和系数分离开来(注意符号不要出错);
(2)根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整 数)先列出相应方程(组)或不等式(组),解出 r;
故选 B.]
3.(x+1x -2)6(x>0)的展开式中含 x3 项的系数为________.
解析:
法一:因为(x+1x -2)6=(
x
-
1 x
)12,所以其展开式的通项公
式为 Tr+1=C1r2 (
x
)12-r(-
1 x
)r=Cr12
(-1)r(
x )12-2r=Cr12 (-1)rx6-r,由 6
1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)Ckn an-kbk 是二项展开式的第 k 项.( ) (2)在二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a+b)n 的展开式中,每一项的二项式系数与 a,b 无关.( ) (4)(a+b)n 某项的系数是该项中非字母因数部分,包括符号等,与该项的 二项式系数不同.( ) 答案: (1)× (2)× (3)√ (4)√
二项式定理ppt课件

二项式定理
汇报人:
2023-11-28
目录
• 二项式定理的背景和定义 • 二项式定理的公式和证明 • 二项式定理的应用 • 二项式定理的扩展和推广 • 二项式定理的意义和影响 • 二项式定理的实例和分析
01
二项式定理的背景和定义
背景介绍
二项式定理在数学中有着悠久的历史,它起源于17世纪,是组合数学中的一种基本理论。
03
二项式定理的应用
组合数学中的应用
排列数公式
二项式定理可以用于计算排列数公式,即从n个不同的元素中取出m个元素的所有排列的个数。
组合数公式
二项式定理可以用于计算组合数公式,即从n个不同的元素中取出m个元素的所有组合的个数。
插入与删除操作
二项式定理可以用于计算在n个元素中进行插入或删除操作的总次数,以及进行特定次数的插入或删除操 作的所有可能方式的个数。
概率论中的应用
概率分布
二项式定理可以用于计算二项分布的概率分布,即某个事 件在n次独立试验中发生的次数的概率分布。
01
组合概率
二项式定理可以用于计算多个事件同时 发生的概率,即组合事件发生的概率。
02
03
事件的独立性
二项式定理可以用于判断两个事件是 否独立,即一个事件的发生是否会影 响另一个事件发生的概率。
组合数性质:在二项式定理中,我们 使用了组合数的性质。组合数 $C(n,k)$ 等于 $C(n-1,k-1) + C(n1,k)$,这是组合数的一个重要性质。 这个性质可以帮助我们在二项式定理 的证明过程中进行简化。
指数性质:在证明二项式定理的过程 中,我们还使用了指数的性质。例如 ,当 $n$ 为偶数时,$(a+b)^n = (a+b)^{n/2} \times (a+b)^{n/2}$ ;当 $n$ 为奇数时,$(a+b)^n = (a+b)^{n/2} \times (a+b)^{n/2-1} \times b$。这些指数性质可以帮助 我们在计算过程中进行简化。
汇报人:
2023-11-28
目录
• 二项式定理的背景和定义 • 二项式定理的公式和证明 • 二项式定理的应用 • 二项式定理的扩展和推广 • 二项式定理的意义和影响 • 二项式定理的实例和分析
01
二项式定理的背景和定义
背景介绍
二项式定理在数学中有着悠久的历史,它起源于17世纪,是组合数学中的一种基本理论。
03
二项式定理的应用
组合数学中的应用
排列数公式
二项式定理可以用于计算排列数公式,即从n个不同的元素中取出m个元素的所有排列的个数。
组合数公式
二项式定理可以用于计算组合数公式,即从n个不同的元素中取出m个元素的所有组合的个数。
插入与删除操作
二项式定理可以用于计算在n个元素中进行插入或删除操作的总次数,以及进行特定次数的插入或删除操 作的所有可能方式的个数。
概率论中的应用
概率分布
二项式定理可以用于计算二项分布的概率分布,即某个事 件在n次独立试验中发生的次数的概率分布。
01
组合概率
二项式定理可以用于计算多个事件同时 发生的概率,即组合事件发生的概率。
02
03
事件的独立性
二项式定理可以用于判断两个事件是 否独立,即一个事件的发生是否会影 响另一个事件发生的概率。
组合数性质:在二项式定理中,我们 使用了组合数的性质。组合数 $C(n,k)$ 等于 $C(n-1,k-1) + C(n1,k)$,这是组合数的一个重要性质。 这个性质可以帮助我们在二项式定理 的证明过程中进行简化。
指数性质:在证明二项式定理的过程 中,我们还使用了指数的性质。例如 ,当 $n$ 为偶数时,$(a+b)^n = (a+b)^{n/2} \times (a+b)^{n/2}$ ;当 $n$ 为奇数时,$(a+b)^n = (a+b)^{n/2} \times (a+b)^{n/2-1} \times b$。这些指数性质可以帮助 我们在计算过程中进行简化。