聚类分析—层次聚类
聚类分析的类型与选择

聚类分析的类型与选择聚类分析是一种常用的数据挖掘技术,可以将数据按照某种相似性进行分组。
通过聚类分析,我们可以发现数据中的潜在规律和结构,帮助我们更好地理解数据,并做出相应的决策。
本文将介绍聚类分析的常见类型,并讨论如何选择适合的聚类方法。
1.聚类分析的类型聚类分析有多种类型,常见的包括层次聚类分析和k均值聚类分析。
下面将分别介绍这两种聚类方法。
1.1层次聚类分析层次聚类分析是一种自下而上的聚类方法,它通过计算数据之间的相似度或距离,将相似的数据逐步合并成簇。
这种方法对数据的层次结构有较好的表示,能够发现不同层次的聚类结构。
层次聚类分析的优点之一是不需要预先指定聚类的个数,但计算复杂度较高,对大规模数据处理存在困难。
另外,它对异常值敏感,若存在异常值可能影响聚类结果。
1.2k均值聚类分析k均值聚类分析是一种基于划分的聚类方法,它将数据划分成k个互不重叠的簇,使得簇内的数据相似度较高,簇间的数据相似度较低。
该方法通过迭代计算簇的中心和重新分配数据来实现聚类。
k均值聚类分析的优点在于计算简单、效果较好,适用于大规模数据集。
但该方法对初始簇中心的选择较为敏感,容易收敛于局部最优解。
2.选择合适的聚类方法在选择聚类方法时,应根据数据的特点和目标进行判断。
下面列举几个常见的选择因素,供参考:2.1数据特点需要考虑数据的特点,如数据的维度、规模、密度等。
对于高维度数据,层次聚类分析可能更适用;而对于大规模数据,k均值聚类分析常常更为合适。
2.2聚类目标需要考虑聚类的目标。
如果希望发现层次结构、发现数据的内在关联性,层次聚类分析是一个不错的选择。
而如果目标是将数据划分成互不重叠的簇,并且希望聚类结果能较好地解释数据的差异性,k均值聚类分析更为合适。
2.3数据质量数据质量也是选择聚类方法的重要因素。
层次聚类分析对异常值比较敏感,如果数据中存在异常值,使用k均值聚类分析可能更好。
选择合适的聚类方法需要综合考虑数据特点、聚类目标和数据质量等因素。
层次聚类分析

层次聚类分析层次聚类分析在层次聚类中,起初每⼀个实例或观测值属于⼀类。
聚类就是每⼀次把两类聚成新的⼀类,直到所有的类聚成单个类为⽌,算法如下:(1) 定义每个观测值(⾏或单元)为⼀类;(2) 计算每类和其他各类的距离;(3) 把距离最短的两类合并成⼀类,这样类的个数就减少⼀个;(4) 重复步骤(2)和步骤(3),直到包含所有观测值的类合并成单个的类为⽌。
层次聚类⽅法单联动聚类⽅法倾向于发现细长的、雪茄型的类。
它也通常展⽰⼀种链式的现象,即不相似的观测值分到⼀类中,因为它们和它们的中间值很相像。
全联动聚类倾向于发现⼤致相等的直径紧凑类。
它对异常值很敏感。
平均联动提供了以上两种⽅法的折中。
相对来说,它不像链式,⽽且对异常值没有那么敏感。
它倾向于把⽅差⼩的类聚合。
Ward法倾向于把有少量观测值的类聚合到⼀起,并且倾向于产⽣与观测值个数⼤致相等的类。
它对异常值也是敏感的。
质⼼法是⼀种很受欢迎的⽅法,因为其中类距离的定义⽐较简单、易于理解。
层次聚类⽅法可以⽤hclust()函数来实现,格式是hclust(d, method=),其中d是通过dist()函数产⽣的距离矩阵,并且⽅法包括"single"、"complete"、"average"、"centroid"和"ward"。
(1)营养数据的平均联动聚类:data(nutrient, package="flexclust")s(nutrient) <- tolower(s(nutrient)) #将⾏名改为⼩写(个⼈习惯)nutrient.scaled <- scale(nutrient) #标准化为均值为0、⽅差为1d <- dist(nutrient.scaled) #27种⾷物之间的距离采⽤欧⼏⾥得距离,默认为欧⼏⾥得距离fit.average <- hclust(d, method="average") # hclust()做层次聚类,应⽤的⽅法是平均联动plot(fit.average, hang=-1, cex=.8, main="Average Linkage Clustering")#plot()函数中的hang命令展⽰观测值的标签(让它们在挂在0下⾯)结果分析:树状图应该从下往上读,它展⽰了这些条⽬如何被结合成类。
聚类算法(五)--层次聚类(系统聚类)及超易懂实例分析

聚类算法(五)--层次聚类(系统聚类)及超易懂实例分析博客上看到的,叫做层次聚类,但是《医学统计学》上叫系统聚类(chapter21)思想很简单,想象成⼀颗倒⽴的树,叶节点为样本本⾝,根据样本之间的距离(相似系数),将最近的两样本合并到⼀个根节点,计算新的根节点与其他样本的距离(类间相似系数),距离最⼩的合为新的根节点。
以此类推对于样本X=(x1,x2,,,x m),共n个样品,m个特征,我们可以考虑两种情形聚类R型聚类:m个特征之间的聚类,可以理解为⼀种降维。
Q型聚类:n个样品之间的聚类,这就是⼀般意义上机器学习中的系统聚类(⽂中的下标i、j在R型、Q型中的含义不⼀样,聪明的读者⾃⾏分辨)相似系数:R型(真正意义上的相似系数)(r)$r_{ij}=\frac{\left | \sum \left ( X_{i}-\bar{X_{i}} \right )\left ( X_{j}-\bar{X_{j}} \right ) \right |}{\sqrt{\sum \left ( X_{i}-\bar{X_{i}} \right )^{2}\sum \left ( X_{j}-\bar{X_{j}} \right )^{2}}}$可以看到$r_{ij}$越⼤标明两特征相似程度越⾼Q型(真正意义上的样品距离)(d)闵可夫斯基(Minkowski)距离:$\sqrt[p]{\left | x-\mu _{i} \right |^{p}}$Minkowski距离没有考虑变量之间的相关关系。
引进马⽒距离:$d_{ij}={\mathbf{X}}'\mathbf{S}^{-1}\mathbf{X}$其中$X=(X_{i1}-X_{j1} \right , X_{i2}-X_{j2} \right, X_{im}-X_{jm})$(不明原因的公式不正确显⽰)类间相似系数:最⼤相似系数法r=Max(r)D=Min(d)最⼩相似系数法r=Min(r)D=Max(d)可以看出,就是⼈为规定了,当某两个指标或样品合并后,新的样本(或指标)与上⼀节点样品(或指标)的距离(或相似系数)的选取现举实例说明测量了300名成年⼥⼦⾝⾼(X1)、下肢长(X2)、腰围(X3)、胸围(X4)得到相似系数矩阵可以看到X1,X2的相似系数最⼤,所以将X1,X2合并为G5X3变为G3,X4变为G4G3与G4的相似系数不变,为0.73G5与G3、G5与G4的类间相似系数采⽤最⼤相似系数法G5与G3的类间相似系数r = Max r即$r_{53}=Max(r_{13},r_{23})=Max(0.09,0.05)=0.09$$r_{54}=Max(r_{14},r_{24})=Max(0.23,0.17)=0.23$所以有根据上述步骤,直到所有的类都归为⼀类。
聚类分析的基本

聚类分析的基本1、聚类分析(cluster analysis):又被称为群集分析,是一种对多维数据进行分析和探索的统计技术,目的是将许多观测值分类至具有相同特征的聚类,这些观测值之间差别较大,但内部观测差别较小。
聚类分析是一种目的性数据分析,它能够将没有标签分类(unsupervised classification)的不等来源的数据,分组至具有相似性特征的群体中,即对对象或事情按共有特征(feature)将他们分成几个类。
以此弥补“同属一个类别,但又个别有异的”的不足。
2、聚类分析的用途:(1)聚类分析用于数据挖掘,帮助系统提取未知信息,比如通过分析客户购买组合,把客户分成相关性很大的群体,以此帮助商业内容的定位;(2)帮助系统估算和识别多变量的变化趋势;(3)帮助用户从数据大海中获取价值信息,快速实现有效的数据查询;(4)帮助提升机器学习的精度,以及数据挖掘的价值,以此改善系统的性能;(5)可用于新闻分类,通常将同类型或相关性较大的新闻放在一起,进行分类。
3、聚类分析的原理:(1)根据定义与要求来制定聚类算法;(2)构造数据库,合理编码解决聚类分析问题;(3)根据构造好的数据库,提取其中的特征并进行度量,确定分类间的相似程度;(4)建立类内类间的关系,使用hierarchical clustering方法;(5)根据设定的特征度量准则,确定聚类分析后的结果;(6)对结果进行评定,检验聚类的正确性、有效性。
4、聚类分析的类型:(1)层次聚类:hierarchical clustering;(2)partitioning-clustering:将聚类中的各个群体将看作划分问题进行处理;(3)基于密度的聚类:density-based clustering;(4)基于模型的聚类:model-based clustering。
聚类分析也有许多优点,例如:(1)可以将相似的数据聚类在一起,细节化的数据可以表达地更清楚;(2)可以减少错误判断甚至盲目判断的几率,从而提高把握性;(3)可以改进数据查询速度;(4)可以识别数据之间的关联,从而实现对数据的有效分析利用。
层次聚类分析案例

层次聚类分析案例层次聚类分析是一种常用的数据挖掘技术,它通过对数据集进行分层聚类,将相似的数据点归为一类,从而实现对数据的有效分类和分析。
本文将以一个实际案例为例,介绍层次聚类分析的应用过程和方法。
案例背景。
某电商平台希望对其用户进行分类,以便更好地进行个性化推荐和营销活动。
为了实现这一目标,我们将运用层次聚类分析方法对用户进行分类,并找出具有相似特征的用户群体。
数据准备。
首先,我们需要收集用户的相关数据,包括用户的购买记录、浏览记录、点击记录、收藏记录等。
这些数据将构成我们的样本集合,用于进行层次聚类分析。
数据预处理。
在进行层次聚类分析之前,我们需要对数据进行预处理,包括数据清洗、数据标准化等工作。
通过数据预处理,我们可以排除异常值和噪声,使得数据更加适合进行聚类分析。
层次聚类分析。
在数据预处理完成之后,我们将使用层次聚类分析算法对用户进行分类。
该算法通过计算不同用户之间的相似度,将相似度较高的用户归为一类。
通过层次聚类分析,我们可以得到用户的不同分类结果,从而实现对用户群体的有效划分。
结果分析。
最后,我们将对层次聚类分析的结果进行分析和解释。
通过对不同用户群体的特征和行为进行分析,我们可以更好地理解用户群体的特点和需求,为电商平台的个性化推荐和营销活动提供有力的支持。
总结。
通过本案例的介绍,我们可以看到层次聚类分析在用户分类和群体分析中的重要作用。
通过对数据的分层聚类,我们可以更好地理解用户群体的特征和行为,为个性化推荐和营销活动提供有力的支持。
希望本文能够对层次聚类分析的应用有所启发,为相关领域的研究和实践提供参考和借鉴。
结语。
层次聚类分析是一种强大的数据挖掘工具,它在用户分类、群体分析等领域具有广泛的应用前景。
通过本文的介绍,相信读者对层次聚类分析有了更深入的理解,希望大家能够在实际应用中灵活运用层次聚类分析方法,为相关问题的解决提供更好的支持。
聚类分析的类型与选择

聚类分析的类型与选择聚类分析是一种常用的数据分析方法,用于将一组数据分成不同的类别或群组。
通过聚类分析,可以发现数据中的内在结构和模式,帮助我们更好地理解数据和做出决策。
在进行聚类分析时,我们需要选择适合的聚类算法和合适的聚类类型。
本文将介绍聚类分析的类型和选择方法。
一、聚类分析的类型1. 划分聚类(Partitioning Clustering)划分聚类是将数据集划分为不相交的子集,每个子集代表一个聚类。
常用的划分聚类算法有K-means算法和K-medoids算法。
K-means算法是一种迭代算法,通过计算数据点与聚类中心的距离来确定数据点所属的聚类。
K-medoids算法是一种基于对象之间的相似性度量的划分聚类算法。
2. 层次聚类(Hierarchical Clustering)层次聚类是将数据集划分为一个层次结构,每个层次代表一个聚类。
常用的层次聚类算法有凝聚层次聚类和分裂层次聚类。
凝聚层次聚类是自底向上的聚类过程,开始时每个数据点都是一个聚类,然后逐步合并相似的聚类,直到形成一个大的聚类。
分裂层次聚类是自顶向下的聚类过程,开始时所有数据点都属于一个聚类,然后逐步将聚类分裂成更小的聚类。
3. 密度聚类(Density Clustering)密度聚类是基于数据点之间的密度来进行聚类的方法。
常用的密度聚类算法有DBSCAN算法和OPTICS算法。
DBSCAN算法通过定义数据点的邻域密度来确定核心对象和边界对象,并将核心对象连接起来形成聚类。
OPTICS算法是DBSCAN算法的一种改进,通过计算数据点的可达距离来确定聚类。
二、选择聚类分析的方法在选择聚类分析的方法时,需要考虑以下几个因素:1. 数据类型不同的聚类算法适用于不同类型的数据。
例如,K-means算法适用于连续型数值数据,而DBSCAN算法适用于密度可测量的数据。
因此,在选择聚类算法时,需要根据数据的类型来确定合适的算法。
2. 数据量和维度聚类算法的计算复杂度与数据量和维度有关。
聚类分析

步骤:
• • • • • • • 1、对数据进行变换处理,消除量纲 2、构造n个类,每个类只包含一个样本计算 3、n个样本两两间的距离{dij} 4、合并距离最近的两类为一新类 5、计算新类与当前各类的距离,重复(4) 6、画聚类图 7、决定类的个数和类
12
类与类间距离的确定
一、最短距离法 二、最长距离法 三、中间距离法 四、重心距离法 五、类平均法 六、离差平方和
聚类分析
(Cluster Analysis)
1
聚类分析(Cluster Analysis)
• 一、聚类分析基本原理 • 二、层次聚类法(Hierarchical Cluster) • 三、K-均值聚类法(K-means cluster)
2
一、聚类分析(Cluster analysis)基本原理 • 聚类分析又称群分析或点群分析,它是研
G8={G1,G2}
17
d78=min{d71,d72}=12.80 7 D4= 7 8 河南3 甘肃4 青海5 辽宁1 浙江2 0 12.8 0 8
18
最长距离法(furthest neighbor)
• 用两类之间最远点 的距离代表两类之 间的距离。
例2:对例1的数据以最长距离法聚类。
19
d13=13.80 d14=13.12 d15=12.80 d23=24.63 d24=24.06 d25=23.54 d34=2.2 d35=3.51 d45=2.21 1 D1= 1 2 3 4 5 0 11.67 0 13.80 24.63 0 13.12 24.06 2.20 0 0 12.80 23.54 3.51 2.21 2 3 4 5 河南与甘肃的距离最近, 先将二者(3和4)合 为一类G6={G3,G4}
数据聚类分析方法

数据聚类分析方法
数据聚类分析方法是一种将数据分组或分类的技术。
聚类分析的目标是将相似的数据聚集在一起,同时将不相似的数据分开。
以下是常见的数据聚类分析方法:
1. K-means聚类算法:K-means算法是一种迭代的聚类算法。
它将数据集分为预先指定的K个簇,其中每个数据点属于距离该数据点最近的簇。
该算法通过不断迭代更新簇的中心来优化聚类结果。
2. 层次聚类算法:层次聚类算法通过以下两种方法进行聚类分析:聚合和分裂。
聚合方法将每个数据点作为一个单独的簇,并逐渐将相似的簇合并在一起。
分裂方法则是从一个包含所有数据点的簇开始,并逐渐将不相似的数据点分离开来。
3. 密度聚类算法:密度聚类算法将数据点密度作为聚类的基础。
该算法通过确定数据点周围的密度来划分不同的簇。
常见的密度聚类算法有DBSCAN和OPTICS。
4. 基于网格的聚类算法:基于网格的聚类算法将数据空间划分为网格,并将数据点分配到各个网格中。
该算法通常适用于高维数据集,可以减少计算复杂度。
5. 谱聚类算法:谱聚类算法将数据点表示为一个图的拉普拉斯矩阵,并通过谱分解将数据点分配到不同的簇中。
该算法通常用于非线性可分的数据集。
需要根据具体的数据集和分析目标来选择适合的数据聚类分析方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
9
8
7
6
5
4
3 2
1
0 0
123Fra bibliotek45
6
7
8
9
10
2020/6/19
10
9
8
7 6
5
4
3
2
1
0 0
1
2
3
4
5
6
7
8
9
10
10
9
8
7
6
5
4
3 2
1
0 0
1
2
3
4
5
6
7
8
9
10
层次方法(续)
四个广泛采用的簇间距离度量方法
最小距离:dmin(Ci,Cj) = min p∈Ci, p’∈Cj |p-p’| 最大距离:dmax(Ci,Cj) = max p∈Ci, p’∈Cj |p-p’| 平均值的距离:dmean(Ci,Cj) = | mi - mj | 平均距离(簇的直径D ):davg(Ci,Cj) =∑ p∈Ci ∑p’∈Cj |p-p’|
/ninj
其中, |p-p’|是两个对象p和p’之间的距离 mi是簇Ci 的平均值,ni是簇Ci中对象的数目
2020/6/19
层次方法(续)
层次聚类的主要缺点
不具有很好的可伸缩性: 时间复杂性至少是 O(n2), 其中 n 对象总数 合并或分裂的决定需要检查和估算大量的对象或簇 不能撤消已做的处理, 聚类之间不能交换对象. 如果某一步没有很好地
2020/6/19
聚类特征
假定簇C1中有两个点(1,2,3),(3,2,1),簇C2 有三个点(1,1,2),(2,2,1),(2,1,2),簇 3由C1和C2构成,则:
CF1=(2,(1+3,2+2,3+1),( ))=(2,(4,4,4), (10,8,10))
CF2=(3,(1+2+2,1+2+1,2+1+2),( ))=(3,(5,4, 5),(9,6,9))
10
9
8
7
6
5
4
3
2
1
0 0
1
2
3
4
5
6
7
8
9
10
2020/6/19
10
9
8
7
6
5
4
3
2
1
0 0
1
2
3
4
5
6
7
8
9
10
10
9
8
7
6
5
4
3
2
1
0 0
1
2
3
4
5
6
7
8
9
10
DIANA (Divisive Analysis)
由 Kaufmann和Rousseeuw提出 (1990) 已在一些统计分析软件包中实现 . 如 Splus 是 AGNES的逆 最终每个节点自己形成一个簇
个指定的收缩因子向着聚类中心对它们进行收缩
2020/6/19
BIRCH (1996)
Birch (Balanced Iterative Reducing and Clustering using Hierarchies): 利用层次方法的平衡迭代归约和聚类由Zhang, Ramakrishnan和Livny 提出(SIGMOD’96), 该算法的特点是能利用有限的内存资源完成对大数 据集的高质量的聚类,同时通过单遍扫描数据集能最小化I/O代价。
2020/6/19
层次方法(续)
凝聚的(agglomerative)和分裂的(divisive)层次聚类图示
Step 0 Step 1 Step 2 Step 3 Step 4
a ab
b
abcde
c
cde
d
de
e
Step 4 Step 3 Step 2 Step 1 Step 0
agglomerative (AGNES)
智能数据挖掘
Topic3--聚类分析
层次聚类方法(Hierarchical Methods)
层次方法
层次的聚类方法将数据对象组成一棵聚类的树 根据层次分解是自底向上, 还是自顶向下形成, 层次的聚类方
法可以进一步分为凝聚的(agglomerative)和分裂的(divisive) 层次聚类 纯粹的层次聚类方法的聚类质量受限于如下特点:一旦一个 合并或分裂被执行,就不能修正 最近的研究集中于凝聚层次聚类和迭代重定位方法的集成 使用距离矩阵作为聚类标准. 该方法不需要输入聚类数目 k, 但需要终止条件
因此得到CF3为: CF3=(2+3,(4+5,4+4,4+5),(10+9,8+6,10+9))=(5,
(9,8,9),(19,14,19))
2020/6/19
簇的质心和簇的半径。
假如一个簇中包含n个数据点:{Xi},i=1,2,3...n., 则质心C和半径R计算公式如下:
C=(X1+X2+...+Xn)/n,(这里X1+X2+...+Xn是向 量加)
CF (N , LS, SS)
聚类特征
Clustering Feature:CF = (N, LS, SS)
N: 数据点数目
LS: Ni=1 Xi SS: Ni=1Xi2
CF = (5, (16,30),(54,190))
10
9
8
7
6
5
4
3 2
1
0 0
1
2
3
4
5
6
7
8
9
10
(3,4) (2,6) (4,5) (4,7) (3,8)
R=(|X1-C|^2+|X2-C|^2+...+|Xn-C|^2)/n 其中,簇半径表示簇中所有点到簇质心的平均距
离。CF中存储的是簇中所有数据点的特性的统计 和,所以当我们把一个数据点加入某个簇的时候, 那么这个数据点的详细特征,例如属性值,就丢 失了,由于这个特征,BIRCH聚类可以在很大程 度上对数据集进行压缩。
divisive (DIANA)
2020/6/19
AGNES (Agglomerative Nesting)
由 Kaufmann和Rousseeuw提出(1990) 已在一些统计分析软件包中实现 . 如 Splus 使用单链接(Single-Link)方法和相异度矩阵 合并具有最小相异度的节点 以非递减的方式继续 最终所有的节点属于同一个簇
选择合并或分裂的决定, 可能会导致低质量的聚类结果
2020/6/19
层次方法(续)
改进层次方法的聚类质量的方法: 将层次聚类和其他的聚类 技术进行集成, 形成多阶段聚类
BIRCH (1996): 使用 CF-tree对对象进行层次划分, 然后采用其他的聚 类算法对聚类结果进行求精
ROCK1999:基于簇间的互联性进行合并 CHAMELEON (1999): 使用动态模型进行层次聚类 CURE (1998):采用固定数目的代表对象来表示每个簇,然后依据一
两个重要概念
聚类特征(Clustering Feature, CF) 聚类特征树(Clustering Feature Tree, CF树)
聚类特征
聚类特征(CF)是一个三元组,给出对象子类的信息的汇总描述
设某个子类中有N个d维的点或对象{oI},则该子类的CF定义如下
2020/6/19