初一下数学期中复习专题

合集下载

七年级下册数学期中复习-压轴题专题

七年级下册数学期中复习-压轴题专题

数学期中复习 压轴题专题1.(1)如图,点E 是AB 上方一点,MF 平分∠AME,若点G 恰好在MF 的反向延长线上,且NE 平分∠CNG,2∠E 与∠G 互余,求∠AME 的大小。

(2)如图,在(1)的条件下,若点P 是EM 上一动点,PQ 平分∠MPN,NH 平分∠PNC,交AB于点H ,PJ图,已知MA图,AB图,在平面直角坐标系中,已知点A (-5,0),B (),D (2,7), (1)求C 点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1个单位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。

设从出发起运动了x 秒。

<①请用含x 的代数式分别表示P,Q 两点的坐标;ACDDBNAD②当x=2时,y 轴上是否存在一点E ,使得△AQE 的面积与△APQ 的面积相等若存在,求E 的坐标,若不存在,说明理由《xx5、如图,在平面直角坐标系中,A (a ,0),C (b ,2),且满足(a+b )²+|a -b+4|=0,过C 作CB ⊥x 轴于B 。

(1)若过B 作BD ∆∆2a b m b a-+b+3=0=14.ABCA S如图,已知(0,),B (0,),C (,)且(4),o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标(2)作DE ,交轴于E 点,EF 为AED 的平分线,且DFE 90。

求证:平分;MPQECA∠∠图,A 为x 轴负半轴上一点,B 为x 轴正半轴上一点,C (0,-2),D (-3,-2)。

<(1)求△BCD 的面积;(2)若AC⊥BC,作∠CBA 的平分线交CO 于P ,交CA 于Q ,判断∠CPQ 与∠CQP 的大小关系,并说明你的结论。

(3)若∠ADC=∠DAC,点B 在x 轴正半轴上任意运动,∠ACB 的平分线CE 交DA 的延长线于点E,在B点的运动过程中,EABC∠∠的值是否变化若不变,求出其值;若变化,说明理由。

苏科版七年级数学下册期中专题复习第7-9章综合提升训练卷 【含答案】

苏科版七年级数学下册期中专题复习第7-9章综合提升训练卷 【含答案】

苏科版七年级数学下册期中专题复习第7-9章综合提升训练卷一、选择题1、计算(x3)2÷x的结果是( )A.x7B.x6C.x5D.x42、若3×32×3m=38,则m的值是( )A.6B.5C.4D.33、设a=255,b=333,c=422,则a、b、c的大小关系是( )A.c<a<b B.a<b<c C.b<c<a D.c<b<a4、要使(x2﹣x+5)(2x2﹣ax﹣4)展开式中不含x2项,则a的值等于( )A.﹣6B.6C.14D.﹣145、若多项式x2+kx+4是一个完全平方式,则k的值是( )A.2B.4C.±2D.±46、下列等式从左到右的变形,属于因式分解的是( )2A.a(x﹣y)=ax﹣ay B.x+2=x(1+)xC.x2+3x+2=x(x+3)+2D.x3﹣x=x(x+1)(x﹣1)7、如图,AB∥CD,点E在CA的延长线上.若∠BAE=50°,则∠ACD的大小为( )A.120°B.130°C.140°D.150°8、如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有( )A.3个B.4个C.5个D.6个9、如图,将△ABE向右平移2cm得到△DCF.如果△ABE的周长是16cm,那么四边形ABFD的周长是( )A.16 cm B.18 cm C.20 cm D.21 cm10、如图,AB∥EF,∠D=90°,则α,β,γ的大小关系是( )A.β=α+γB.β=α+γ﹣90°C.β=γ+90°﹣αD.β=α+90°﹣γ二、填空题11、目前世界上刻度最小的标尺是钻石标尺,它的最小刻度为0.2nm (其中1nm =10﹣9m )用科学记数法表示:0.2nm =  m .12、计算:0.×(﹣8)2021= .13、无意义,则x 的取值为 ________.()0x 7+14、( )2=4x 2y 4;(a 2b )2•(a 2b )3= .15、已知(x +a )(x 2﹣x +b )的展开式中不含x 2项和x 项,则(x +a )(x 2﹣x +b )= .16、若ab =3,a ﹣b =5,则2a 2b ﹣2ab 2= .17、若a =2009x +2007,b =2009x +2008,c =2009x +2009,则a 2+b 2+c 2﹣ab ﹣bc ﹣ca 的值为 .18、如图,在四边形ABCD 中,∠P =105°,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠A +∠D = .19、如图是婴儿车的平面示意图,其中AB ∥CD ,∠1=120°,∠3=40°,那么∠2的度数为 ..20、如图,已知AB ∥EF ,∠C =90°,则α、β与γ的关系是 .三、解答题21、计算(1)(m ﹣n )2•(n ﹣m )3•(n ﹣m )4 (2)(b 2n )3(b 3)4n ÷(b 5)n +1(3)(a 2)3﹣a 3•a 3+(2a 3)2; (4)(﹣4a m +1)3÷[2(2a m )2•a ].22、解答下列问题(1)已知2x=a,2y=b,求2x+y的值;(2)已知3m=5,3n=2,求33m+2n+1的值;(3)若3x+4y﹣3=0,求27x•81y的值.23、计算(1)(﹣2x3)2+x2(2x4﹣y2);(2)(x﹣2y)2;(3)(x﹣2)2﹣(x+3)(x﹣3);(4)(x﹣3y﹣1)(x﹣3y+1).24、因式分解:(1)3ab3﹣30a2b2+75a3b;(2)a2(x﹣y)+16(y﹣x);(3)(x2+y2)2﹣4x2y2.25、已知a﹣b=7,ab=﹣12.(1)求a2b﹣ab2的值;(2)求a2+b2的值;(3)求a+b的值.26、如图,∠A+∠ABC=180°,BD⊥CD于点D,EF⊥CD于点F.(1)请说明AD∥BC的理由;(2)若∠ADB=45°,求∠FEC的度数.27、如图,在△ABC中,点D在BC边上,EF∥AD,分别交AB、BC于点E、F,DG平分∠ADC,交AC于点G,∠1+∠2=180°.(1)求证:DG∥AB;(2)若∠B=32°,求∠ADC的度数.28、探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的数量关系?请说明理由.探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论: .探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论: .29、阅读理解,填写部分理由,探索新的结论(②③两小题只写结论):已知AB∥CD,①如图①,∠B+∠C=∠BEC.理由如下:解:过E点作EF∥AB则∠1=∠B( )∵EF∥ABAB∥CD( )∴EF∥CD( )∴∠2=∠C( )∵∠BEC=∠1+∠2∴∠BEC=∠C+∠B( )②图②中∠B,∠E,∠G,∠F,∠C的数量关系是 ;③图③中∠B,∠E,∠F,∠G,∠H,∠M,∠C的数量关系是 .苏科版七年级数学下册期中专题复习第7-9章综合提升训练卷一、选择题1、计算(x3)2÷x的结果是( )A.x7B.x6C.x5D.x4【分析】依次根据幂的乘方法则和同底数幂相除的法则进行计算便可.原式=x6÷x=x6﹣1=x5,故选:C.2、若3×32×3m=38,则m的值是( )A.6B.5C.4D.3【分析】根据3×32×3m=38,得31+2+m═38,得到方程1+2+m=8,解得m=5.∵3×32×3m=38,∴31+2+m═38,∴1+2+m=8,∴m=5,故选:B.3、设a=255,b=333,c=422,则a、b、c的大小关系是( )A.c<a<b B.a<b<c C.b<c<a D.c<b<aD【分析】直接利用指数幂的性质结合幂的乘方运算法则将原式变形进而得出答案.∵a=255=(25)11=3211,b=333=(33)11=2711,c=422=(42)11=1611,∴c<b<a.故选:D.4、要使(x2﹣x+5)(2x2﹣ax﹣4)展开式中不含x2项,则a的值等于( )A.﹣6B.6C.14D.﹣14【分析】根据多项式乘以多项式的法则进行展开,然后按照x的降序排列,使x的二次项的系数为0即可.解:(x2﹣x+5)(2x2﹣ax﹣4)=2x4﹣ax3﹣4x2﹣2x3+ax2+4x+10x2﹣5ax﹣20=2x4﹣(a+2)x3+(a+6)x2+(4﹣5a)x﹣20,∵展开式中不含x2项,∴a +6=0,∴a =﹣6,故选:A .5、若多项式x 2+kx +4是一个完全平方式,则k 的值是( )A .2B .4C .±2D .±4【分析】完全平方式有两个:a 2+2ab +b 2和a 2﹣2ab +b 2,根据以上内容得出kx =±2x •2,求出即可.∵x 2+kx +4是一个完全平方式,∴kx =±2•x •2,解得:k =±4,故选:D .6、下列等式从左到右的变形,属于因式分解的是( )A .a (x ﹣y )=ax ﹣ayB .x +2=x (1+)x 2C .x 2+3x +2=x (x +3)+2D .x 3﹣x =x (x +1)(x ﹣1)【分析】根据因式分解的定义逐个判断即可.A .a (x ﹣y )=ax ﹣ay ,是整式乘法,不属于因式分解,故本选项不符合题意;B .,等式的右边不是几个整式的积的形式,不属于因式分解,故本选项不符合题)21(2xx x +=+意;C .x 2+3x +2=x (x +3)+2,等式的右边不是几个整式的积的形式,不属于因式分解,故本选项不符合题意;D .x 3﹣x =x (x +1)(x ﹣1),把一个多项式化成几个整式的积的形式,属于因式分解,故本选项符合题意;故选:D .7、如图,AB ∥CD ,点E 在CA 的延长线上.若∠BAE =50°,则∠ACD 的大小为( )A.120°B.130°C.140°D.150°解:∵∠BAE=50°,∴∠CAB=180°﹣50°=130°.∵AB∥CD,∴∠BAC=∠ACD=130°.故选:B.8、如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有( )A.3个B.4个C.5个D.6个解:①由∠1=∠2,可得a∥b;②由∠3+∠4=180°,可得a∥b;③由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a∥b;④由∠2=∠3,不能得到a∥b;⑤由∠7=∠2+∠3,∠7=∠1+∠3可得∠1=∠2,即可得到a∥b;⑥由∠7+∠4﹣∠1=180°,∠7﹣∠1=∠3,可得∠3+∠4=180°,即可得到a∥b;故选:C.9、如图,将△ABE向右平移2cm得到△DCF.如果△ABE的周长是16cm,那么四边形ABFD的周长是( )A.16 cm B.18 cm C.20 cm D.21 cm解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF=AB+BE+AE+AD+EF=△ABE的周长+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故选:C.10、如图,AB∥EF,∠D=90°,则α,β,γ的大小关系是( )A.β=α+γB.β=α+γ﹣90°C.β=γ+90°﹣αD.β=α+90°﹣γ解:如图,过点C和点D作CG∥AB,DH∥AB,∴CG∥DH∥AB,∵AB∥EF,∴AB∥EF∥CG∥DH,∵CG∥AB,∴∠BCG=α,∴∠GCD=∠BCD﹣∠BCG=β﹣α,∵CG∥DH,∴∠CDH=∠GCD=β﹣α,∵HD∥EF,∴∠HDE=γ,∵∠EDC=∠HDE+∠CDH=90°,∴γ+β﹣α=90°,∴β=α+90°﹣γ.故选:D.二、填空题11、目前世界上刻度最小的标尺是钻石标尺,它的最小刻度为0.2nm (其中1nm =10﹣9m )用科学记数法表示:0.2nm = m .【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.2nm =0.2×10﹣9m =2×10﹣10m .故2×10﹣10.12、计算:0.×(﹣8)2021= .【分析】根据积的乘方运算法则计算即可,积的乘方,等于每个因式乘方的积.解:0.×(﹣8)2021=0.×82020×(﹣8)=(0.125×8)2020×(﹣8)=12020×(﹣8)=1×(﹣8)=﹣8.13、无意义,则x 的取值为 ________.()0x 7+7x =-【分析】根据底数不为0的数的0次幂是1,可得底数不为0,可得答案.【详解】解:由题意得,解得,故.70x +=7x =-7x =-14、( )2=4x 2y 4;(a 2b )2•(a 2b )3= .【分析】根据单项式乘单项式和幂的乘方与积的乘方的法则分别进行计算,即可得出答案.(±2xy 2)2=4x 2y 4;(a2b)2•(a2b)3=a4b2•a6b3=a10b5;故±2xy2;a10b5.15、已知(x+a)(x2﹣x+b)的展开式中不含x2项和x项,则(x+a)(x2﹣x+b)= .【分析】将原式利用多项式乘多项式法则展开、合并,再根据题意得出x2项和x项的系数为0,从而求出a、b的值,进一步求解可得.(x+a)(x2﹣x+b)=x3﹣x2+bx+ax2﹣ax+ab=x3+(a﹣1)x2+(b﹣a)x+ab,∵展开式中不含x2项和x项,∴a﹣1=0且b﹣a=0,解得a=1,b=1,∴原式=x3+ab=x3+1,故x3+1.16、若ab=3,a﹣b=5,则2a2b﹣2ab2= .【分析】首先提公因式分解因式,然后再代入计算即可.解:原式=2ab(a﹣b)=2×3×5=30,故30.17、若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc﹣ca的值为 .【分析】根据已知条件可得a﹣b=﹣1,b﹣c=﹣1,c﹣a=2,再将a2+b2+c2﹣ab﹣bc﹣ca变形为1[(a﹣b)2+(b﹣c)2+(c﹣a)2],然后代入计算即可.2解:∵a=2009x+2007,b=2009x+2008,c=2009x+2009,∴a﹣b=﹣1,b﹣c=﹣1,c﹣a=2,∴a2+b2+c2﹣ab﹣bc﹣ca1=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca)21=[(a﹣b)2+(b﹣c)2+(c﹣a)2]21=(1+1+4)2=3.故答案为3.18、如图,在四边形ABCD中,∠P=105°,∠ABC的平分线与∠BCD的平分线交于点P,则∠A+∠D= .解:∵∠P=105°,∴∠PBC+∠PCB=180°﹣105°=75°,∵PB、PC为角平分线,∴∠ABC+∠DCB=2∠PBC+∠PCB=150°,∴∠A+∠D=360°﹣150°=210°,故210°.19、如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为 ..解:∵AB∥CD,∴∠A=∠3=40°,∵∠1=120°,∴∠2=∠1﹣∠A=80°,故80°.20、如图,已知AB∥EF,∠C=90°,则α、β与γ的关系是 .解:过点C作CM∥AB,过点D作DN∥AB,∵AB∥EF,∴AB∥CM∥DN∥EF,∴∠BCM=α,∠DCM=∠CDN,∠EDN=γ,∵β=∠CDN+∠EDN=∠CDN+γ①,∠BCD=α+∠CDN=90°②,由①②得:α+β﹣γ=90°.故α+β﹣γ=90°.三、解答题21、计算(1)(m﹣n)2•(n﹣m)3•(n﹣m)4(2)(b2n)3(b3)4n÷(b5)n+1(3)(a2)3﹣a3•a3+(2a3)2;(4)(﹣4a m+1)3÷[2(2a m)2•a].【分析】(1)根据同底数幂的乘法计算即可;(2)根据幂的乘方和同底数幂的除法计算即可;(3)根据幂的乘方、同底数幂的乘法和合并同类项解答即可;(4)根据积的乘方和同底数幂的除法计算即可.解:(1)(m﹣n)2•(n﹣m)3•(n﹣m)4=(n﹣m)2+3+4,=(n﹣m)9;(2)(b2n)3(b3)4n÷(b5)n+1=b6n•b12n÷b5n+5=b6n+12n﹣5n﹣5=b13n﹣5;(3)(a2)3﹣a3•a3+(2a3)2=a6﹣a6+4a6=4a6;(4)(﹣4a m+1)3÷[2(2a m)2•a]=﹣64a3m+3÷8a2m+1=﹣8a m+222、解答下列问题(1)已知2x=a,2y=b,求2x+y的值;(2)已知3m=5,3n=2,求33m+2n+1的值;(3)若3x+4y﹣3=0,求27x•81y的值.【分析】(1)根据同底数幂的乘法法则计算即可;(2)根据幂的乘方以及同底数幂的乘法法则计算即可;(3)由3x+4y﹣3=0可得3x+4y=3,再据幂的乘方以及同底数幂的乘法法则计算即可.解:(1)∵2x=a,2y=b,∴2x+y=2x•2y=ab;(2)∵3m=5,3n=2,∴33m+2n+1=(3m)3•(3n)2×3=53×22×3=125×4×3=1500;(3)由3x+4y﹣3=0可得3x+4y=3,∴27x•81y=33x•34y=33x+4y=33=27.23、计算(1)(﹣2x3)2+x2(2x4﹣y2);(2)(x﹣2y)2;(3)(x﹣2)2﹣(x+3)(x﹣3);(4)(x﹣3y﹣1)(x﹣3y+1).【分析】(1)先算乘方与乘法,再合并同类项即可;(2)利用完全平方公式即可;(3)先利用完全平方公式与平方差公式计算,再合并同类项即可;(4)先利用平方差公式计算,再利用完全平方公式计算即可.(1)(﹣2x3)2+x2(2x4﹣y2)=4x6+2x6﹣x2y2=6x6﹣x2y2;(2)(x﹣2y)2=x2﹣4xy+4y2;(3)(x﹣2)2﹣(x+3)(x﹣3)=x2﹣4x+4﹣x2+9=﹣4x+13;(4)(x﹣3y﹣1)(x﹣3y+1)=(x﹣3y)2﹣12=x2﹣6xy+9y2﹣1.24、因式分解:(1)3ab3﹣30a2b2+75a3b;(2)a2(x﹣y)+16(y﹣x);(3)(x2+y2)2﹣4x2y2.【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可;(3)原式利用平方差公式,以及完全平方公式分解即可.解:(1)3ab3﹣30a2b2+75a3b=3ab(b2﹣10ab+25a2)=3ab(b﹣5a)2;(2)a2(x﹣y)+16(y﹣x)=(x﹣y)(a2﹣16)=(x﹣y)(a+4)(a﹣4);(3)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.25、已知a﹣b=7,ab=﹣12.(1)求a2b﹣ab2的值;(2)求a2+b2的值;(3)求a+b的值.【分析】(1)直接提取公因式ab,进而分解因式得出答案;(2)直接利用完全平方公式进而求出答案;(3)直接利用(2)中所求,结合完全平方公式求出答案.解:(1)∵a﹣b=7,ab=﹣12,∴a2b﹣ab2=ab(a﹣b)=﹣12×7=﹣84;(2)∵a﹣b=7,ab=﹣12,∴(a﹣b)2=49,∴a2+b2﹣2ab=49,∴a2+b2=25;(3)∵a2+b2=25,∴(a+b)2=25+2ab=25﹣24=1,∴a+b=±1.26、如图,∠A+∠ABC=180°,BD⊥CD于点D,EF⊥CD于点F.(1)请说明AD∥BC的理由;(2)若∠ADB=45°,求∠FEC的度数.解:如图所示:(1)AD∥BC的理由如下:∵∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行);(2)∵BD⊥CD,∴∠BDC=90°,∵AD∥BC,∴∠ADB=∠DBC,又∵∠ADB=45°,∴∠DBC=45°,又∵BD⊥CD.EF⊥CD,∴BD∥EF,∴∠DBC=∠FEC,∴∠FEC=45°.27、如图,在△ABC中,点D在BC边上,EF∥AD,分别交AB、BC于点E、F,DG平分∠ADC,交AC于点G,∠1+∠2=180°.(1)求证:DG∥AB;(2)若∠B=32°,求∠ADC的度数.解:(1)证明:∵EF∥AD,∴∠2+∠3=180°.∵∠1+∠2=180°.∴∠1=∠3.∴DG∥AB;(2)∵DG平分∠ADC,∴∠ADC=2∠1=2∠4.由(1)知DG∥AB,∴∠4=∠B=32°,∴∠ADC=2∠4=64°.28、探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的数量关系?请说明理由.探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论: .探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论: .解:如图,通过分析发现探究2结论:∠BOC=90°+∠A,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠1+∠2=(180°﹣∠A)=90°﹣∠A,∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=90°+∠A;探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;探究3结论:∠BOC=90°﹣∠A.理由:∵∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∴∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),∴∠BOC=90°﹣∠A.29、阅读理解,填写部分理由,探索新的结论(②③两小题只写结论):已知AB∥CD,①如图①,∠B+∠C=∠BEC.理由如下:解:过E点作EF∥AB则∠1=∠B( )∵EF∥ABAB∥CD( )∴EF∥CD( )∴∠2=∠C( )∵∠BEC=∠1+∠2∴∠BEC=∠C+∠B( )②图②中∠B,∠E,∠G,∠F,∠C的数量关系是 ;③图③中∠B,∠E,∠F,∠G,∠H,∠M,∠C的数量关系是 .解:①过E点作EF∥AB,则∠1=∠B(两直线平行内错角相等)∵EF∥AB,AB∥CD(已知)∴EF∥CD(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)∴∠2=∠C(两直线平行内错角相等)∵∠BEC=∠1+∠2,∴∠BEC=∠C+∠B(等量代换)②图②中∠B,∠E,∠D,∠F,∠C的数量关系是∠B+∠G+∠C=∠E+∠F;证明:过E、F、G作EH∥AB,GM∥AB,FN∥AB,∵AB∥CD,∴AB∥EH∥MG∥FN∥CD,∴∠B=∠BEH,∠HEG=∠EGM,∠MGF=∠GFN,∠NFC=∠C,∵∠BEG=∠BEH+∠HEG,∠EGF=∠EGM+∠MGF,∠GFC=∠GFN+∠NFC,∴∠B+∠G+∠C=∠E+∠F;③图③中∠B,∠E,∠F,∠G,∠H,∠M,∠C的数量关系是∠B+∠F+∠H+∠C=∠E+∠G+∠M.证明:过E、F、G、H、M作EK∥AB,FN∥AB,GP∥AB,HQ∥AB,MI∥AB,∵AB∥CD,∴AB∥EK∥FN∥GP∥HQ∥MI∥CD,∴∠B=∠BEK,∠EFN=∠FGP,∠PGH=∠GHQ,∠QHM=∠HMI,∠IMC=∠C,∵∠BEF=∠BEK+∠KEF,∠EFG=∠EFN+∠NFG,∠FGH=∠FGP+∠PGH,∠GHM=∠GHQ+∠QHM,∠HMC=∠HMI+∠IMC,∴∠B+∠F+∠H+∠C=∠E+∠G+∠M.。

初一数学期中考试内容 初一数学期中考试必考题型模板

初一数学期中考试内容 初一数学期中考试必考题型模板

初一数学期中考试内容考试概述初一数学期中考试是一次全面考察学生对初中数学知识掌握程度的重要考试。

该考试旨在检验学生对数学基本概念、运算、解题能力的掌握情况,同时也会考查学生的思维逻辑能力和解决实际问题的能力。

考试内容初一数学期中考试的内容主要包括以下几个方面:1. 数的性质与变化•数的分类与性质:自然数、整数、有理数、实数等概念的理解与运用。

•数的比较:比较数的大小、根据大小确定排序等。

•数的变化与表示:数的损益、百分数与比例、图表数据的分析与表示等。

2. 算式与运算•四则运算:加减乘除的基本运算。

•公式与方程:类比公式应用、简单方程的解法等。

•分数与小数:分数与小数的相互转化、分数的计算等。

3. 几何与空间•点、线、面的概念与性质的认知。

•直角三角形、等腰三角形的基本性质与判定。

•平面图形的认识与性质的判定。

4. 数据与图表•数据的收集与整理。

•数据的表示与分析:频数分布表、折线图、柱状图等的分析与解读。

必考题型模板1. 选择题选择题是初一数学期中考试中的常见题型。

考生需要从给定的选项中选择正确的答案。

以下是一个选择题的模板:**题目:** 题目内容A. 选项 AB. 选项 BC. 选项 CD. 选项 D**答案:** 选择正确答案的选项2. 填空题填空题要求考生根据题目的要求填入正确的答案。

以下是一个填空题的模板:**题目:** 题目内容答案:____________________3. 计算题计算题是考察考生运算能力的题型。

以下是一个计算题的模板:**题目:** 题目内容计算过程:1. 步骤12. 步骤23. ...**答案:** 计算结果4. 解答题解答题要求考生通过文字叙述和计算过程给出详细解答。

以下是一个解答题的模板:**题目:** 题目内容解答过程:1. 步骤12. 步骤23. ...**答案:** 解答结果总结初一数学期中考试内容主要包括数的性质与变化、算式与运算、几何与空间、数据与图表等。

初一数学下期中复习与练习(含答案)

初一数学下期中复习与练习(含答案)

第五章 相交线与平行线1.掌握对顶角与邻补角的概念注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

即:垂线段最短。

3、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a ∥b 。

4、平行线的性质和判定两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补。

5、平移把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

第六章实数第一部分:求平方根(只有正数和0才有平方根)1.如果题目是“求一个数的平方根“,则求出来的解有两个,分别为一个算术平方根和一个负的平方根,比如练习的第一题。

2.解方程是求平方根的一个重点,方程解出来的值为平方根,并非算术平方根,因此,在解方程时不能漏根,比如练习的第二题。

3.对于已给出了形如87-和的平方根,是莫认了给我们了是其中的一种平方根,比如7是7的算术平方根,8-是8的负平方根,比如练习的第三题。

第二部分:求立方根(任意实数都有平方根) 1.任何数的立方根都只有一个,且和该数同号。

2.解方程时,解出来的值只有一个。

第三部分:实数对实数进行分类有两种方法:1.有理数(可以表示成分式、无限循环小数、整数、有限小数、0)和无理数(无限不循环小数,比如大多数的平方根和立方根式)2.正实数,负实数和0第七章平面直角坐标系1.应知道什么叫象限,什么叫横轴,什么是纵轴,原点,以及平面直角坐标系应该怎么画,坐标平移的表示方法。

初一第二学期数学期中复习试卷

初一第二学期数学期中复习试卷

初一第二学期数学期中复习试卷学校 班级 姓名一、选择题(每题2分,共20分) 1.计算32-的结果是( ) A.61 B. - 6 C. 81D. -8 2.若∠1与∠2是内错角,∠1=40°,则∠2=( )A .∠2=40° B.∠2=140° C.∠2=40°或∠2=140° D.∠2的大小不确定 3.计算)x y )(y x (---的结果是( ) A. 22y x +- B. 22y x -- C. 22y x - D. 22y x +4. 计算36x x÷的结果是( )A.2xB.3xC.9xD.18x5.已知3,2-==+xy y x .则22y x +等于 ( )A .-2B .-5C .7D .106.如图,直线a 、b 被直线c 所截,若a ∥b ,∠1=135°,则∠2等于( ) A .30° B .45° C .60°D .75°7.已知三角形的三边分别为2,a ,4,那么a 的取值范围是( ) A .51<<aB .62<<aC .73<<aD .64<<a8.下列运算正确的是( ) A.632a a a =⋅ B. 632)(a a = C. 826a a a =+ D. a 3-a 2= a9.甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙.若设甲的速度为x 米/秒,乙的速度为y 米/秒,则下列方程组中正确的是 ( ) A.⎩⎨⎧+=+=y y x y x 2441055 B.⎩⎨⎧=-=-y x x y x 4241055 C.⎩⎨⎧=-=+2445105y x y x D.⎩⎨⎧=-=-y x y x 424105510.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A 是120°,第二次拐的角∠B 是160°,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 的大小是( )A .150°B .130°C .140°D .120°12abc(第6题)(第10题)二、填空题(每题2分,共20分)11.某种感冒病毒的直径是0.00 000 012米,用科学记数法表示为___________米.12.计算:mm 412÷= .13.已知⎩⎨⎧==32y x 是方程5x - ky -7 = 0的一个解,则k = .14.若92++mx x是一个完全平方式,则m 的值是 .15.如图,AB CD ∥,EF AB ⊥于E EF ,交CD 于F ,已知160∠=°,则2∠= °. 16.一副三角板放置如下图,则图中∠ABC = °.17.如图,小亮从A 点出发,沿直线前进10米后向左转40°,再沿直线前进10米,又向左转40°,……,照这样走下去,他第一次回到出发地A 点时,一共走了 米. 18.如图边长为4cm 的正方形ABCD 先向上平移2cm ,再向右平移1cm ,得到正方形A′B′C′D′,此时阴影部分的面积为_______cm 2. 19.若212(6)()xmx x x n +-=++,则m 的值为 .20.如图1是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图2,再沿GF 折叠成图3,则图3中的∠CFE 的度数是 °.三、 计算题(每题5分,共10分) 21. 化简:)1)(1()3(2+--+x x x 22. 解方程组:′′(第18题)CD BA EF12图 (第15题)⎩⎨⎧=-=+2283y x yx (第16题)(第17题)AD A C B AE A A AC ACB 图1 图3(第20题) (1) (2)四、作图题(本题6分)23.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示,现将△ABC 平移,使点A 变换为点A′,点B ′、C ′分别是B 、C 的对应点. (1)请画出平移后的△A ′B ′C ′.并求△A ′B ′C ′的面积. (2)若连接AA ′,CC ′.则这两条线段之间的关系是________.五、因式分解(每题5分,共20分)24. )()(2a b b a x --- 25. 2732-a26. a 3-2a 2+a 27.x 2(x -y ) +( y -x )六.说理题(每题7分,共14分)28.一个零件的形状如图中的阴影部分,按规定∠A 应等于90°,∠B 、∠C 应分别是29°和21°,检验人员量得∠BDC=139°就断定这个零件不合格,你能说明理由吗?DCBA29.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°,求∠BED 的度数.七.探究活动:(本题10分)30. 阅读材料并回答问题:如图1,有足够多的边长为a的小正方形、边长为b的大正方形以及长为b,宽为a的长方形. (1)取其中的若干个拼成一个长方形如图2,该长方形的面积为(a+b)(a+2b),根据图2回答(a+b)(a+2b)=______________.(2)若取其中的若干个(图1中的三种图形都要取到)拼成一个长方形,使其面积为a2+5ab+n b2,则:①写出所有可能的n的整数值:_____ ____,并在图3处画出其中的一个图形.②根据你所画图形,可将多项式a2+5ab+_ _b2分解因式为________.a(图1)(图2)七年级期中数学练习卷 参考答案及评分标准一、选择题(每题2分,共20分)1. C;2. D;3. A;4. B;5. D;6. B ;7. B;8. B;9. A; 10. C. 二、填空题(每题2分,共20分) 11.7102.1-⨯; 12. m 3; 13. 1; 14. ±6; 15. 30; 16. 165; 17. 90; 18. 6; 19. 4;20.120.三、 计算题(每题5分,共10分) 21.解:原式=22196x x x+-++------3分 22. 解:(1)+(2)得105=x ---2分 =8622++x x -----------5分 即2=x ,2=y ---------4分所以原方程组的解为⎩⎨⎧==.22y x ---5 四、作图题(本题6分)23. (1)画图正确----------------------------2分C B A S '''∆=3.5---------------------------------4分(2)平行且相等--------------------------------6分五、因式分解(每题5分,共20分)24.解:原式= )()(2b a b a x -+- -------2分 25. 解:原式=)9(32-a----2分=)12)((+-x b a -------------------5分 =)3)(3(3-+a a -----5分26. 解:原式=)12(2+-a aa -------2分 27.解:原式=)()(2y x y x x -----1分=2)1(-a a -----5分 =))(1(2y x x-- -----2分=))(1)(1(y x x x --+---5分六.说理题(每题7分,共14分)28. 理由:延长CD 交AB 于E 点.----------------1分 因为∠CDB+∠EDB=180°,∠DEB+∠B+∠DEB=180°所以∠CDB=∠DEB+∠B,同理∠DEB=∠A+∠所以∠CDB=∠DEB+∠B=∠A +∠B +∠C----------------------4分 若零件合格,应有∠CDB=∠A +∠B +∠C=90°+29°+21°=140°-------5分 而检验人员量得∠BDC=139°,所以这个零件不合格.----------7分 29. 解:因为BD 是△ABC 的角平分线,所以∠EBD=∠EDB-------------1分 又因为DE ∥BC 所以∠EDB=∠DBC,所以∠EBD=∠EDB-------------3分 又因为∠EDB+∠BDC=∠A+∠AED, ∠AED=180°-∠BED所以∠EDB+∠BDC=∠A+180°-∠BED------------------------5分 ∠BED=180°-2∠EDB=180°-2(∠A+180°-∠BED-∠BDC)------------6分 因为∠A=45°,∠BDC=60°所以∠BED=150°.-------------------7分 七.探究活动:(本题10分) 30. (1)2223b ab a++-------------------------------------------2分(2)①4和6;--------------------------------------------------6分如图(画出一个正确图形即可)--------------8分②4;)4)((b a b a ++或6;)3)(2(b a b a ++(写出一组正确即可)--------------10分B。

初一数学期中复习题库

初一数学期中复习题库

初一数学期中复习题库题目1:选择题:一个长方体的长、宽、高分别为a、b、c,其对角线的长度d是多少?A. \(\sqrt{a^2 + b^2 + c^2}\)B. \(\sqrt{a^2 + b^2 - c^2}\)C. \(\sqrt{a^2 - b^2 + c^2}\)D. \(\sqrt{b^2 + c^2 - a^2}\)题目2:填空题:计算下列等式的值:\(5 \times 4 \div 2 - 3 \div 2\)题目3:判断题:一个三角形的两边之和等于第三边。

(对/错)题目4:解答题:计算下列等式的值:\(3^4 \times 2^3 - 4^3 \div 2^2\)题目5:选择题:一个等腰三角形的底边长为a,腰长为b,则这个三角形的周长是多少?A. \(a + 2b\)B. \(a + b\)C. \(2a + b\)D. \(2a\)题目6:填空题:计算下列等式的值:\(5 \times (4 - 3) \div 2\)题目7:判断题:一个正方形的面积等于它的边长的平方。

(对/错)题目8:解答题:一个长方体的长为5cm,宽为3cm,高为2cm,求这个长方体的对角线长度。

题目9:选择题:一个等差数列的第1项为2,公差为3,第10项是多少?A. 18B. 20C. 22D. 24题目10:填空题:计算下列等式的值:\(2^3 \times 3^2 - 4^2 \div 2\)题目11:判断题:一个圆的周长等于它的直径的长度。

(对/错)题目12:解答题:一个三角形的两边长分别为6cm和8cm,第三边的长度是多少?题目13:选择题:一个等比数列的第1项为3,公比为2,第5项是多少?A. 15B. 18C. 21D. 24题目14:填空题:计算下列等式的值:\(5 \times (4 - 3) \div 2\)题目15:判断题:一个正方形的对角线长度等于它的边长的\(\sqrt{2}\)倍。

初一数学期中考试复习题带答案

初一数学期中考试复习题带答案

初一数学期中考试复习题带答案一、选择题1. 已知一个数的平方是36,这个数是:A. 6B. -6C. 6 或 -6D. 无法确定答案:C2. 一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是:A. 0B. 1C. -1D. 无法确定答案:A3. 下列哪个数是无理数?A. 2.5B. πC. 0.33333(无限循环)D. 1/3答案:B4. 一个数的立方是-8,这个数是:A. 2B. -2C. 8D. -8答案:B5. 以下哪个表达式的结果是一个整数?A. √9B. √0.16C. √1/4D. √1/9答案:D二、填空题1. 一个数的相反数是-5,这个数是______。

答案:52. 如果一个数的绝对值是5,则这个数可以是______或______。

答案:5 或 -53. 一个数的平方根是4,那么这个数的立方根是______。

答案:84. 一个数的立方是27,这个数的平方是______。

答案:95. 一个数的绝对值是它本身,那么这个数是______或______。

答案:非负数或 0三、计算题1. 计算以下表达式的值:- (-3)^2- (-2)^3- √25- √(-4)^2答案:- (-3)^2 = 9- (-2)^3 = -8- √25 = 5- √(-4)^2 = 42. 求下列各数的绝对值:- |-8|- |5|- |-(-5)|答案:- |-8| = 8- |5| = 5- |-(-5)| = 5四、解答题1. 已知一个数的平方是16,求这个数的立方。

答案:如果一个数的平方是16,那么这个数可以是4或-4。

因此,这个数的立方可以是:- 4^3 = 64- (-4)^3 = -642. 一个数的立方根是2,求这个数的平方根。

答案:如果一个数的立方根是2,那么这个数是2^3 = 8。

因此,这个数的平方根是√8。

五、证明题1. 证明:如果一个数的绝对值是它本身,那么这个数是非负数。

2024年初一数学期中考试复习冲刺练习(1)

2024年初一数学期中考试复习冲刺练习(1)

2024年初一数学期中考试复习冲刺练习(1)第1练:正数与负数、正负数的应用、有理数分类一、正负数的认识1.在0,-17,0.3 ,2π,-23%,2021这六个数中,非正数的有( )个.A.2B.3C.4D.0二、相反意义的量2.某公交车原坐有22人,经过4个站点时,上、下车情况记录如下(上车为正,下车为负):+4,-8;+6,-5;+2,-3;+1,-7.则车上还有人.3.中秋节时,佩琪陪爸爸一起去购买月饼,爸爸买了一盒某品牌月饼(共计6枚).回家后她仔细地看了标签和包装盒上的有关说明,然后把6枚月饼的质量称重后统计列表如下(单位:克):第n 枚123456质量79.380.280.879.679.481(1)佩琪为了简化运算,选取了一个恰当的标准质量,依据这个标准质量,她把超出的部分记为正,不足的部分记为负,列出如表(不完整).请把下列表格补充完整:第n 枚123456质量+0.2-0.4(2)佩琪看到包装说明上标记的总质量为(480±2)克,请你通过计算,说明他们买的这盒月饼在总质量上是否合格.三、上车下车问题4.某路公交车从起点经过A 、B 、C 、D 站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)起点ABCD终点上车的人数181513860下车的人数0-4-5-11-12(1)到终点下车人;(2)车行驶在哪两站之间车上的乘客最多?站和站;(3)若每人上车需买票2元,问该车出车一次能收入多少钱?四、行驶路程问题5.最近几年时间,全球的新能源汽车发展迅猛,尤其对于我国来说,新能源汽车产销量都大幅增加.小明家新换了一辆新能源纯电动汽车,他连续7天记录了每天行驶的路程(如表).每天以50km 为标准,多于50km 的记为“+”,不足50km 的记为“-”第一天第二天第三天第四天第五天第六天第七天路程(km )-9-15-14+25+31+32(1)这7天里路程最多的一天比最少的一天多走km ;(2)请求出小明家的新能源汽车这七天一共行驶了多少千米?(3)已知汽油车每行驶100km 大约需用汽油7升,汽油价为8元/升:而新能源汽车每行驶100km 耗电量大约为20度,每度电价为0.8元,请估计小明家换成新能源汽车后,这7天的行驶费用比原来节省多少钱?五、股票交易问题6.某股民在上星期五买进某种股票1000股,每股24元,如表是本周每天该股票的涨跌情况(单位:元):星期一二三四五每般涨跌+3.5+2.5-1-4+5已知股票买进时需支付成交额1510000的手续费,卖出时需支付成交额1510000的手续费和1010000的交易费,求:(1)上星期五这位股民支付了多少手续费?(2)本星期二收盘时每股价格是多少?如果在本星期二收盘前将全部股票一次性地卖出,他需要支付的手续费与交易费共多少元?(3)如果在本星期四收盘前将全部股票一次性地卖出,他的收益情况如何?六、有理数的分类7.把下列各数分别填在相应的大括号里:-7,3.5,-3.14,π,0,-512,1319,0.03,10,-5%,-0.3 .自然数集合:{⋯};整数集合:{⋯};非负数集合:{⋯};负分数集合:{⋯};偶数集合:{⋯};奇数集合{⋯}.七、有理数的规律探究8.已知一列数:1,-2,3,-4,5,-6,7,⋯,将这列数排成下列形式:按照上述规律排下去,那么第10行从右边数第5个数为.9.如图,将一串有理数按下列规律排列,回答下列问题:(1)在A 处的数是正数还是负数?(2)负数排在A ,B ,C ,D 中的什么位置?(3)第2024个数是正数还是负数?排在对应于A ,B ,C ,D 中的什么位置?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一期中复习专题
一、例题讲解
例题1: 计算:
(1)(珠中)()()()3523-⨯+-⨯- (2)(四中聚贤))12()8
3
6143(-⨯-+-
(3)(二中)2
2
2121(3)242433⎛⎫⎛⎫
-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭ (4)(越秀)
()()6312163-⨯⎪⎭
⎫ ⎝⎛---÷
变式练习1-1: 计算:
(1)(天河)2
48()(48)(8)3
⨯---÷- (2)(越秀)2
39272(3)()48
-⨯+-÷-
(3)(二中))24(127832111-⨯⎪⎭

⎝⎛
+--
例题2:化简:
(1)(八一)(92)3(3)a b a b --+ (2)(培正))()2(xy y y xy +---
(3)已知多项式832
-+my x 与多项式722
++-y nx 的差中,不含有x 、y ,求mn
n m
+的值.
a b o c 变式练习2:化简:
(1)(珠中)(
)(
)2
2
532x x --+ (2)(南武)()()2
2423x
y x y ---
(3)(八一)两个多项式的和是2
2
2x xy y -+,其中一个多项式是2
x xy -+,求另一个多项式.
例题3:(1)(培正)若多项式2a 2+1的值是6,则4a 2+5的值是( ).
A.10 B .15 C .20
D .25
(2)(珠中)代数式2
27y y ++的值是6,则2
485y y +-的值是( )
A 9
B -9
C 18
D -18
变式练习3:(番禺华附)若23a b -=,则整式()()27223b a b +--的值是( ). A.5 B.-5 C.19 D.-19
例题4:(珠中)瑞士中学教师巴尔末成功地从光谱数据
95,1612,2521,36
32
,…中,发现规律得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第7个数据是 。

变式练习4:(南武)如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n (n >1)个点,每个图形总的点数S 是( ).
A. 3n
B. 3n -1
C. 3n -2
D. 3n -3
例题5:(培正)在数轴上表示a 、b 两个实数的点的位置如图所示,则化简
│a -b │-│a +b │的结果是 .
变式练习5-1:如图,a 、b 、c 在数轴上的位置如图所示,
则=--+-+||||||b c c a b a 。

变式练习5-2:(7中)(1)化简:23x x -+-
(2)当x 满足什么条件时,23x x -+-有最小值?最小值是多少? (3)当x 满足什么条件时,23x x ---有最大值?最大值是多少?
a 0 b
二、巩固练习
1、(八一实验)足球循环赛中,把进球数记为正数,失球数记为负数,它们的和叫做净胜球
数。

若红队胜黄队1:0,黄队胜蓝队2:0,蓝队胜红队3:1,则在这轮循环赛中净胜球数最多的球队是( ).
A .红队
B .黄队
C .蓝队
D .一样多 2、(5中)下列计算结果正确的是 ( ) A .9)9(1-=-÷ B .1212-=÷- C .125.0)4(=⨯- D .2
3
)59()65(=-⨯- 3、(八一)已知下列说法: ①符号相反的两个数互为相反数;
②符号相反且绝对值相等的两个数互为相反数; ③一个数的绝对值越大,表示它的点在数轴上越靠右; ④一个数的绝对值越大,表示它的点在数轴上离原点越远; ⑤一个数的绝对值等于它的相反数,则这个数一定是负数; ⑥5.7万精确到0.1;
⑦任何有理数的绝对值都是正数。

其中正确的说法有( * )个. A .1
B .2
C .3
D .4
4、(珠中)已知有理数a 、b ,满足()2
230a b -+-=,则a +b =
5、(08重庆)如下图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有 个.
6、(5中)已知代数式33
++nx mx ,当x =3时,它的值为-7,则当x =-3时,它的值为 。

7、(珠中)先化简,再求值: (
)(
)
2
2
2
234x y xy x y xy x y +---,其中1x =-,1y =.
8、(天河)小黄做一道题“已知两个多项式A ,B ,计算A B -”.小黄误将A B -看作A B +,求得结果是7292
+-x x .若232
-+=x x B ,请你帮助小黄求出A B -的正确答案.
9、(珠中)23.(本题满分8分)试说明()()()
22241332xyz yx xy xyz xyz xy -++-+--+的值与x 、y 的大小有关,而与z 的大小无关。

10、(珠中)若8a =,6b =,且a b <,求a b -的值。

11、(八一实验)已知a 是最大的负整数,b 是多项式232
22m n m n m ---的次数,c 是单项式2
2xy -的系数,且a 、b 、c 分别是点A 、B 、C 在数轴上对应的数. (1)求a 、b 、c 的值,并在数轴上标出点A 、B 、C .
(2)若动点
P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒1
2
个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,点Q 可以追上点P ?
(3)在数轴上找一点M ,使点M 到A 、B 、C 三点的距离之和等于10,请直接写出所有点M 对应的数.(不必说明理由)
12、(珠中)化简:3121x x ++-。

相关文档
最新文档