垂直平分线的性质与判定强化练习题
线段垂直平分线的性质与判定 (2)

A BA Bl育英中学八年级数学导学案课题线段垂直平分线的性质课型新授课学习目标1探究线段垂直平分线的性质.2.经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察.重点难点线段垂直平分线的性质和判定.学习过程流程自学检测:1、线段垂直平分线上的点与这条线段两个端点的相等.2、与这条线段两个端点相等的点都在它的垂直平分线上.3、请你画出下面线段的垂直平分线。
(你能利尺规作图画出来吗?)4、如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于 ()A.80°B.70°C.60°D.50°合作探究:例1:如图所示,已知在△ABC中,AB与AC的垂直平分线分别交AB于D,交AC于E,它们相交于F,求证:BF=FC.例2:如图,要在公路l边上建一个公交车站M,使A、B两地到M的距离相等。
请你找出M的位置。
达标训练:1、(2011•绍兴)如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,复备AB=7,则△ABC 的周长为( )A 、7B 、14C 、17D 、202、如图,在Rt △ACB 中,∠C=90°,BE 平分∠ABC ,ED 垂直平分AB 于D .若∠A=300,AC=9,则AE 的值是( ) A 、6B 、4C 、3D 、23、如图,等腰△ABC 中,AB=AC ,∠A=20°.线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于( )A 、80°B 、70°C 、60°D 、50°4、如图,△ABC 中,AC 的垂直平分线交AC 于E ,交BC 于D ,△ABC 的周长为22,AE=5,求△ABD 的周长.5、图,点P 在AOB 内,点M 、N 分别为点P 关于直线AO 、BO 的对称点,M 、N 的连线与AO 、BO 交于E 、F .若△PEF 的周长为20cm ,求线段MN 的长.OFEM PNA B。
垂直平分线与角平分线综合 练习题(带答案))

垂直平分线与角平分线综合 题集一、垂直平分线(1)(2)1.如图,中,,垂直平分,交于点,交于点,且.若,求的度数.若周长,,求长.【答案】(1)(2)..【解析】(1)(2)∵垂直平分,垂直平分,∴,∴,∵,∴,∴.∵周长,,∴,即,∴.【标注】【知识点】作三角形的高,中线和角平分线(1)(2)2.的两边和的垂直平分线分别交于点、.若,求的周长.若,求.【答案】(1)(2)..【解析】(1)(2)∵边、的垂直平分线分别交于、,∴,,∴的周长.∵的两边,的垂直平分线分别交于,,∴,,∴,.∵,①∴.∵,∴,即.②由①②组成的方程组.解得,故答案为:.【标注】【知识点】三角形的周长与面积问题3.在中,,,的垂直平分线交于,的垂直平分线交于.求证:.【答案】证明见解析.【解析】连接、,∵,,∴,∵的垂直平分线交于,的垂直平分线交于,∴,,∴,,,∵,∴,∴是等边三角形,∴,∴.【标注】【知识点】等边三角形的构造4.已知中,是的平分线,的垂直平分线交的延长线于.求证:.【答案】证明见解析.【解析】∵是的平分线,∴,∵是的垂直平分线,∴,,∵,,∴.【标注】【能力】推理论证能力【知识点】线段的垂直平分线的性质定理【知识点】角分线性质定理5.中,是线段的垂直平分线,垂足为点,是上一点,.求证:点在线段的垂直平分线上.【答案】(1)证明见解析.【解析】(1)连接,是线段的垂直平分线,,,,在的垂直平分线上.【标注】【知识点】线段的和差的证明【知识点】线段的垂直平分线的性质定理【知识点】线段的垂直平分线的判定定理【知识点】等边三角形的性质【思想】数形结合思想【能力】运算能力【能力】推理论证能力6.如图,四边形中,的垂直平分线与的垂直平分线交于点,且.求证:点一定在的垂直平分线上.【答案】证明见解析.【解析】连接、,∵点是、的垂直平分线的交点,∴,,又∵,∴,∴点一定在的垂直平分线上.【标注】【知识点】作线段的垂直平分线(1)(2)7.如图,已知等腰三角形中,,点、分别在边、上,且,连接、,交于点.判断与的数量关系,并说明理由.求证:过点、的直线垂直平分线段.【答案】(1)(2)相等,证明见解析.证明见解析.【解析】(1)(2).在和中,,∴≌,∴.∵,∴,由()可知,∴,∴,∵,∴点、均在线段的垂直平分线上,即直线垂直平分线段.【标注】【知识点】线段的垂直平分线的性质定理【知识点】SAS【知识点】全等三角形的对应边与角【能力】推理论证能力二、角平分线8.如图,平分,于,于,,.若,则.【答案】【解析】∵平分,,,∴,∵,,∴,即,解得.故答案为:.【标注】【知识点】角分线性质定理9.如图,在中,,平分,,,则点到的距离为.【答案】【解析】∵,,∴.∵平分,,∴点到的距离等于,即点到的距离等于.【标注】【知识点】角分线性质定理A. B. C. D.10.如图,的三边、、的长分别,,,是三条角平分线的交点,则( ).【答案】C 【解析】∵是三条角平分线的交点,∴点到各边的距离相等,即、、的高相等,∵、、的长分别,,,∴,故答案为.【标注】【知识点】与中线或等分线有关的等积变换A.B.C.D.11.如图,三条公路把、、三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( ).在、两边高线的交点处在、两边中线的交点处在、两内角平分线的交点处在、两边垂直平分线的交点处【答案】C 【解析】内角平分线上的点到,距离相等,内角平分线上的点到,距离相等,∴要到三条公路距离相等,应在,内角平分线交点处满足到,,距离相等.故选.【标注】【知识点】角分线性质定理A. B. C. D.12.如图,点是的两外角平分线的交点,下列结论:①;②点到、的距离相等;③点到的三边的距离相等;④点在的平分线上.以上结论正确的个数是().【答案】C【解析】如图,过点作于,作于,作于,∵点是的两外角平分线的交点,,,∴点在的平分线上,故②③④正确,只有点是的中点时,,故①错误,综上所述,正确的是②③④.【标注】【知识点】角分线性质定理【知识点】角平分线判定定理三、角分线的角度模型(1)(2)(3)(4)13.完成下列各题:如图 ,、分别是中和的平分线,则与的关系是 (直接写出结论).如图 ,、分别是两个外角和的平分线,则与的关系是 ,请证明你的结论.如图 ,、分别是一个内角和一个外角的平分线,则与的关系是 ,请证明你的结论.利用以上结论完成以下问题:如图,已知:,点 、 分别是射线、上的动点,的外角的平分线与角的平分线相交于点,猜想的大小是否变化?请证明你的猜想.图图图图【答案】(1)(2)(3)(4). ..的大小没有变化,证明见解析.【解析】(1)理由如下:如图 ,∵ ,,分别是,的角平分线,∴ ,∴.(2)(3)(4)图如图 ,∵ 平分 ,∴ ,同理可证: ,∴ ,∵ ,∴,∴ .图∵ 平分 , 平分 ,∴ ,∵ 是 的外角,∴ ,∵ 是 的外角,∴ ,∴.根据⑶可得: ,∵ ,∴ ,∴ 的大小不会变化始终为 .【标注】【知识点】三角形-内角角分线;三角形-外角角分线;三角形-内外角角分线(1)(2)(3)14.回答下列问题.探索发现:如图,在中,点是内角和外角的角平分线的交点,试猜想与之间的数量关系,并证明你的猜想.图迁移拓展:如图,在中,点是内角和外角的等分线的交点,即,,试猜想与之间的数量关系,并证明你的猜想.图应用创新:已知,如图,、相交于点,、、的角平分线交于点,,,则 .图【答案】(1),证明见解析.(2)(3),证明见解析.【解析】(1)(2)(3)∵点是内角和外角的角平分线的交点,∴,,∵是的外角,∴,∴∴∵是的外角,∴,∴.∵是的外角,∴,∴,∵,,∴,∵是的外角,∴,∴.∵、、的角平分线交于点,∴由()的结论知,,,∴,故答案为:.【标注】【知识点】三角形-内外角角分线(1)15.阅读下面的材料,并解决问题:已知在中,.如图(1),、的角平分线交于点,则可求得.如图(2),、的三等分线交于点、,则 .如图(3),、的等分线交于点、、……,则.;(用含的代数式)(2)(3)图图图如图,,、的三等分线交于点、,若,,求的度数;(要求写出解答过程)如图,,的三等分线分别与的平分线交于点,,若,,求的度数为 (不要求写出解答过程).【答案】(1)(2)(3); ;.【解析】(1)(2)(3)是的外角,,、是的三等分线,,在中,,又是的平分线,,.只需抓住加.则等分,下面两个小角之和为,.【标注】【知识点】三角形-内角角分线。
专题1.3线段垂直平分线的性质和判定(举一反三)(北师大版)(原卷版)

专题1.3 线段垂直平分线的性质和判定【七大题型】【北师大版】【题型1 线段垂直平分线的性质在求线段中的应用】 (1)【题型2 线段垂直平分线的性质在求角中的应用】 (2)【题型3 线段垂直平分线的性质在实际中的应用】 (3)【题型4 线段垂直平分线的性质的综合运用】 (5)【题型5 线段垂直平分线的判定】 (6)【题型6 线段垂直平分线的作法】 (7)【题型7 线段垂直平分线的判定与性质的综合】 (8)【题型1 线段垂直平分线的性质在求线段中的应用】【例1】(2022秋•南召县期末)已知:如图,∠BAC的平分线与BC的垂直平分线相交于点P,PE⊥AB,PF⊥AC,垂足分别为E、F.若AB=8,AC=4,则AE=.【变式11】(2022秋•潮安区期中)如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,AC的垂直平分线BE与CD交于点F,与AC交于点E.(1)判断△DBC的形状并证明你的结论.(2)求证:BF=AC.BF.(3)试说明CE=12【变式12】(2022秋•庐阳区期末)如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF 在数量和位置上有什么关系?并说明理由.【变式13】(2022秋•海珠区校级期中)△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°.(1)如图①,当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)如图②,当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由.【题型2 线段垂直平分线的性质在求角中的应用】【例2】(2022秋•周村区校级期中)如图,线段AB,DE的垂直平分线交于点C,且∠ABC=∠EDC=72°,∠AEB=92°,则∠EBD的度数为()A.168°B.158°C.128°D.118°【变式21】(2022秋•龙马潭区校级月考)如图,已知锐角△ABC中,AB、AC边的中垂线交于点O,∠A =α(0°<α<90°),(1)求∠BOC;(2)试判断∠ABO+∠ACB是否为定值?若是,求出定值,若不是,请说明理由.【变式22】(2022秋•西湖区期末)如图,线段AB,BC的垂直平分线l1、l2相交于点O.若∠1=40°,则∠AOC=()A.50°B.80°C.90°D.100°【变式23】(2022春•金牛区校级期中)已知:△ABC是三边都不相等的三角形,点P是三个内角平分线的交点,点O是三边垂直平分线的交点,当P、O同时在不等边△ABC的内部时,那么∠BOC和∠BPC 的数量关系是:∠BOC=.【题型3 线段垂直平分线的性质在实际中的应用】【例3】(2022秋•甘井子区期末)如图,电信部门要在公路l旁修建一座移动信号发射塔.按照设计要求,发射塔到两个城镇M,N的距离必须相等,则发射塔应该建在()A.A处B.B处C.C处D.D处【变式31】(2022春•浑南区期末)有A、B、C三个不在同一直线上的居民点,现要选址建一个新冠疫苗接种点方便居民接种疫苗,要求接种点到三个居民点的距离相等,接种点应建在()A.△ABC的三条中线的交点处B.△ABC三边的垂直平分线的交点处C.△ABC三条角平分线的交点处D.△ABC三条高所在直线的交点处【变式32】(2022春•武功县期末)如图,兔子的三个洞口A、B、C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在△ABC()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三个角的角平分线的交点【变式33】如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B 的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应该修建在()A.∠1的平分线和线段AB的交点处B.∠1的平分线和线段AB的垂直平分线的交点处C.∠2的平分线和线段AB的交点处D.∠2的平分线和线段AB的垂直平分线的交点处【题型4 线段垂直平分线的性质的综合运用】【例4】(2022秋•广陵区校级月考)在△ABC中,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,(1)如图(1),连接AM、AN,求∠MAN的度数;(2)如图(2),如果AB=AC,求证:BM=MN=NC.【变式41】(2022秋•鄂托克旗期中)如图,在△ABC中,DE是边AB的垂直平分线,交AB于E、交AC 于D,连接BD.(1)若∠ABC=∠C,∠A=40°,求∠DBC的度数;(2)若AB=AC,且△BCD的周长为18cm,△ABC的周长为30cm,求BE的长.【变式42】(2022春•市中区期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【变式43】(2022秋•红花岗区校级月考)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.(1)若∠A=60°,∠ABD=24°,求∠ACF的度数;(2)若EF=4,BF:FD=5:3,S△BCF=10,求点D到AB的距离.【题型5 线段垂直平分线的判定】【例5】(2022秋•伊川县期末)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.【变式51】(2022秋•奈曼旗期中)如图所示,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别为E,F,连接EF,EF与AD交于点G,求证:AD垂直平分EF.【变式52】(2022春•市北区期末)如图,E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D.求证:(1)OC=OD,(2)OE是线段CD的垂直平分线.【变式53】(2022秋•平邑县期中)如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF,求证:AD垂直平分EF.【题型6 线段垂直平分线的作法】【例6】(2022秋•武城县期末)已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.(1)作出边AC的垂直平分线DE;(2)当AE=BC时,求∠A的度数.AB的长为半径【变式61】(2022秋•祁阳县期末)如图,在△ABC中,分别以点A和点B为圆心,大于12画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=8,则△ABC的周长为()A.8B.10C.18D.20【变式62】(2022•榆林模拟)如图,在△ABC中,DE⊥BC于点D,交AB于点E.请用尺规作图法,在线段DC上求作一点P,使AP∥ED.(保留作图痕迹,不写作法)【变式63】(2022•长安区一模)如图,在△ABC中,AD⊥BC于点D,且CD=2BD,请用尺规作图法,在边AC上找一点P,使得△P AD的面积等于△BAD的面积(保留作图痕迹,不写作法).【题型7 线段垂直平分线的判定与性质的综合】【例7】(2022秋•伊通县期末)如图,在△ABC中,AB的垂直平分线l1交AB于点M,交BC于点D,AC 的垂直平分线l2交AC于点N,交BC于点E,l1与l2相交于点O,△ADE的周长为10.请你解答下列问题:(1)求BC的长;(2)试判断点O是否在边BC的垂直平分线上,并说明理由.【变式71】(2022•阜宁县校级月考)如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,求△ADE的周长;(2)设直线DM、EN交于点O.①试判断点O是否在BC的垂直平分线上,并说明理由;②若∠BAC=100°,求∠BOC的度数.【变式72】(2022•宜昌)已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于直线BC对称,PB分别与线段CF,AF相交于P,M.(1)求证:AB=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.【变式73】(2022秋•信都区期末)如图1,△ABC中,AB=AC,点D在AB上,且AD=CD=BC.(1)求∠A的大小;(2)如图2,DE⊥AC于E,DF⊥BC于F,连接EF交CD于点H.①求证:CD垂直平分EF;②直接写出三条线段AE,DB,BF之间的数量关系.。
八年级数学重点题型强化训练05 线段垂直平分线专题(解析版)

八年级数学重点题型强化训练5——线段垂直平分线专题第1题第2题【分析】本题考查的是线段垂直平分线的性质:熟记:线段垂直平分线上的点到这条线段两个端点的距离第3题可证BEF CED ≌△△,可得EF =BC 的中点,第5题第6题第7题第8题 第9题【答案】B 【分析】利用全等三角形的判定以及垂直平分线的性质得出OBC Ð,以及40,OBC OCB Ð=Ð=°,再利用翻折变换的性质得出,CEF FEO =Ð进而求出即可.50,BAC BAC Ð=°ÐQ 12OAB CAO \Ð=Ð=25OAB ABO Ð=Ð=∵在等腰ABC V 中,DG Q 是BC 的垂直平分线,BD CD \=,AD Q 是BAC Ð的平分线,DE DF \=,在Rt BDE △和Rt CDF △中,C .60°D 【分析】先根据线段垂直平分线的性质得到BE CE =,则AC EC =,再根据等腰三角形的性质和三角形内,接着利用三角形外角性质计算出EBC Ð=Ð的度数.故选:C .题型2:线段垂直平分线的判定11.如图,AD AC =,BD BC =,则下列判断一定正确的是( )A .AB 垂直平分CDB .CD 垂直平分ABC .CD 平分ACB ÐD .以上都不正确第11题第12题【答案】A【分析】根据线段垂直平分线的判定求解即可.【详解】解:∵AD AC =,BD BC =,∴点A 、B 在线段CD 的垂直平分线上,即AB 垂直平分CD ,故选:A .12.如图,ABC AB AC BC >>V ,,边AB 上存在一点P ,使得PA PC AB +=.下列描述正确的是( )A .P 是AC 的垂直平分线与AB 的交点B .P 是ACB Ð的平分线与AB 的交点C .P 是BC 的垂直平分线与AB 的交点D .P 是AB 的中点【答案】C【分析】根据线段垂直平分线的判定解答即可.【详解】解:PA PC AB PA BP AB +=+=Q ,,PC BP \=,∴P 是BC 的垂直平分线与AB 的交点.故选:C .13.如图,将长方形纸片沿AC 折叠后点B 落在点E 处,则下列关于线段BE 与AC 的关系描述正确的是( )A .AC BE =B .AC 和BE 相互垂直平分C .AC BE ^且AC BE=D .AC BE ^且AC 平分BE【答案】D 【分析】只要证明AC 是线段BE 的垂直平分线即可解决问题.【详解】解:ACE QV 是由ACB △翻折得到,AE AB \=,CB CE =,AC EB \^,AC 平分EB ,故选:D .14.如图,已知:AB AC =,MB MC =.求证:直线AM 是线段BC 的垂直平分线.下面是小彬的证明过程,则正确的选项是( )证明:∵AB AC=∴点A 在线段BC 的垂直平分线上①∵MB MC=∴点M 在线段BC 的垂直平分线上②∴直线AM 是线段BC 的垂直平分线③A .①处的依据是:线段垂直平分线上的点与这条线段两个端点的距离相等B .②处的依据是:与线段两个端点距离相等的点在这条线段的垂直平分线上C .③处的依据是:与线段两个端点距离相等的点在这条线段的垂直平分线上D .以上说法都不对【答案】B【分析】根据垂直平分线的判定方法逐项判断即可.【详解】解:①处的依据是:与线段两个端点距离相等的点在这条线段的垂直平分线上,故A 选项错误,不合题意;②处的依据是:与线段两个端点距离相等的点在这条线段的垂直平分线上,故B 选项正确,符合题意;③处的依据是:两点确定一条直线;故C 选项错误,不合题意;综上可知,选项D 错误,不合题意;故选B .15.下列说法错误的是( )A .若点P 是线段AB 的垂直平分线上的点,则PA PB=B .若PA PB =,QA QB =,则直线PQ 是线段AB 的垂直平分线C .若PA PB =,则点P 在线段AB 的垂直平分线上D .若PA PB =,则过点P 的直线是线段AB 的垂直平分线【答案】D【分析】根据线段垂直平分线的判定方法,即可一一判定.【详解】解:A.若点P 是线段AB 的垂直平分线上的点,则PA PB =,故该说法正确,不符合题意;B.若PA PB =,QA QB =,则直线PQ 是线段AB 的垂直平分线,故该说法正确,不符合题意;C.若PA PB =,则点P 在线段AB 的垂直平分线上,故该说法正确,不符合题意;D.若PA PB =,则过点P 的直线不一定是线段AB 的垂直平分线,故该说法错误,符合题意;故选:D .16.如图,AD 是ABC V 的角平分线,交BC 于D ,DE DF 、分别是ABD △和ACD V 的高,分别交AB AC 、于E 、F ,连接EF 交AD 于G .下列结论:①AD 垂直平分EF ;②EF 垂直平分AD ;③AED AFD V V ≌;④当BAC Ð为60°时,AEF △是等边三角形,其中正确的结论的个数为( )A .4个B .3个C .2个D .1个第16题第17题【答案】B 【分析】根据角平分线性质求出DE DF =,证AED AFD V V ≌,推出AE AF =,再逐个判断即可.【详解】解:∵AD 是ABC V 的角平分线,DE DF 、分别是ABD △和ACD V 的高,∴DE DF =,90AED AFD Ð=Ð=°,在Rt AED △和Rt AFD △中,AD AD DE DF =ìí=î,∴()Rt Rt HL AED AFD ≌△△,故③正确;∴AE AF =,∴AD 垂直平分EF ,①正确;②错误;∵60BAC Ð=°,且AE AF =,∴AEF △是等边三角形,④正确.综上,①③④正确,共3个.故选:B .17.如图,在△ABC 中,AD 是△ABC 的角平分线,点E 、F 分别是AD 、AB 上的动点,若∠BAC =50°,当BE +EF 的值最小时,∠AEB 的度数为( )A .105°B .115°C .120°D .130°【答案】B【分析】过点B 作BB ′⊥AD 于点G ,交AC 于点B ′,过点B ′作B ′F ′⊥AB 于点F ′,与AD 交于点E ′,连接BE ′,证明AD 垂直平分BB ′,推出BE =BE ′,由三角形三边关系可知,BE EF B E EF B F B F ¢¢¢¢+=+³³,即BE +EF 的值最小为B F ¢¢,通过证明△ABE ′≌△AB ′E ′,推出∠AE ′B =AE ′B ′,因此利用三角形外角的性质求出AE ′B ′即可.【详解】解:过点B 作BB ′⊥AD 于点G ,交AC 于点B ′,过点B ′作B ′F ′⊥AB 于点F ′,与AD 交于点E ′,连接BE ′,如图:此时BE +EF 最小.∵AD 是△ABC 的角平分线,∠BAC =50°,∴∠BAD =∠B ′AD =25°,∵BB ′⊥AD ,∴∠AGB =∠AGB ′=90°,在△ABG 和△AB ′G 中,BAG B AG AG AGAGB AGB Ð=Ðìï=íïТ=Ðî¢,∴△ABG ≌△AB ′G (ASA ),∴BG =B ′G , AB =AB ′,∴AD 垂直平分BB ′,∴BE =BE ′,在△ABE ′和△AB ′E ′中,BE BE AE AE AB AB ¢¢¢¢ìï=íï=î=,∴△ABE ′≌△AB ′E ′(SSS ),∴∠AE ′B =AE ′B ′,∵AE ′B ′=∠BAD + AF ′E ′=25°+90°=115°,∴∠AE ′B =115°.即当BE +EF 的值最小时,∠AEB 的度数为115°.故选B .18.如图,点P 是AOB Ð内的一点,PC OA ^于点C ,PD OB ^于点D ,连接OP ,CD .若PC PD =,则下列结论不一定成立的是( )A .AOP BOPÐ=ÐB .OPC OPD Ð=ÐC .PO 垂直平分CD D .PD CD=【答案】D【分析】根据角平线的判定定理可判断A ,证明Rt COP Rt DOP V V ≌,可判断B ,根据Rt COP Rt DOP V V ≌,可得OC =OD ,进而可判断C ,根据等边三角形的定义,可判断D .【详解】解:∵点P 是AOB Ð内的一点,PC OA ^于点C ,PD OB ^于点D ,PC PD =,∴OP 是∠AOB 的平分线,即AOP BOP Ð=Ð,故A 成立,不符合题意;∵OP =OP ,AOP BOP Ð=Ð,第19第20题=,利用ASA Ð,再根据E是CD的中点可求出ECECF=,结合已知可得BE的垂直平分线,根据线段垂直AE EF=+,进而即可求解.即可证得AB BC AD故答案为:70.题型3:与线段垂直平分线相关的尺规作图21.如图,在ABC V 直线MN ,交BC A .9【答案】B 【分析】由题意可得MN ADC C AC BC =+V ,求解即可.【详解】解:由题意可得,A.3B 【答案】B【分析】利用基本作图得到V的周长为20再利用ABC【详解】解:由作法得DE \==,,DA DB AE BEA .①③B .①④C .②④D .③④【答案】B 【分析】依次对各个图形的作图痕迹进行分析即可.【详解】 由图①知AD AC =,AB AD >,AB AC \>,故图①能说明AB AC >;由图②知射线BD 是ABC Ð的平分线,不能说明AB AC >;由图③知CD AB ^,不能说明AB AC >;由图④知DE 是BC 的垂直平分线,DB DC \=.ADC QV 中AD DC AC +>,AD DB AC \+>,即AB AC >.故图④能说明AB AC >.故选:B24.如图所示,在Rt ABC △中,90C Ð=°,以B 为圆心,以任意长度为半径作弧,与BA ,BC 分别交于A.20°B.36【答案】C【分析】由作图可知:BO为=,再根据等腰三角形的性质得AD BD和定理即可求出AÐ的度数.【详解】解:由作图可知:平分EAC Ð;③AC CD =;④ABC S V C .①③DA .只有甲的答案正确B .甲和乙的答案合在一起才正确C .甲和丙的答案合在一起才正确D .甲乙丙的答案合在一起才正确【答案】D 【分析】分四种情况讨论:当APB Ð为锐角时,当APB Ð为钝角时,当APB Ð为直角时,当135APB Ð=°时,分别画出图形,求出x 与y 的关系,即可得出答案.【详解】解:当APB Ð为锐角时,如图所示:∵AD BP ^,∴90ADP Ð=°,∴90PAD APD Ð+Ð=°,即90x y +=;当APB Ð为钝角时,如图所示:∵AD BP ^,∴90ADP Ð=°,∵APB Ð为ADP △的外角,∴APB ADP DAP Ð=Ð+Ð,∴90x y =+,即90x y -=;当APB Ð为直角时,如图所示:此时直线n 与PA 重合,∴此时直线n 与PA 所夹的角为0°,即90x y +=或90x y -=;当135APB Ð=°时,如图所示:18013545DPA Ð=°-°=°,∵AD BP ^,∴90ADP Ð=°,∴904545DAP Ð=°-°=°,∴45135180DAP APB Ð+Ð=°+°=即180x y +=;1AB 的长为半径作弧,两弧相交于AM ;的长为半径作弧,与BC 边相交于点N ,连接C.9AC,根据中垂线的定义和性质找到相等的边,进而由AC,A .15B .16C .18D .20【答案】A 【分析】根据题意得到MN 是线段AB 的垂直平分线,进而得到点D 是AB 的中点,根据三角形的面积公式计算,得到答案.【详解】解:由尺规作图可知,MN 是线段AB 的垂直平分线,\点D 是AB 的中点,ACD BCD S S \=△△,ADE CDE CDB S S S \+=V V V ,Q CDB △的面积为12,ADE V 的面积为9,1293CDE CDB ADE S S S \=-=-=V V V ,\四边形EDBC 的面积为:12315CDE CDB EDBC S S S =+=+=V V 四边形,故选:A .30.如图,在ABC V 中,根据尺规作图痕迹,下列说法不一定正确的是( ).A .AF BF=B .90AFD FBC Ð+Ð=°C .DF AB^D .BAF CAFÐ=Ð【答案】D 【分析】由图中尺规作图痕迹可知,BE 为ABC Ð的平分线,DF 为线段AB 的垂直平分线,结合角平分线的定义和垂直平分线的性质逐项分析即可.【详解】解:由图中尺规作图痕迹可知, BE 为ABC Ð的平分线,DF 为线段AB 的垂直平分线.上求作点D ,使;,若点D 在边上,在上求作点E ,使.)作BC 的垂直平分线与BC 的交点即为所求;)如图:由题意得,只要作12BDE ABC S S △△=即可,由第(1)问得,12ABP ABC S S △△=,只要作BC ABD ACD S S =V V AB BC BDE ADEC S S △四边形=作BC 的垂直平分线与BC 交于D 点,BD CD \=,ABD QV 与ACD V 高相同,ABD ACD S S \=V V .如图1:点D 即为所求;(2)如图:由题意得,只要作12BDE ABC S S △△=即可,作BC 的垂直平分线交BC 于P 点,由第(1)问得,12ABP ABC S S △△=,故只要作BDE ABP S S △△=即可,连接D 、P ,要使得BDE ABP S S △△=,只要作根据“夹在平行线之间的垂线段相等”,即,高相等,如图2:点E 即为所求.32.如图,在中,点E 在上且.(1)请用尺规作图的方法在边上确定点D ,使得;(保留作图痕迹,不写作法)(2)在(1)的条件下,若的周长为,求的长.【分析】(1)线段AB 的垂直平分线与BC 边的交点即为所求;(2)根据线段垂直平分线的性质,通过等量代换求解.【详解】(1)解:如图所示,线段AB 的垂直平分线与BC 边交于点D ,点D 即为所求;(2)解:Q ADE V 的周长为12cm ,\12AD AE DE ++=,Q BD AD =,AE CE =,\12BC BD CE DE AD AE DE =++=++=,即BC 的长为12cm .题型4:与线段垂直平分线相关的计算与证明33.如图,在ABC V 中,AB 、AC 边的垂直平分线相交于点O ,分别交BC 边于点M 、N ,连接AM ,AN .(1)若AMN V 的周长为6,求BC 的长;(2)若30B Ð=°,25C Ð=°,求MAN Ð的度数;(3)若MON a Ð=,请用a 表示MAN Ð的度数(直接写出即可).ABC V BC AE CE =BC BD AD =ADE V 12cm BC【答案】(1)6(2)70°(3)1802MAN aÐ=°-【分析】(1)由垂直平分线的性质可得,AM BM AN CN ==,再由BC AM MN AN =++可得结论;(2)由垂直平分线的性质可得30,30,B BAM C CAN Ð=Ð=°Ð=Ð=°,再根据三角形内角和定理可得结论;(3)根据三角形内角和定理可得()1802MAN B C Ð=°-Ð+Ð,再由四边形内角和定理可得180B C MAN O Ð+Ð=°-Ð-Ð,代入求解即可【详解】(1),OM ON Q 分别是AB 、AC 边的垂直平分线,,,AM BM AN CN \==6AM MN AN ++=Q 6BM MN CN \++=,即6BC =(2),,AM BM AN CN ==Q 30,25,BAM B CAN C \Ð=Ð=°Ð=Ð=°180,B BAC C Ð+Ð+Ð=°Q 且BAC BAM MAN CANÐ=Ð+Ð+Ð180,B BAM MAN CANC \Ð+Ð+Ð+Ð+Ð=°即180,B B MANC C Ð+Ð+Ð+Ð+Ð=°18022180605070MAN B C \Ð=°-Ð-Ð=°-°-°=°(3)如图,180,B BAC C Ð+Ð+Ð=°Q 且BAC BAM MAN CAN Ð=Ð+Ð+Ð180,B BAM MAN CANC \Ð+Ð+Ð+Ð+Ð=°即180,B B MANC C Ð+Ð+Ð+Ð+Ð=°()1802MAN B C \Ð=°-Ð+Ð,,OM ON Q 分别是AB 、AC 边的垂直平分线,90AEO AFO \Ð=Ð=360AEO EAF AFO FOE \Ð+Ð+Ð+Ð=°180EAF O \Ð+Ð=°180,BAF MAN CAN O \Ð+Ð+Ð+Ð=°180,B C MAN O \Ð+Ð+Ð+Ð=°180B C MAN O\Ð+Ð=°-Ð-Ð()()180********MAN B C MAN O \Ð=°-Ð+Ð=°-°-Ð-Ð\解得,1802MAN aÐ=°-34.如图,在Rt ABC △中,45,90,ACB BAC AB AC Ð=°Ð=°=,点D 是AB 的中点,AF CD ^于H 交BC 于F ,BE AC ∥交AF 的延长线于E .求证:BC 垂直且平分DE .【答案】见解析【分析】根据全等三角形的判定证明(ASA)ABE CAD ≌V V ,在再证明(SAS)DBP EBP ≌V V 即可解决问题;【详解】证明:由题意可知,9090DAH ADH ACH ADH ÐÐÐÐ+=°+=°,,∴DAH ACH ÐÐ=,∵90BAC Ð=°,BE AC ∥,∴90CAD ABE ÐÐ==°.又∵AB CA =,∴在ABE V 与CAD V 中,DAH ACH AB AC CAD ABE Ð=Ðìï=íïÐ=Ðî,∴(ASA)ABE CAD ≌V V .∴AD BE =,又∵AD BD =,∴BD BE =,在Rt ABC V 中,45,90,ACB BAC AB AC ÐÐ=°=°=,故45ABC Ð=°.∵90ABE Ð=°,∴904545EBF Ð=°-°=°,∴(SAS)DBP EBP ≌V V ,∴DP EP =,∴BC 垂直且平分DE .35.如图,ABC V 中,AD 平分BAG Ð,DG 垂直平分BC ,DE AB ^于E ,DF AC ^于F .(1)求证:BE CF =;(2)如果9AB =,5AC =,求BE 的长.【答案】(1)见解析;(2)2BE =.【分析】(1)由DG 垂直平分BC 可得DB DC =,由AD 平分BAG Ð, DE AB ^,DF AC ^,可得DE DF =,90DEB DFC Ð=Ð=°,从而证得()Rt Rt HL DBE DCF V V ≌,得证BE CF =;(2)易证()Rt Rt HL ADE ADF ≌△△,得到AE AF =,又BE CF =,因此2AB AE BE AF BE AC CF AC BE =+=+=+=+,代入即可解答.【详解】(1)连接DB ,DC ,∵DG 垂直平分BC ,∴DB DC =,∵AD 平分BAG Ð,DE AB ^,DF AC ^,∴DE DF =,90DEB DFC Ð=Ð=°,∴在Rt DBE V 和Rt DCF V 中DB DC DE DF=ìí=î∴()Rt Rt HL DBE DCF V V ≌,∴BE CF =.(2)∵DE AB ^,DF AC ^,∴在Rt ADE △和Rt ADF V 中AD AD DE DF=ìí=î∴()Rt Rt HL ADE ADF ≌△△,∴AE AF=∵BE CF=∴2AB AE BE AF BE AC CF AC BE =+=+=+=+,∵9AB =,5AC =,∴952BE =+,∴2BE =.36.如图,AB AC >,BAC Ð的平分线与BC 边的垂直平分线GD 相交于点D ,过点D 作DE AB ^于点E ,DF AC ^于点F ,求证:BE CF =.【答案】见解析【分析】连接DC ,根据GD 是BC 边的垂直平分线,得到DC DB =,根据AD 是BAC Ð的平分线,且DE AB ^,DF AC ^,得到DE DF =,根据DE DF DB DC =ìí=î,得到()HL DEB DFC V V ≌即可得证.【详解】如图,连接DC ,∵GD 是BC 边的垂直平分线,∴DC DB =,∵AD 是BAC Ð的平分线,且DE AB ^,DF AC ^,∴DE DF =,∵DE DF DB DC =ìí=î,∴()HL DEB DFC V V ≌∴BE CF =.37.如图,在ABC V 中,BAC Ð的平分线与BC 的中垂线DE 交于点E ,过点E 作AC 边的垂线,垂足N ,过点E 作AB 延长线的垂线,垂足为M .(1)求证:BM CN =;(2)若2AB =,8AC =,求BM 的长.【分析】(1)连接BE ,CE ,由题意易得BE CE =,EM EN =,进而可证Rt Rt BME CNE ≌V V ,然后问题得解;(2)由(1)得:EM EN =,进而可证Rt Rt AME ANE ≌V V ,则有AB BM AC CN +=-,然后根据线段的和差关系可求解.【详解】(1)证明:连接BE ,CE ,DE Q 是BC 的垂直平分线,BE CE \=,AE Q 是BAC Ð的平分线,EM AB ^,EN AC ^,EM EN \=,在Rt BME △和Rt CNE △中,BE CE EM EN=ìí=î()Rt Rt BME CNE HL \V V ≌,BM CN \=;(2)由(1)得:EM EN =,在Rt AME △和Rt ANE △中,AE AE EM EN=ìí=îRt Rt AME ANE \≌V V ,请根据所给教材内容,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:V中,AB、AC的垂直平分线分别交BC于点D、E,垂足分别为M,N,已知)如图②,在ABC的周长为20,则BC的长为__________.∵AB AC AD BC ^=,,的周长为7,可得∴19712AB BE +=-=,∴6AB BE ==;(2)∵30ABC Ð=°,45C Ð=°,∴1803045105BAC Ð=°-°-°=°,在BAD V 和BED V 中,BA BE BD BD DA DE =ìï=íï=î,∴()SSS BAD BED V V ≌,∴105BED BAC Ð=Ð=°,∴1054560CDE BED C Ð=Ð-Ð=°-°=°.40.如图,在ABC V 中,点E 在AB 上,点D 在BC 上,BD BE =,BAD BCE Ð=Ð,AD 与CE 相交于F .(1)求证:AF CF =;(2)连接,试判断与的位置关系,并说明理由.【分析】(1)根据全等三角形的判定与性质,可得BA BC =,BDA BEC Ð=Ð,根据补角的性质,可得FDC FEA Ð=Ð,根据全等三角形的判定与性质,可得答案.(2)由AB CB =,AF CF =可得点B ,F 在AC 的垂直平分线,即可得出结论【详解】(1)在BAD V 和BCE V 中,∵B B BAD BCE BD BE Ð=ÐìïÐ=Ðíï=î,∴BAD V ≌BCE V ,∴AB CB =,BF BF AC与点A 重合,则 , .,四边形的直角沿直线l 折叠后(如图2),点B 落在四边形的边与AB 相交于点F ,猜想OF 、EF 、AB 三者数量关系,并证明.若折叠后点D 恰为AB 的中点(如图3),求的度数;45°,8数量关系为:AB OF EF =+;证明见解析q ==a OABC OCB ÐOABC q∴E O D FO D Ð=Ð.由折叠可得FOD EOC EOD q Ð=Ð=Ð=,∴390COA q Ð==°,∴30q =°.。
中考数学专题练习线段垂直平分线的性质含解析

备战中考数学专题练习-线段垂直平分线的性质(含解析)一、单选题1.如果一个三角形的两边的垂直平分线的交点在第三边上,那么这个三角形是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 不能确定2.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法错误的是( )A. ∠BAD=∠CADB. 点D到AB边的距离就等于线段CD的长C. S△ABD=S△ACDD. AD垂直平分MN3.如图,一种电子游戏,电子屏幕上有一正六边形ABCDEF,点P沿直线AB从右向左移动,当出现点P与正六边形六个顶点中的至少两个顶点距离相等时,就会发出警报,则直线AB 上会发出警报的点P有()A. 3个B. 4个C. 5个D. 6个4.如图,用尺规法作∠DEC=∠BAC,作图痕迹的正确画法是()A.以点E为圆心,线段AP为半径的弧B.以点E为圆心,线段QP为半径的弧C.以点G为圆心,线段AP为半径的弧D.以点G为圆心,线段QP为半径的弧5.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A. B. C. D.6.如图,已知∠AOB,求作射线OC,使OC平分∠AOB.①作射线OC.②在OA和OB上分别截取OD、OE,使OD=OE.③分别以D、E为圆心,以大于二分之一DE长为半径,在∠AOB内作弧,两弧交于点C.作法合理的顺序是( )A. ①②③B. ②①③C. ③②①D.②③①7.如图,在△ABC中,DE垂直平分AC,若BC=6,AD=4,则BD等于( )A. 1.5B. 2C. 2.5D. 38.如图,△ABC的两边AB和AC的垂直平分线分别交BC于D、E,如果边BC长为8cm,则△ADE的周长为( )A. 16cmB. 8cmC. 4cmD. 不能确定二、填空题9.如图,在△ABC中,AB、AC的垂直平分线l1、l2相交于点O,若∠BAC等于82°,则∠OBC=________°.10.数学活动课上,同学们围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”其中一位同学作出了如图所示的图形.你认为他的作法的理由有________.11.如图,在△ABC中,边AB的垂直平分线分别交AB、BC于点D、E,边AC的垂直平分线分别交AC、BC于点F、G.若BC=4cm,则△AEG的周长是________ cm.12.已知点P在线段AB的垂直平分线上,PA=6,则PB=________.13.如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.14.已知:∠AOB,求作∠AOB的平分线;如图所示,填写作法:①________.②________.③________.15.在△ABC中,BC=12cm,AB的垂直平分线与AC的垂直平分线分别交BC于点D、E,且DE=4cm,则AD+AE=________cm.16.已知CD垂直平分AB,若AC=4cm,AD=5cm,则四边形ADBC的周长是________ cm.17.在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为________ .三、解答题18.如图,已知在△ABC中,AB=AC,AB的垂直平分线DE交AC于点E,CE的垂直平分线正好经过点B,与AC相交于点F,求∠A的度数.19.如图,△ABC中,∠C=60°,AB的垂直平分线交BC于点D,DE=6,BD=6 ,AE⊥BC于E,求EC的长.四、综合题20.如图,点M在∠AOB的边OB上.(1)过点M画线段MC⊥AO,垂足是C;(2)过点C作∠ACF=∠O.(尺规作图,保留作图痕迹)答案解析部分一、单选题1.【答案】C【考点】线段垂直平分线的性质【解析】【解答】解:如图,CA、CB的中点分别为D、E,CA、CB的垂直平分线OD、OE 相交于点O,且点O落在AB边上,连接CO,∵OD是AC的垂直平分线,∴OC=OA,同理OC=OB,∴OA=OB=OC,∴A、B、C都落在以O为圆心,以AB为直径的圆周上,∴C是直角.故选C.【分析】根据题意,画出图形,用线段垂直平分线的性质解答.2.【答案】C【考点】作图—基本作图【解析】【解答】解:根据题意可得AD平分∠CAB,∵AD平分∠CAB,∴∠BAD=∠CAD,故A说法正确;∵AD平分∠CAB,∴点D到AB边的距离就等于线段CD的长,故B说法正确;∵点D到AB边的距离就等于线段CD的长,AB>AC,∴S△ABD>S△ACD,故C说法错误;在△AMO和△ANO中,,∴△AMO≌△ANO(SAS),∴MO=NO,∠MOA=∠NOA,∵∠MOA+∠NOA=180°,∴∠MOA=90°,∴AO⊥MN,∴AD垂直平分MN,故D说法正确.故选:C.【分析】根据作图方法可得AD平分∠CAB,由角平分线的定义和性质可得A、B说法正确,根据三角形的面积公式可得C错误,根据题目所给条件可证明△AMO≌△ANO,进而可得MO=NO,∠MOA=∠NOA,从而证得D选项说法正确.3.【答案】C【考点】线段垂直平分线的性质【解析】【分析】先根据正六边形的特点,判断出此六边形中相互平行的边及对角线,再根据线段垂直平分线的性质确定不同的点即可.【解答】如图,分别以一顶点为定点,连接其与另一顶点的连线,在此图形中根据平行线分线段成比例定理可知,CD∥BE∥AF,ED∥FC∥AB,EF∥AD∥BC,EC∥FB,AE∥BD,AC∥FD,根据垂直平分线的性质及正六边形的性质可知,相互平行的一组线段的垂直平分线相等,在这五组平行线段中,AE、BD与AB垂直,其中垂线必与AB平行,故无交点.故直线AB上会发出警报的点P有:CD、ED、EF、EC、AC的垂直平分线与直线AB的交点,共五个.故答案为C.4.【答案】D【考点】作图—基本作图【解析】【解答】解:先以点A为圆心,以任意长为半径画弧,分别交AC,AB于点Q,P;再以点E为圆心,AQ的长为半径画弧,交AC于点G,再以点G为圆心,PQ的长为半径画弧.故答案为:D.【分析】根据作一个角等于已知角的作法即可得出结论.5.【答案】A【考点】作图—基本作图【解析】【解答】解:根据分析可知,选项B、C、D都能够得到PQ⊥l于点Q;选项A不能够得到PQ⊥l于点Q.故选:A.【分析】A、根据作法无法判定PQ⊥l;B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.6.【答案】D【考点】作图—基本作图【解析】【解答】解:角平分线的作法是:在OA和OB上分别截取OD,OE,使OD=OE;分别以D,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C;作射线OC.故其顺序为②③①.故选:D.【分析】根据角平分线的作法进行解答. 7.【答案】B【考点】线段垂直平分线的性质【解析】【解答】解:∵DE垂直平分AC,∴DC=DA=4,∴BD=BC﹣DC=2,故选:B.【分析】根据线段的垂直平分线的性质得到DC=DA=4,计算即可.8.【答案】B【考点】线段垂直平分线的性质【解析】【解答】解:∵DF是AB的垂直平分线,∴AD=BD,同理AE=EC,∴△ADE的周长是AD+AE+ED=BD+CE+DE=BC=8cm,故选B.【分析】根据线段垂直平方根性质得出BD=AD,AE=CE,求出△ADE的周长=BC,代入即可求出答案.二、填空题9.【答案】8【考点】线段垂直平分线的性质【解析】【解答】解:连接OA,∵∠BAC=82°,∴∠ABC+∠ACB=180°﹣82°=98°,∵AB、AC的垂直平分线交于点O,∴OB=OA,OC=OA,∴∠OAB=∠OBA,∠OAC=∠OCA,∴∠OBC+∠OCB=100°﹣(OBA+∠OCA)=16°,∴∠OBC=8°,故答案为:8.【分析】连接OA,根据三角形内角和定理求出∠ABC+∠ACB,根据线段垂直平分线的性质、等腰三角形的性质得到∠OAB=∠OBA,∠OAC=∠OCA,根据三角形内角和定理计算即可.10.【答案】到线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线【考点】作图—基本作图【解析】【解答】解:他的作法的理由有到线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.故答案为到线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.【分析】把过一点作已知直线的垂线转化为作已知线段的垂直平分线.11.【答案】4【考点】线段垂直平分线的性质【解析】【解答】解:因为AB的垂直平分线分别交AB、BC于点D、E,所以AE=BE,因为AC的垂直平分线分别交AC、BC于点F、G,所以AG=GC,△AEG的周长为AE+EG+AG=BE+EG+CG=BC=4cm.故填4.【分析】要求周长,首先要求线段的长,利用垂直平分线的性质计算.12.【答案】6【考点】线段垂直平分线的性质【解析】【解答】解:∵点P在线段AB的垂直平分线上,PA=6,∴PB=PA=6.故答案为:6.【分析】直接根据线段垂直平分线的性质进行解答即可.13.【答案】13【考点】线段垂直平分线的性质【解析】【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.14.【答案】以O为圆心,适当长为半径画弧,交OA于M,交OB于N;别以M、N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部交于点C;画射线OC,射线OC即为所求【考点】作图—基本作图【解析】【解答】解:①以O为圆心,适当长为半径画弧,交OA于M,交OB于N.②分别以M、N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部交于点C.③画射线OC,射线OC即为所求.15.【答案】8或16【考点】线段垂直平分线的性质【解析】【解答】解:∵AB、AC的垂直平分线分别交BC于点D、E,∴AD=BD,AE=CE,∴AD+AE=BD+CE,∵BC=12cm,DE=4cm,∴如图1,AD+AE=BD+CE=BC﹣DE=12﹣4=8cm,如图2,AD+AE=BD+CE=BC+DE=12+4=16cm,综上所述,AD+AE=8cm或16cm.故答案为:8或16.【分析】作出图形,根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,AE=CE,然后分两种情况讨论求解.16.【答案】18【考点】线段垂直平分线的性质【解析】【解答】解:∵CD垂直平分AB,若AC=4cm,AD=5cm,∴AC=BC=4cm,AD=BD=5cm,∴四边形ADBC的周长为AD+AC+BD+BC=18cm.故填空答案:18.【分析】由于CD垂直平分AB,所以AC=BC,AD=BD,而AC=4cm,AD=5cm,由此即可求出四边形ADBC的周长.17.【答案】105°【考点】作图—基本作图【解析】【解答】解:由题中作图方法知道MN为线段BC的垂直平分线,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°,∴∠ADC=50°,∵CD=AC,∴∠A=∠ADC=50°,∴∠ACD=80°,∴∠ACB=∠ACD+∠BCD=80°+25°=105°,故答案为:105°.【分析】首先根据题目中的作图方法确定MN是线段BC的垂直平分线,然后利用垂直平分线的性质解题即可.三、解答题18.【答案】解:∵△ABC是等腰三角形,∴∠ABC=∠C=①,∵DE是线段AB的垂直平分线,∴∠A=∠ABE,∵CE的垂直平分线正好经过点B,与AC相交于点可知△BCE是等腰三角形,∴BF是∠EBC的平分线,∴(∠ABC﹣∠A)+∠C=90°,即(∠C﹣∠A)+∠C=90°②,①②联立得,∠A=36°.故∠A=36°.【考点】线段垂直平分线的性质【解析】【分析】先根据等腰三角形的性质得出∠ABC=∠C,再由垂直平分线的性质得出∠A=∠ABE,根据CE的垂直平分线正好经过点B,与AC相交于点可知△BCE是等腰三角形,故BF是∠EBC的平分线,故(∠ABC﹣∠A)+∠C=90°,把所得等式联立即可求出∠A的度数.19.【答案】解:连接AD,∵AB的垂直平分线交BC于点D,∴BD=AD,∵DE=6,BD=6 ,∴AD=6 ,∴∠ADE=45°,∴∠B=22.5°,∵∠C=60°,∴∠BAC=97.5°,∵∠ADE=∠B+∠DAB=45°,AE⊥BC,∴DE=AE=6,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴AC=2CE,在Rt△ACE中,AC2=AE2+CE2,即4CE2=62+CE2,∴CE2=12,解得EC=2 .【考点】线段垂直平分线的性质【解析】【分析】首先作出辅助线连接AD,再利用线段垂直平分线的性质计算.四、综合题20.【答案】(1)解:如图,MC为所作(2)解:如图,∠ACF为所作【考点】作图—基本作图【解析】【分析】(1)利用基本作图(过一点作已知直线的垂线)作CM⊥OA于C;(2)利用基本作图(作一个角等于已知角)作∠ACF=∠O.。
线段的垂直平分线的性质和判定练习题

△ ABD≌△ACD , ∴ AB = AC = 5 cm.∵点 C 在 AE 的垂直平分线上 ,
∴CE=AC=5 cm,∴BE=BC+CE=11 cm
知识点2:线段的垂直平分线的判定 6.如图,AC=AD,BC=BD,则有( A.AB垂直平分CD A)
B.CD垂直平分AB
C.AB与CD互相垂直平分
D.CD平分∠ACB
7.在锐角△ABC内有一点P,满足PA=PB=PC,则点P是△ABC( A.三边垂直平分线的交点 B.三条角平分线的交点
)A
C.三条高的交点
D.三边中线的交点
8 . 如图 , 点 D 在三角形 ABC 的 BC 边上 , 且 BC = BD + AD , 则点 D 在 AC 的垂直平分线上. _______
分线,即点D在线段AB的垂直平分线上
16.如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于 点P,过点P分别作PN⊥AB于点N,PM⊥AC于点M.求证:BN=CM. 解:连接PB,PC,由角的平分线的性质证PN=PM,由线段垂直平分线 的性质证PB=PC,从而由HL证Rt△PNB≌Rt△PMC,∴BN=CM
即DG⊥EF,∴DG垂直平分EF
方法技能: 1.利用线段的垂直平分线的性质可证明两线段相等 ,应用时要注意:一是 点必须在垂直平分线上,二是距离指的是点到线段两端点的距离. 2.利用线段的垂直平分线的判定可证明垂直关系和线段相等关系.
易错提示:
对线段的垂直平分线的判定理解不透彻而出错.
Hale Waihona Puke 解:BH即为所求,如图:11.如图,在四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不
一定成立的是(
C)
A.AB=AD B.CA平分∠BCD
2024八年级数学上册第一部分课时拔尖9线段垂直平分线的性质与判定习题课件新版苏科版

100°,∠ B =30°,∴∠ C =50°.
由折叠的性质可知∠ AED =∠ C =
50°,
∴∠ EDB =∠ AED -∠ B =50°-
30°=20°.
1
2
3
.
【类比探究】借助学习几何图形的经验,通过观察、实
验、归纳、类比、猜想、证明等方法,小红对筝形 AEDC
的性质进行了探究,如图②,求证:
(2)△ AED ≌△ ACD ;
(2)证明:在△ AED 和△ ACD 中,
=,
ቐ=, ∴△ AED ≌△ ACD (SSS).
=,
1
2
3
(3) AD 垂直平分线段 EC .
(3)证明:∵ AE = AC ,
∴点 A 在线段 EC 的垂直平分线上.
第一部分
课时拔尖3道题
课时拔尖9 线段垂直平分线的性质与判定
1. 在△ ABC 中, AB = AC , OB = OC ,且点 A 到 BC 的距
离为8,点 O 到 BC 的距离为3,则 AO 的长为
1
2
3
5或11 .
2. [2024重庆丰都期末]如图,在Rt△ ABC 中,∠ ACB =
90°, AC =5, BC =12, AB =13, BD 是∠ ABC 的平
上的点 E 处,得到折痕 AD ,把纸片展平,如图①,发现
四边形 AEDC 满足 AE = AC , DE = DC . 查阅资料得
知,像这样的有两组邻边分别相等的四边形叫“筝形”.
1
2
3
【初步应用】(1)如图①,在△ ABC 中,若∠ BAC =
线段的垂直平分线练习题与角平分线练习题

(第2题)E D C B A 线段的垂直平分线一、根底知识:1、线段垂直平分线的性质因为,所以AB =AC.理由:2、线段垂直平分线的判定因为 ,所以点A 在线段BC 的中垂线上.理由:1、如图,△ABC 中,AD 垂直平分边BC ,AB =5,那么AC =_________.2、如图,在△ABC 中,AB 的垂直平分线交BC 于点E ,假设BE=2那么A 、E 两点的距离是〔 〕.A.4B.2C.3D.123、如图,AB 垂直平分CD ,假设AC=1.6cm ,BC=2.3cm ,那么四边形ABCD 的周长是〔 〕cm.4、如图,NM 是线段AB 的中垂线,以下说法正确的有: . (第1题) C D A Bl C B A①AB⊥MN,②AD=DB,③MN⊥AB,④MD=DN,⑤AB是MN的垂直平分线.1、:如图,DE是△ABC的AB边的垂直平分线,分别交AB、BC于D、E,AE平分∠BAC,假设∠B=300,求∠C的度数。
二.解答:1、有特大城市A及两个小城市B、C,这三个城市共建一个污水处理厂,使得该厂到B、C两城市的距离相等,且使A市到厂的管线最短,试确定污水处理厂的位置。
2.如以下图,在直线AB上找一点P,使PC =PD.3.如右图,△ABC中,AB=AC=16cm,AB的垂直平分线ED交AC于D点. 〔1〕当AE=13cm时,BE=cm;〔2〕当△BEC的周长为26cm时,那么BC=cm;〔3〕当BC=15cm,那么△BEC的周长是cm.角平分线练习题1角平分线上的点到_________________距离相等;到一个角的两边距离相等的点都在_____________.2、∠AOB的平分线上一点M,M到OA的距离为1.5 cm,那么M到OB的距离为_________.3、如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,那么∠DOC=_________.4、如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3 cm,BD=5 cm,那么BC=_____cm.第3题第4题5、三角形的三条角平分线相交于一点,并且这一点到________________相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
垂直平分线的性质与判定强化练习
1如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于 ( )
A .6cm
B .8cm
C .10cm
D .12cm
2题
2如图,在Rt ABC △中,90ACB D E ∠=,,分别为AC AB ,的中点,连DE CE ,. 下列结论中不一定正确的是 ( )
A .ED BC ∥
B .ED A
C ⊥ C .ACE BCE ∠=∠
D .A
E CE =
3、△ABC 中,∠C=90°,AB 的中垂线交直线BC 于D ,若∠BAD -∠DAC=22.5°,则∠B 等于 ( )
A.37.5°
B.67.5°
C.37.5°或67.5°
D.无法确定
4、线段的垂直平分线上的点_____________________________________.
5、到一条线段的两个端点的距离相等的点,______________________.
6、如图,在△ABC 中,AC 的垂直平分线交AC 于E ,交BC 于D ,△ABD 的周长是12 cm ,AC=5cm ,则AB+BD+AD= cm ;AB+BD+DC= cm ;△ABC 的周长是 cm 。
3题 4题 7、如图,在Rt △ABC 中,∠C=90°,∠B=15°,DE 是AB 的中垂线,垂足为D ,交BC 于E ,BE=5,则AE=__________,∠AEC=__________,AC=__________ 。
8在△ABC 中,∠C =90°,用直尺和圆规在AC 上作点P ,使P 到A 、B 的距离相等(保留作图痕迹,不写作法和证明).
9如图4,AB=AD ,BC=CD ,AC 、BD 相交于点E .由这些条件可以得出若干结论,请你写出其中三个正确结论(不要添加字母和辅助线,不要求证明).
10、如右图,在△ABC 中,AB=AC , BC=12,∠BAC =120°,AB 的垂直平分线交BC 边于点E , AC 的垂直平分线交BC 边于点N 。
(1) 求△AEN 的周长。
(2) 求∠EAN 的度数。
(3) 判断△AEN 的形状。
11、如图,已知线段CD 垂直平分线AB ,AB 平分CAD ∠问AD 与BC 平行吗?请说明理由。
12、如图,已知AOB ∠和AOB ∠内两点M 、N 画一点P 使它到AOB ∠的两边距离相等,且到点M 和N 的距离相等。
A
B C D E M N。