精华版相交线与平行线练习题含答案
(完整版)《相交线与平行线》单元测试卷含答案

第4章相交线与平行线单元测试卷一、选择题(每题2分,共20分)1.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.对顶角2.如图,AB∥CD,AD平分∠BAC,若∠BAD=65°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°1 2 33.如图,AB∥EC,下列说法不正确的是()A. ∠B=∠ECDB. ∠A=∠ECDC. ∠B+∠ECB=180°D. ∠A+∠B+∠ACB=180°4.如图,在俄罗斯方块游戏中,出现一小方块拼图向下运动,通过平移运动拼成一个完整的图案,最终所有图案消失,则对小方块进行的操作为()A.向右平移1格再向下B.向右平移3格再向下C.向右平移2格再向下D.以上答案均可5.如图所示,3块相同的三角尺拼成一个图形,图中有很多对平行线,其中不能由下面的根据得出两直线平行的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.平行于同一直线的两直线平行D.垂直于同一直线的两直线平行6.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40°B.70°C.80°D.140°7.同一平面内的四条互不重合的直线满足a⊥b,b⊥c,c⊥d,则下列各选项中关系能成立的是()A.a∥dB.a⊥cC.a⊥dD.b⊥d8.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120 °B.130°C.140°D.150°9.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°10.如图,把一块含有45°角的直角三角尺的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()6 8 9 10二、填空题(每题3分,共21分)11.如图所示,某地一条小河的两岸都是直的,小明和小亮分别在河的两岸,他们拉紧了一根细绳,当测出∠1和∠2满足关系________时,河岸的两边才是平行的.12.同一个平面内的三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=________.13.在测量跳远成绩时,从落地点到起跳线所拉的皮尺应当与起跳线________.14.如图,在三角形ABC中,BC=5 cm,将三角形ABC沿BC方向平移至三角形A'B'C'的位置时,B'C=3 cm,则三角形ABC平移的距离为cm.11 14 1515.如图是我们常用的折叠式小刀,刀柄外形是一个长方形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图所示的∠1与∠2,则∠1与∠2的度数和是度.16.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=°.17.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是第1个图案经过平移而得,那么第2015个图案中有白色六边形地面砖块.三、解答题(22~24题每题9分,其余每题8分,共59分)18.如图,在一条公路l的两侧有A,B两个村庄.(1)现在镇政府为民服务,沿公路开通公共汽车,同时修建A,B两个村庄到公路的道路,要使两个村庄村民乘车最为方便,请你设计道路路线,在图中画出(标明①),并标出公共汽车停靠点的位置,说出你这样设计的理由;(2)为方便两村物流互通,A,B两村计划合资修建一条由A村到达B村的道路,要使两个村庄物流、通行最为方便,请你设计道路路线,在图中画出(标明②),说出你这样设计的理由.19.如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37°,求∠D的度数.20.如图,CD⊥AB,EF⊥AB,∠E=∠EMC,说明:CD是∠ACB的平分线.21.如图,已知点A,O,B在同一直线上,OC是从点O出发的任意一条射线,OD是∠AOC的平分线,OE是∠COB的平分线,试确定OD和OE的位置关系,并说明理由.22.如图,∠E=∠3,∠1=∠2,试说明:∠4+∠BAP =180°.23.如图所示,潜望镜中的两个镜子是互相平行放置的,光线经过镜子反射时,入射光线与平面镜的夹角等于反射光线与平面镜的夹角(∠1=∠2,∠3=∠4).请说明为什么进入潜望镜的光线和离开潜望镜的光线是平行的.24.如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(1)当动点P落在第①部分时,如图①,试说明:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,如图②,∠APB=∠PAC+∠PBD是否成立?若不成立,请说明理由.参考答案一、1.【答案】B 2.【答案】C3.【答案】B解:根据两直线平行,同位角相等,得出A正确;根据两直线平行,同旁内角互补,得出C正确;根据两直线平行,内错角相等,得出∠A=∠ACE,而∠ACE+∠B+∠ACB=180°,则∠A+∠B+∠ACB=180°.得出D正确.故选B.4.【答案】C5.【答案】C6.【答案】B7.【答案】C8.【答案】C9.【答案】A10.【答案】B二、11.【答案】∠1=∠212.【答案】4解:a=3,b=1.13.【答案】垂直14.【答案】215.【答案】9016.【答案】14017.【答案】8062三、18.解:(1)画图如图,P,Q即为公共汽车停靠点的位置垂线段最短;(2)画图如图,两点之间,线段最短.19.解:因为AB∥CD,所以∠ECD=∠A=37°,又因为DE⊥AE,所以∠CED=90°,所以∠D=180°-90°-37°=53°.20.解:因为CD⊥AB,EF⊥AB,所以CD∥EF(垂直于同一直线的两直线平行).相等),又因为∠E=∠EMC,所以∠BCD=∠ACD(等量代换).所以CD是∠ACB的平分线(角平分线定义).21.解:OD和OE互相垂直,即OD⊥OE.理由如下:因为点A,O,B在同一直线上,所以∠AOB=180°.又因为OD是∠AOC的平分线,OE是∠COB的平分线,所以∠DOC=∠AOC,∠COE=∠COB.所以∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=∠AOB=×180°=90°,所以OD⊥OE.22.解:因为∠ENM=∠3(对顶角相等),∠E=∠3(已知),所以∠ENM=∠E(等量代换),所以AE∥HM(内错角相等,两直线平行).所以∠EAM=∠AMH(两直线平行,内错角相等).又因为∠1=∠2,所以∠EAM+∠1=∠AMH+∠2(等式性质),即∠BAM=∠AMC.所以AB∥CD(内错角相等,两直线平行).所以∠AMD+∠BAP=180°(两直线平行,同旁内角互补).因为∠4=∠AMD(对顶角相等),所以∠4+∠BAP=180°(等量代换).23.解:根据题意,作出如图所示的几何图形,已知:AB∥CD,∠1=∠2,∠3=∠4.试说明:EF∥GH.说明过程:因为AB∥CD(已知),所以∠2=∠3(两直线平行,内错角相等).又因为∠1=∠2,∠3=∠4,所以∠1=∠2=∠3=∠4.因为∠5=180°-(∠1+∠2),∠6=180°-(∠3+∠4),所以∠5=∠6,所以EF∥GH(内错角相等,两直线平行).即进入潜望镜的光线和离开潜望镜的光线是平行的.24.解:(1)如图①:过点P作MP∥AC,则MP∥BD,因为MP∥AC,所以∠APM=∠PAC,因为MP∥BD,所以∠BPM=∠PBD,所以∠APM+∠BPM =∠PAC+∠PBD,①②(2)不成立.理由如下:如图②,过点P作MP∥AC,则MP∥BD, 因为MP∥AC,所以∠APM=∠PAC,因为MP∥BD,所以∠BPM=∠PBD,所以∠APM+∠BPM =∠PAC+∠PBD,即:360°-∠APB=∠PAC+∠PBD.所以∠APB=∠PAC+∠PBD不成立.。
七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题含答案

七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面几种说法中,正确的是A.同一平面内不相交的两条线段平行B.同一平面内不相交的两条射线平行C.同一平面内不相交的两条直线平行D.以上三种说法都不正确【答案】C2.如图所示,若∠1与∠2互补,∠2与∠4互补,则A.l3∥l4B.l2∥l5C.l1∥l5D.l1∥l2【答案】D【解析】因为∠1与∠2互补,∠2与∠4互补,可知∠1+∠2=180°,∠2+∠4=180°,所以∠1=∠4,根据内错角相等,两直线平行可得l1∥l2,故选D.3.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是A.第一次向右拐40°,第二次向左拐140°B.第一次向右拐40°,第二次向右拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向左拐40°,第二次向右拐40°【答案】D4.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【答案】A【解析】三角板的∠CAB,沿着FE进行平移后角的大小没变,而平移前后的两个角是同位角,所以画图原理是“同位角相等,两直线平行”.5.如图,给出下面的推理:①∵∠B=∠BEF,∴AB∥EF;②∵∠B=∠CDE,∴AB∥CD;③∵∠B+∠BEC=180°,∴AB∥EF;④∵AB∥CD,CD∥EF,∴AB∥EF.其中正确的是A.①②③B.①②④C.①③④D.②③④【答案】B二、填空题:请将答案填在题中横线上.6.在同一平面内有四条直线a、b、c、d,已知:a∥d,b∥c,b∥d,则a和c的位置关系是__________.【答案】a∥c【解析】∵a∥d,b∥c,b∥d,∴a∥c.故答案为:a∥c.7.如图,直线a、b被直线c所截,若要a∥b,需增加条件__________(填一个即可).【答案】答案不唯一,如∠1=∠3.【解析】∵∠1=∠3,∴a∥b(同位角相等,两直线平行),故答案为:∠1=∠3.8.如图所示,若∠1=70°,∠2=50°,∠3=60°,则________________∥________________.【答案】DE;AC三、解答题:解答应写出文字说明、证明过程或演算步骤.9.如图,已知∠1=∠3,AC平分∠DAB,你能推断出哪两条直线平行?请说明理由.【解析】可以推断出DC∥AB,理由如下:∵AC平分∠DAB,∴∠1=∠2(角平分线的定义),又∵∠1=∠3,∴∠2=∠3(等量代换),∴DC∥AB(内错角相等,两直线平行).10.如图,若∠1与∠B互为补角,∠B=∠E,那么直线AB与直线DE平行吗?直线BC与直线EF平行吗?为什么?【解析】BC∥EF,理由如下:∵∠1+∠B=180°,∴AB∥DE,∵∠1+∠B=180°,∠B=∠E.∴∠1+∠E=180°,又∠1=∠2,∴∠2+∠E=180°,∴BC∥EF.11.如图,已知∠A+∠ACD+∠D=360°,试说明:AB∥DE.12.如图,∠1=65°,∠2=65°,∠3=115°.试说明:DE∥BC,DF∥AB.根据图形,完成下面的推理:因为∠1=65°,∠2=65°,所以∠1=∠2.所以__________∥__________.(__________)因为AB与DE相交,所以∠1=∠4(__________),所以∠4=65°.又因为∠3=115°,所以∠3+∠4=180°.所以__________∥__________.(__________)。
精华版《相交线与平行线》练习题含答案

《相交线与平行线》1.如图,用一吸管吸吮易拉罐内的饮料时,吸管与易拉罐上部夹角174∠=︒,那么吸管与易拉罐下部夹角2∠=________度.2.如图,已知AE BD ∥,1130∠=︒,230∠=︒,则C ∠=________.3.将直尺与三角尺按如图所示的方式叠放在一起,在图中标记的角中,与1∠互余的角是_______.4.如图,AD EG BC ∥∥,AC EF ∥,则图中与1∠相等的角(不含1∠)有______个;若150∠=︒,则AHG ∠=________.5.在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52︒,现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是( ).A .北偏西52︒B .南偏东52︒C .西偏北52︒D .北偏西38︒6.如图,直线l m ∥,将含有45︒角的三角板ABC 的直角顶点C 放在直线m 上,若125∠=︒,则2∠的度数为( ).A .20︒B .25︒C .30︒D .35︒7.如图,已知AB CD ∥,那么A C AEC ∠+∠+∠=( ).A .360︒B .270︒C .200︒D .180︒8.如图,D 、G 是ABC △中AB 边上的任意两点,DE BC ∥,GH DC ∥,则图中相等的角共有( ).A .4对B .5对C .6对D .7对9.如图,已知FC AB DE ∥∥,::2:3:4D B α∠∠=,求α、D ∠、B ∠的度数.10.如图,已知12BFM ∠=∠+∠,求证:AB CD ∥.11.如图,l m ∥,长方形ABCD 的顶点B 在直线m 上,则α∠=_________.12.如图,已知AB CD ∥,120ABE ∠=︒,35DCE ∠=︒,则BEC ∠=__________.13.某人在练车场上练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则这两次拐弯的角度可能是________.①第一次向左拐40︒,第二次向右拐40︒;②第一次向右拐50︒,第二次向左拐130︒;③第一次向右拐70︒,第二次向左拐110︒;④第一次向左拐70︒,第二次向左拐110︒.14.已知两个角的两边分别平行,其中一个角为40︒,则另一个角的度数为_________.15.如图,CD BE ∥,则231∠+∠-∠的度数等于( ).A .90︒B .120︒C .150︒D .180︒16.如图,已知AB CD ∥,BF 平分ABE ∠,且BF DE ∥,则ABE ∠与D ∠的关系是( ).A .3ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠-∠=︒ D .2ABE D ∠=∠17.探照灯、锅形天线、汽车灯以及其他很多灯具都与抛物线形状有关,如图所示是一探照灯灯碗的纵剖面,从位于O 点的灯泡发出的两束光线OB 、OC 经灯碗反射后平行射出,如果图中ABO α∠=,DCO β∠=,则BOC ∠的度数为( ).A .180αβ︒--B .αβ+C .()12αβ+ D .()90βα︒-18.如图,两直线AB 、CD 平行,则123456∠+∠+∠+∠+∠+∠=( ).A .630︒B .720︒C .800︒D .900︒19.已知AB CD ∥,90AEC ∠=︒.(1)如图①,当CE 平分ACD ∠时,求证:AE 平分BAC ∠;(2)如图②,移动直角顶点E ,使MCE ECD ∠=∠,求证:2BAE MCG ∠=∠.20.如图,已知CD EF ∥,12ABC ∠+∠=∠,求证:AB GF ∥.应用探究乐园21.(1)如图①,12MA NA ∥,则12A A ∠+∠=_________.如图②,13MA NA ∥,则123A A A ∠+∠+∠=___________.如图③,14MA NA ∥,则1234A A A A ∠+∠+∠+∠=___________.如图④,15MA NA ∥,则12345A A A A A ∠+∠+∠+∠+∠=___________.从上述结论中你发现了什么规律?请在图②,图③,图④中选一个证明你的结论.(2)如图⑤,1n MA NA ∥,则123n A A A A ∠+∠+∠++∠=L ______________.(3)利用上述结论解决问题:如图已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,140E ∠=︒,求BFD ∠的度数.22.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射,若被b 反射出的光线n 与光线m 平行,且150∠=︒,则2∠=_________,3∠=________.(2)在(1)中,若155∠=︒,则3∠=_______;若140∠=︒,则3∠=________;(3)由(1)、(2),请你猜想:当两平面镜a 、b 的夹角3∠=________时,可以使任何射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射光线n 平行.请说明理由.答案:1. 106︒ 2.20︒ 3.2∠、3∠、4∠ 4.5;130︒ 5.A6.A7.A8.D9.72α=︒,108D ∠=︒,144B ∠=︒10.略 11.25︒ 12.95︒ 13.④ 14.40︒或140︒15.D 16.D 17.B 18.D19.(1)略;(2)证法较多,如过E 点作EF AB ∥或作MCG ∠平分线CH 等.20.作CK FG ∥,延长GF 、CD 交于H 点,则12180BCK ∠+∠+∠=︒,因12ABC ∠+∠=∠,故180ABC BCK ∠+∠=︒,即CK AB ∥,AB GF ∥.21.(1)180︒,360︒,540︒,720︒(2)()1180n -︒(3)过F 点作FG AB ∥,则AB FG CD ∥∥.则()12BFD ABE CDE ∠=∠+∠,又360ABE CDE E ∠+∠+∠=︒,得220ABE CDE ∠+∠=︒,故110BFD ∠=︒. 22.(1)100︒;90︒(2)90︒;90︒(3)90︒证明略.。
相交线与平行线测试题及答案doc

相交线与平行线测试题及答案doc一、选择题(每题5分,共20分)1. 在同一平面内,两条直线的位置关系有几种?A. 一种B. 两种C. 三种D. 四种答案:B2. 下列说法中,正确的是:A. 同一平面内,两条直线不相交,则它们一定平行B. 同一平面内,两条直线相交,则它们一定垂直C. 同一平面内,两条直线平行,则它们永不相交D. 同一平面内,两条直线相交,则它们一定平行答案:C3. 如果两条直线都与第三条直线平行,那么这两条直线的关系是:A. 相交B. 平行C. 垂直D. 无法确定答案:B4. 两条直线相交,交点处的夹角为90°,那么这两条直线的关系是:A. 相交B. 平行C. 垂直D. 重合答案:C二、填空题(每题5分,共20分)1. 如果两条直线都与第三条直线相交,且交角相等,则这两条直线____。
答案:平行2. 在同一平面内,两条直线不相交,则它们是____。
答案:平行3. 垂直于同一直线的两条直线一定是____。
答案:平行4. 两条平行线被第三条直线所截,同位角相等,内错角互补,同旁内角和为____。
答案:180°三、解答题(每题10分,共20分)1. 已知直线AB与直线CD相交于点O,且∠AOB=∠COD=90°,求证:AB∥CD。
证明:因为∠AOB=∠COD=90°,所以AB⊥OB,CD⊥OD。
根据垂直于同一条直线的两条直线平行,所以AB∥CD。
2. 已知直线l1与直线l2相交于点P,且l1∥l3,l2∥l4,求证:l3与l4相交。
证明:因为l1∥l3,l2∥l4,所以∠l1P=∠l3P,∠l2P=∠l4P。
根据同位角相等,两直线平行,所以l3∥l1,l4∥l2。
又因为l1与l2相交,所以l3与l4相交。
四、计算题(每题10分,共40分)1. 在同一平面内,直线m与直线n相交,交点为O。
已知∠1=45°,求∠2的度数。
答案:∠2=180°-45°=135°2. 已知直线a与直线b平行,直线c与直线a相交于点A,且∠BAC=60°,求∠ABC的度数。
相交线与平行线经典测试题含答案

【点睛】
本题综合考查了平行线的判定及性质.
5.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()
A.65°B.115°C.125°D.130°
【答案】B
【解析】
试题分析:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.
∴∠1=60°,
故选:B.
【点睛】
此题考查平行线的性质,三角板的知识,熟记性质是解题的关键.
8.如图, , ,则 ()
A. B. C. D.
【答案】C
【解析】
【分析】
首先证明a∥b,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.
【详解】
解:∵∠1+∠5=180°,∠1+∠2=180°,
B、∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故B能判断;
C、∵∠ABD=∠BDC,∴AB∥CD(内错角相等,两直线平行),故C能判断;
D、∵∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故D能判断,
故选A.
【点睛】
本题考查了平行线的判定.掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.
【详解】
解:∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°,
∵BD平分∠ABC,
∴∠ABD=∠DBC=36°,
∴∠BDC=180°﹣36°﹣72°=72°,
(完整版)相交线与平行线常考题目及答案(绝对经典)

一.选择题(共3小题)
1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是( )
A.平行B.垂直C.平行或垂直D.无法确定
2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有( )
26.几何推理,看图填空:
(1)∵∠3=∠4(已知)
∴∥()
(2)∵∠DBE=∠CAB(已知)
∴∥()
(3)∵∠ADF+=180°(已知)
∴AD∥BF()
27.如图,直线AB、CD相交于点O,OE平分∠BOD.
(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度数.
(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度数.
7.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是.
评卷人
得分
三.解答题(共43小题)
8.已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB∥CD,H,P分别为直线AB和线段EF上的点.
(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数.
(2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论.
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.
15.如图,已知AB∥PN∥CD.
(1)试探索∠ABC,∠BCP和∠CPN之间的数量关系,并说明理由;
(2)若∠ABC=42°,∠CPN=155°,求∠BCP的度数.
16.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°
相交线与平行线测试题及答案

相交线与平行线测试题及答案1. 单选题:在平面上,两条互相垂直的直线称为()。
A. 平行线B. 垂直线C. 相交线D. 对称线答案:B. 垂直线2. 单选题:下面哪种说法是正确的?A. 平行线永远不会相交B. 相交线永远不会平行C. 平行线和相交线可以同时存在D. 平行线和相交线不能同时存在答案:C. 平行线和相交线可以同时存在3. 多选题:判断下列述句是否正确。
1) 平行线没有交点。
2) 相交线可以有无数个交点。
3) 两条垂直线的交点一定是直角。
A. 正确的有1)、2)、3)B. 正确的有1)、3)C. 正确的有2)、3)D. 正确的只有3)答案:B. 正确的有1)、3)4. 填空题:两条互相垂直的直线所成的角度为()度。
答案:90度5. 判断题:两条平行线的夹角为180度。
答案:错误6. 判断题:两条相交直线一定不平行。
答案:正确7. 计算题:已知直线L1与直线L2互相垂直,L1的斜率为2,过点(1,3)的直线L2的斜率为()。
答案:-1/28. 计算题:已知直线L1过点(1,2)且斜率为3/4,直线L2与L1平行且过点(3,5),求直线L2的斜率。
答案:3/49. 解答题:请解释什么是相交线和平行线,并举例说明。
答案:相交线是指两条直线或线段在平面上有唯一一点相交。
例如,在平面上有两条直线,一条通过点A和点B,另一条通过点C和点D,如果点A与点C不重合并且点B与点D不重合,则这两条直线相交于点E。
平行线是指在平面上没有任何交点的两条直线。
例如,在平面上有一条直线通过点A和点B,另一条直线通过点C和点D,如果两条直线没有任何一点相交,则这两条直线是平行线。
10. 解答题:如何通过直线的斜率来判断两条直线是否平行或垂直?答案:两条直线平行的充要条件是它们的斜率相等,即斜率相同的两条直线是平行线。
两条直线垂直的充要条件是它们的斜率的乘积为-1,即斜率之积为-1的两条直线是垂直线。
总结:在平面几何中,相交线是指两条直线或线段在平面上有唯一一点相交,平行线是指在平面上没有任何交点的两条直线。
相交线与平行线单元练习(含答案)

第五章相交线与平行线一、选择题1.a、b、c是同一平面内的任意三条直线,其交点有()A. 1或2个B. 1或2或3个C. 0或1或3个D. 0或1或2或3个【答案】D【解析】由题意画出图形,如图所示:2.如图,在高为3米,水平距离为4米楼梯的表面铺地毯,地毯的长度至少需多少米()A. 4B. 5C. 6D. 72.【答案】D【解析】地毯长度至少需3+4=7米.故选D.3.下列语句中,是对顶角的语句为()A.有公共顶点并且相等的两个角B.两条直线相交,有公共顶点的两个角C.顶点相对的两个角D.两条直线相交,有公共顶点没有公共边的两个角【答案】D【解析】A.有公共顶点并且两边分别都在同一条直线上的两个角是对顶角,故本选项错误;B.两条直线相交所成的角是对顶角或邻补角,故本选项错误;C.顶点相对的两个角的两边不一定在同一条直线上,不一定是对顶角,故本选项错误;D.两条直线相交,有公共顶点没有公共边的两个角的两边在同一条直线上,是对顶角,故本选项正确;故选D.4.如图,能判定EC∥AB的条件是()A.∠B=∠ACBB.∠B=∠ACEC.∠A=∠ACED.∠A=∠ECD【答案】C【解析】根据∠B=∠ACB,不能得到EC∥AB,故A错误;根据∠B=∠ACE,不能得到EC∥AB,故B错误;根据∠A=∠ACE,能判定EC∥AB,故C正确;根据∠A=∠ECD不能得到EC∥AB,故D错误;故选C.5.有下列说法:①△ABC在平移的过程中,对应线段一定相等.②△ABC在平移的过程中,对应线段一定平行.③△ABC在平移的过程中,周长不变.④△ABC在平移的过程中,面积不变.其中正确的有()A.①②③B.①②④C.①③④D.②③④【答案】C【解析】①∵平移不改变图形的大小,∴△ABC在平移过程中,对应线段一定相等,故正确;②∵经过平移,对应线段所在的直线共线或平行,∴对应线段一定平行错误;③∵平移不改变图形的形状和大小,∴△ABC在平移过程中,周长不变,故正确;④∵平移不改变图形的大小和形状,∴△ABC在平移过程中,面积不变,正确;∴①、③、④都符合平移的基本性质,都正确.故选C.6.如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A. 25°B. 35°C. 45°D. 50°【答案】D【解析】∵CD∥EF,∠C=∠CFE=25°,∵FC平分∠AFE,∴∠AFE=2∠CFE=50°,又∵AB∥EF,∴∠A=∠AFE=50°,故选D.7.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③B.①②④C.①③④D.①③答案】C【解析】由图可知,用角尺画木板边缘的两条垂线,这样画的理由:①同位角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.故选C.8.两条直线相交所构成的四个角中:①有三个角都相等;②有一对对顶角互补;③有一个角是直角;④有一对邻补角相等.其中能判定这两条直线垂直的有()A. 1个B. 2个C. 3个D. 4个【答案】D【解析】①有三个角都相等,能判定互相垂直;②有一对对顶角互补,可计算出夹角是90°,可以判定垂直;③有一个角是直角,可以判定垂直;④有一对邻补角相等,可以判定垂直.故选D.二、填空题9.已知,如图,AD∥BE,∠1=20°,∠DCE=45°,则∠2的度数为______.【答案】25°【解析】∵AD∥BE,∠DCE=45°,∴∠DCE=∠ADC=45°.∵∠1=20°,∴∠2=∠ADC-∠1=45°-20°=25°.故答案为25°10.如图,已知点A、B、C、F在同一条直线上,AD∥EF,∠D=40°,∠F=30°,那么∠ACD的度数是________.【答案】110°【解析】∵AD∥EF,∴∠A=∠F=30°,∵∠D=40°,∴∠ACD=180°-30°-40°=110°.故答案为110°.11.如图∠1=(3x-40)°,∠2=(220-3x)°,那么AB与CD的位置关系是________.【答案】平行【解析】因为∠2=(220-3x)°,所以∠3=180°-∠2=(3x-40)°,可得:∠1=∠3,所以AB与CD平行,故答案为平行.12.把下列命题改写成“如果…那么…“的形式:(1)互补的两个角不可能都是锐角:________________________________________.(2)垂直于同一条直线的两条直线平行:________________________________________.(3)对顶角相等:____________________________________________________.【答案】如果两个角互补,那么这两个角不可能都是锐角如果两直线都垂直于第三条直线,那么这两直线平行如果两个角为对顶角,那么这两个角相等【解析】(1)如果两个角互补,那么这两个角不可能都是锐角;(2)如果两直线都垂直于第三条直线,那么这两直线平行;(3)如果两个角为对顶角,那么这两个角相等.故答案为:如果两个角互补,那么这两个角不可能都是锐角;如果两直线都垂直于第三条直线,那么这两直线平行;如果两个角为对顶角,那么这两个角相等.13.如图,与∠2互为同旁内角的是________;与∠3互为同位角的是________;∠6与∠9是______,它们是直线________与______被直线______所截得的;∠3与∠5是直线______与直线______被直线______所截得的;与∠1是同位角的有______,在标有数字的九个角中,大小一定相等的角有__________________.【答案】∠1和∠3∠4和∠5内错角AC DE BE AC BC BE∠7和∠8∠2=∠6,∠5=∠7【解析】由图可得,∠1,∠3与∠2互为同旁内角;∠4,∠5与∠3互为同位角;∠6与∠9是内错角,它们是直线AC与DE被直线BE所截得的;∠3与∠5是直线AC与直线BC被直线BE所截得的同位角;∠7,∠8与∠1是同位角;根据对顶角相等可得,在标有数字的九个角中,大小一定相等的角有∠2=∠6,∠5=∠7.故答案为:∠1,∠3;∠4,∠5;内错角,AC,DE,BE;AC,BC,BE;∠7,∠8;∠2=∠6,∠5=∠7.14.如图,请你添加一个条件________,使AB∥CD.【答案】∠1=∠5【解析】添加∠1=∠5.∵∠1=∠5,∴AB∥CD.故答案为∠1=∠5.15.如图,直线a∥b,∠2=∠3,若∠1=45°,则∠4=______.【答案】45°【解析】延长DC交a于E,如图,∵∠2=∠3,∴AB∥DE,∴∠4=∠5,∵a∥b,∴∠1=∠5=45°,∴∠4=∠5=45°.故答案为45°.16.如图,∠1和∠3是直线______、______被直线______所截得到的______角;∠3和∠2是直线______、______被直线______所截得到的______角.【答案】a b c同旁内a c b内错【解析】如题图,∠1和∠3是直线a、b被直线c所截得到的同旁内角;∠3和∠2是直线a、c被直线b所截得到的内错角.故答案为:a,b,c,同旁内;a,c,b,内错角.17.如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠DON为________度.【答案】35【解析】∵∠BOC=110°,∴∠BOD=70°,∵ON为∠BOD平分线,∴∠DON=35°.故答案为35.18.如图,一张三角形纸片ABC,∠B=45°,现将纸片的一角向内折叠,折痕ED∥BC,则∠AEB的度数为________.【答案】90°【解析】∵ED∥BC,∴∠FED=∠B=45°,由折叠可得∠AEF=2∠FED=90°,∴∠AEB=180°-90°=90°,故答案为90°.三、解答题19.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.【答案】证明∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD.【解析】首先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,∠2和∠D互余,所以得∠C =∠2,从而证得AB∥CD.20.(1)图①是将线段AB向右平移1个单位长度,图②是将线段AB折一下再向右平移1个单位长度,请在图③中画出一条有两个折点的折线向右平移1个单位长度的图形.(2)若长方形的长为a,宽为b,请分别写出三个图形中除去阴影部分后剩余部分的面积.(3)如图④,在宽为10 m,长为40 m的长方形菜地上有一条弯曲的小路,小路宽为1 m,求这块菜地的面积.20.【答案】(1)如图:(2)三个图形中除去阴影部分后剩余部分的面积:①ab-b;②ab-b;③ab-b;(3)40×10-10×1=390(m2).答:这块菜地的面积是390m2.【解析】(1)根据两个折点,可得小路是三个平行四边形;(2)根据路的形状是矩形,可得路的面积,根据面积的和差,可得答案;(3)根据等底等高的面积相等,可得路的面积,根据面积的和差,可得答案.21.直线a∥b,b∥c,直线d与a相交于点A.(1)判断a与c的位置关系,并说明理由;(2)判断c与d的位置关系,并说明理由.【答案】(1)a与c的位置关系是平行,理由是:∵直线a∥b,b∥c,∴a∥c;(2)c与d的位置关系是相交,理由是:∵c∥a,直线d与a相交于点A,∴c与d的位置关系是相交.【解析】(1)根据平行公理得出即可;(2)根据c∥a和直线d与a相交推出即可.22.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度数;(2)若OF平分∠COE,∠BOF=15°,若设∠AOE=x°,求∠AOC的度数.【答案】(1)∵∠AOC=68°,∴∠BOD=68°,∵OE平分∠BOD,∴∠BOE=∠DOE=34°,∵∠DOF=90°,∴∠EOF=∠DOF-∠DOE=90°-34°=56°;(2)∵OE平分∠BOD,∴∠BOE=∠DOE,∵∠BOE+∠AOE=180°,∠COE+∠DOE=180°,∴∠COE=∠AOE=x,∵OF平分∠COE,∴∠FOE=x.∴∠BOE=∠FOE-∠BOF=x-15°.又∵∠BOE+∠AOE=180°,∴x-15°+x=180°,解得x=130°,∴∠AOC=2∠BOE=2×=100°.【解析】(1)根据角平分线的定义结合∠AOC=68°即可求出∠BOE=∠DOE=34°,再由∠EOF与∠DOE互余即可求出∠EOF的度数;(2)由角平分线的定义可得出∠BOE=∠DOE,根据∠BOE+∠AOE=180°、∠COE+∠DOE=180°即可找出∠AOE=∠COE=x,再根据角平分线的定义可知∠FOE=x.23.如图,给出下列论断:①∠1=∠E;②∠4=∠B;③∠2+∠B=180°;④∠3+∠E=180°;⑤∠A+∠E=180°;⑥AB∥CD;⑦AB∥EF;⑧CD∥EF.请你从中选出一个论断作为题设,一个论断作为结论,组成一个真命题,至少写出三个.(格式:如果…,那么…)23.【答案】如果①∠1=∠E;那么⑧CD∥EF;如果②∠4=∠B;那么⑥AB∥CD;如果③∠2+∠B=180°;那么⑥AB∥CD.【解析】根据平行线的性质与判定,结合所给条件即可作出答案.24.如图,在Rt△ABC中,∠C=90°,AC=4 cm,BC=3 cm,将△ABC沿AB方向向右平移得到△DEF,若AE=8 cm,DB=2 cm.(1)求△ABC向右平移的距离AD的长;(2)求四边形AEFC的周长.【答案】(1)∵△ABC沿AB方向向右平移得到△DEF,∴AD=BE=CF,BC=EF=3 cm,∵AE=8 cm,DB=2 cm,∴AD=BE=CF==3 cm;(2)四边形AEFC的周长=AE+EF+CF+AC=8+3+3+4=18 cm.【解析】(1)根据平移的性质可得AD=BE=CF,BC=EF=3 cm,然后根据AE、BD的长度求解即可;(2)根据平移的性质可得EF=BC,CF=AD,然后根据四边形的周长的定义列式计算即可得解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《相交线与平行线》
1.如图,用一吸管吸吮易拉罐的饮料时,吸管与易拉罐上部夹角174∠=︒,那么吸管与易拉罐下部夹角2∠=________度.
2
1
2.如图,已知AE BD ∥,1130∠=︒,230∠=︒,则C ∠=________.
2
1
D
A
B
C
E
3.将直尺与三角尺按如图所示的方式叠放在一起,在图中标记的角中,与1∠互余的角是_______.
1
23
4
56
4.如图,AD EG BC ∥∥,AC EF ∥,则图中与1∠相等的角(不含1∠)有______个;
若150∠=︒,则AHG ∠=________.
1F E C
B
A H
G
D
5.在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52︒,现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是( ). A .北偏西52︒ B .南偏东52︒ C .西偏北52︒ D .北偏西38︒ 6.如图,直线l m ∥,将含有45︒角的三角板ABC 的直角顶点C 放在直线m 上,若125∠=︒,则2∠的度数为( ). A .20︒ B .25︒ C .30︒ D .35︒
2
1m l
C
B
A
7.如图,已知AB CD ∥,那么A C AEC ∠+∠+∠=( ).
D A B
C
E
A .360︒
B .270︒
C .200︒
D .180︒
8.如图,D 、G 是ABC △中AB 边上的任意两点,DE BC ∥,GH DC ∥,则图中相等的角共有( ). A .4对 B .5对 C .6对 D .7对
D G H
A
B
C
E
9.如图,已知FC AB DE ∥∥,::2:3:4D B α∠∠=,求α、D ∠、B ∠的度数.
α
D
A
B
C E
F
10.如图,已知12BFM ∠=∠+∠,求证:AB CD ∥.
21D
G
M
N A
B
C
E
F
11.如图,l m ∥,长方形ABCD 的顶点B 在直线m 上,则α∠=_________.
65°
m
l
α
C
B
A
D
12.如图,已知AB CD ∥,120ABE ∠=︒,35DCE ∠=︒,则BEC ∠=__________.
D
A
B
C
E
13.某人在练车场上练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则这两次拐弯的角度可能是________.①第一次向左拐40︒,第二次向右拐40︒;②第一次向右拐50︒,第二次向左拐130︒;③第一次向右拐70︒,第二次向左拐110︒;④第一次向左拐70︒,第二次向左拐110︒.
14.已知两个角的两边分别平行,其中一个角为40︒,则另一个角的度数为
_________.
15.如图,CD BE ∥,则231∠+∠-∠的度数等于( ). A .90︒ B .120︒ C .150︒ D .180︒
321
E C B
A D
16.如图,已知AB CD ∥,BF 平分ABE ∠,且BF DE ∥,则ABE ∠与D ∠的关系是( ). A .3ABE D ∠=∠ B .180ABE D ∠+∠=︒ C .90ABE D ∠-∠=︒ D .2ABE D ∠=∠
D A
B
C
E
F
17.探照灯、锅形天线、汽车灯以及其他很多灯具都与抛物线形状有关,如图所示是一探照灯灯碗的纵剖面,从位于O 点的灯泡发出的两束光线OB 、OC 经灯碗反射后平行射出,如果图中ABO α∠=,DCO β∠=,则BOC ∠的度数为( ). A .180αβ︒-- B .αβ+ C .()1
2αβ+ D .()90βα︒-
D O A
B C
18.如图,两直线AB 、CD 平行,则123456∠+∠+∠+∠+∠+∠=( ). A .630︒ B .720︒ C .800︒ D .900︒
G H
E F D
A
B
C
1
2345
6
19.已知AB CD ∥,90AEC ∠=︒.
(1)如图①,当CE 平分ACD ∠时,求证:AE 平分BAC ∠;
(2)如图②,移动直角顶点E ,使MCE ECD ∠=∠,求证:2BAE MCG ∠=∠.
E C B
A
D
图①D
G
M A
B
C E 图②
20.如图,已知CD EF ∥,12ABC ∠+∠=∠,求证:AB GF ∥.
21
D
G
A
B
C E F
应用探究乐园
21.(1)如图①,12MA NA ∥,则12A A ∠+∠=_________. 如图②,13MA NA ∥,则123A A A ∠+∠+∠=___________. 如图③,14MA NA ∥,则1234A A A A ∠+∠+∠+∠=___________. 如图④,15MA NA ∥,则12345A A A A A ∠+∠+∠+∠+∠=___________.
从上述结论中你发现了什么规律?请在图②,图③,图④中选一个证明你的结论.
A 2
A 1
N
M
图①
A 3
A 2
A 1
M
N
图②
A 4
A 3
A 2
A 1
N
M
图③
A 5
A 4
A 3
A 2
A 1
N
M
图④
N
M
A 1
A 2A 3A 4
A 5A 6
A n
图⑤
(2)如图⑤,1n MA NA ∥,则123n A A A A ∠+∠+∠++∠=______________.
(3)利用上述结论解决问题:如图已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,140E ∠=︒,求BFD ∠的度数.
D
A
B
C
E
F
22.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.
(1)如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射,若被b 反射出的光线n 与光线m 平行,且150∠=︒,则2∠=_________,3∠=________.
(2)在(1)中,若155∠=︒,则3∠=_______;若140∠=︒,则3∠=________; (3)由(1)、(2),请你猜想:当两平面镜a 、b 的夹角3∠=________时,可以使任何射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射光线n 平行.请说明理由.
3
2
1
b
a n
m
答案:1. 106︒ 2.20︒ 3.2∠、3∠、4∠ 4.5;130︒ 5.A 6.A 7.A 8.D 9.72α=︒,108D ∠=︒,144B ∠=︒
10.略 11.25︒ 12.95︒ 13.④ 14.40︒或140︒ 15.D 16.D 17.B 18.D
19.(1)略;(2)证法较多,如过E 点作EF AB ∥或作MCG ∠平分线CH 等. 20.作CK FG ∥,延长GF 、CD 交于H 点,则12180BCK ∠+∠+∠=︒,因12ABC ∠+∠=∠,故180ABC BCK ∠+∠=︒,即CK AB ∥,AB GF ∥. 21.(1)180︒,360︒,540︒,720︒ (2)()1180n -︒
(3)过F 点作FG AB ∥,则AB FG CD ∥∥.
则()1
2BFD ABE CDE ∠=∠+∠,又360ABE CDE E ∠+∠+∠=︒,得220ABE CDE ∠+∠=︒,故
110BFD ∠=︒.
22.(1)100︒;90︒ (2)90︒;90︒
(3)90 证明略.。