8.4直线与圆的位置关系教学设计

合集下载

名师教学设计《直线与圆的位置关系》完整教学教案

名师教学设计《直线与圆的位置关系》完整教学教案

(四)归纳总结,布置作业
本环节采用填写表格,师生协作的方式,对所学的知识进行小结,培养学生的归纳能力。
师生协作的方式
作业布置试图通过阅读、练习和思考等不同形式的教学活动,加深对所学知识的理解和运用。
作业:
(1)阅读:教材第78-80页;
(2)练习:教材第80页A组1题。
(3)思考:教材第80页B组2题。
(三)运用新知,解决问题
例题与练习是掌握、应用知识和技能所必需的,根据学生的认知特点,我设计了如下例题与练习。
1.例题分析
例1判断直线 与圆 的位置关系。
例2是教材上的例题。作为对圆与直线的位置关系的理解和初步应用,可以让学生自主完成。
判断下列各题中的直线与圆的位置关系。
(1)直线2x-3y+1=0,圆 ;
学生动手画时,教师进行巡视,当所有学生都把三种位置关系画出来时,我用计算机给同学们作演示,给定直线圆在动,使学生从运动的观点去研究问题。
学生动手画时,我进行巡视,当所有学生都把三种位置关系画出来时,我用计算机给同学们作演示,给定直线圆在动,使学生从运动的观点去研究问题。
通过观察,我们已经知道直线和圆的位置关系有三种,引导学生从直线和圆的公共点的个数来完成直线和圆的位置关系的定义。
练习1:主要反馈学生对定义本身的掌握程度,由学生抢答,培养学生的分析能力和数学语言表达能力。
判断圆与直线的位置关系。
圆的直径为10cm,直线到圆心的距离分别为
3
5
练习2我设计了一个小型对抗赛:将全班同学分为两个小组,一组出题另一组回答,答题组再出题,对方回答,依次类推。看哪个组答题既准又快,对优胜组和表现突出的同学进行表扬。
3、掌握直线和圆三种位置关系的判定方法。

《直线与圆的位置关系》教学设计

《直线与圆的位置关系》教学设计

《直线与圆的位置关系》教学设计一、教学内容解析《直线与圆的位置关系》是圆与方程这一章的重要内容,它是学生在初中平面几何中已学过直线与圆的三种位置关系,以及在前面几节学习了直线与圆的方程的基础上,从代数角度,运用坐标法进一步研究直线与圆的位置关系,体会数形结合思想,初步形成代数法解决几何问题的能力,并逐渐内化为学生的习惯和基本素质,为以后学习直线与圆锥曲线的知识打下基础.本节课内容共一个课时.教学过程中,让学生利用已有的知识,自主探索用坐标法去研究直线与圆的位置关系的方法,体验有关的数学思想,培养学生“用数学”以及合作学习的意识.二、教学目标设置由于本节课在初中已有涉及,教师准备“学案”先让学生提前思考,归纳出直线与圆的三种位置关系以及代数与几何的两种判定方法.通过学生的观察、分析、概括,促使学生把解析几何中用方程研究曲线的思想与初中已掌握的圆的几何性质相结合,从而把传授知识和培养能力融为一体,完成本节课的教学目标.三、学生学情分析在经历直线、圆的方程学习后,学生已经具备了一定的用方程研究几何对象的能力,因此,我在教学中通过提供的丰富的数学学习环境,创设便于观察和思考的情境,给他们提供自主探究的空间,使学生经历完整的数学学习过程,引导学生在已有数学认知结构的基础上,通过积极主动的思维而将新知识内化到自己的认知结构中去.同时为他们施展创造才华搭建一个合理的平台,使他们感知学习数学的快乐.高中数学教学的重要目标之一是提高学生的数学思维能力,通过不同形式的探究活动,让学生亲身经历知识的发生和发展过程,从中领悟解决问题的思想方法,不断提高分析和解决问题的能力,使数学学习变成一种愉快的探究活动,从中体验成功的喜悦,不断增强探究知识的欲望和热情,养成一种良好的思维品质和习惯.根据本节课的教学内容和我所教学生的实际,本节课的教学目标确定为以下三个方面:知识与技能目标:(1)理解直线与圆三种位置关系.(2)掌握用圆心到直线的距离d与圆的半径r比较,以及通过方程组解的个数判断直线与圆位置关系的方法.过程与方法目标:(1)通过对直线与圆的位置关系的探究活动,经历知识的建构过程,培养学生独立思考、自主探究、动手实践、合作交流的学习方式.(2)强化学生用坐标法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力.情感、态度与价值观目标:通过对本节课知识的探究活动,加深学生对坐标法解决几何问题的认识,从而领悟其中所蕴涵的数学思想,体验探索中成功的喜悦,激发学习热情,养成良好的学习习惯和品质,培养学生的创新意识和科学精神.四、教学策略分析本节课以问题为载体,学生活动为主线,让学生利用已有的知识,自主探究,培养学生主动学习的习惯.通过建立数学模型、数形结合,提高学生分析问题和解决问题的能力,进一步培养学生的数学素质;通过对直线与圆的位置关系判断方法的探究,进一步提高学生的思维能力和归纳能力.在教学方法的选择上,采用教师组织引导,学生自主探究、动手实践、小组合作交流的学习方式,力求体现教师的设计者、组织者、引导者、合作者的作用,突出学生的主体地位.五、课前准备:直线与圆的位置关系学案(附后)例如图,已知直线直线与圆已知过点,求直线的方程.(课件)六、教学评价设计新课程强调学习过程的评价,因此,在对学生学习结果评价的同时,更应高度重视学生学习过程中的参与度、自信心、合作意识、独立思考的能力及学习的兴趣等.根据本节课的特点,我从以下几个方面进行教学评价:通过问题情境,激发学生的学习兴趣,使学生找到要学的与以学知识之间的联系;问题串的设置可让学生主动参与到学习中来;在判断方法的形成与应用的探究中,师生的相互沟通调动学生的积极性,培养团队精神;知识的生成和问题的解决,培养学生独立思考的能力,激发学生的创新思维;通过练习检测学生对知识的掌握情况;根据学生在课堂小结中的表现和课后作业情况,查缺补漏,以便调控教学.。

直线和圆的位置关系教学设计

直线和圆的位置关系教学设计

《直线和圆的位置关系》教学设计
教学设计说明
本节课的教学目标是,使学生掌握直线和圆的三种位置关系的性质与判定,
重点是直线和圆的相切关系,难点是直线和圆的三种位置关系的性质和判定的运用。

在教学过程中,注意培养学生运用运动变化的观点观察几何图形的辨证思想,培养学生观察概括及分析问题的能力。

在复习提问中,安排了点和圆的位置关系与数量特征,为下面研究直线和圆的位置关系打下基础,在观察直线和圆的位置关系时,注意发挥学生的主体作用,由学生概括出直线和圆的三种位置关系,在研究直线和圆的位置关系的数量特征时,启发学生回忆点和圆的位置关系的数量特征,运用类比推理找到直线和圆的位置关系的数量特征。

这样既可以使学生直接参与到课堂教学中来,培养他们的观察、概括分析能力,同时渗透了类比推理方法使学生在研究类似问题时有章可循。

在小结列表过程中,培养学生的概括能力和总结能力,以及运用数学语言的能力。

《直线与圆的位置关系》教学设计

《直线与圆的位置关系》教学设计

《直线与圆的位置关系》教学设计一、教学目标:知识目标:①理解直线和圆的三种位置关系并能概括其定义,会用定义来判断直线和圆的位置关系。

②探究直线和圆的位置关系的数量关系及其使用。

过程与方法:通过观察、实验、合作探究等数学活动使学生了解探索问题的一般方法,得到“圆心到直线的距离与圆半径大小的数量关系所对应的直线和圆的位置关系”,从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。

情感态度与价值观:①通过创设情境,激发学生好奇心,让学生感受生活中的数学。

②体验数学活动中的探索与创造,感受数学的严谨性和数学结论的准确性,在活动中获得成功的体验。

③通过转化思想的使用,让学生理解到事物之间是普遍联系、相互转化的辩证思想。

二、教学重难点:重点:理解直线和圆的三种位置关系。

难点:通过数量关系判断直线和圆的位置关系。

三、课型:新授四、方法与手段:多媒体五、教学流程1、创设情景,孕育新知同学们,让我们静静地想象:我们坐在海边的沙滩上观看日出。

逐步的,太阳出来了,越来越多;慢慢的,太阳与地平线相接,一会儿,太阳完全出来了,它离开地平线越来越远,太阳升得越来越高………设计意图:让学生想象情景,既联系生活孕育知识,又让学生静心,尽快投入学习状态。

请同学们看屏幕太阳升起的过程如果把太阳看成圆,地平线看成直线,请结合太阳冉冉升起的过程,动手画出你想象的直线和圆所体现的位置关系。

设计意图:从人们最常见的太阳冉冉升起的问题展开,让学生亲自体会到现实生活中的数学知识,更加形象地表明了直线和圆的位置关系,使学生无形中理解到学习不是负担,增强了学生学习的趣味性。

学生活动(略)板书:直线和圆的位置关系2、自主探究,获取新知请同学们结合你自己画出的图形,观察直线和圆的公共点的个数,并指出直线与圆有几种不同的位置关系,老师期待你的精彩回答!设计意图:留出较多时间让学生动手操作、观察、探究、思考获取新知,把学习的主动权还给学生,让学生养成自主探究思考的习惯,培养学生的终身学习意识。

《直线与圆的位置关系》数学教案

《直线与圆的位置关系》数学教案

《直线与圆的位置关系》数学教案教案设计一、教学目标1. 知识与技能:理解直线与圆的三种位置关系(相交、相切、相离),并能通过观察图形判断直线与圆的位置关系,掌握直线与圆的位置关系的判别方法。

2. 过程与方法:通过实际操作和观察,让学生自主探索发现直线与圆的位置关系,并能应用所学知识解决实际问题。

3. 情感态度与价值观:培养学生的观察能力、分析能力和解决问题的能力,激发学生对数学学习的兴趣,树立严谨求实的科学态度。

二、教学重难点重点:直线与圆的三种位置关系的理解和判别方法。

难点:运用直线与圆的位置关系解决实际问题。

三、教学过程(一)导入新课教师展示一些生活中常见的直线与圆的例子,如道路与路标、笔直的树枝与果实等,引导学生思考这些现象中的直线与圆是什么关系,从而引入课题——直线与圆的位置关系。

(二)探究新知1. 直线与圆的三种位置关系教师引导学生通过画图,直观地观察直线与圆的位置关系。

在纸上画一个圆,然后在这个圆的周围画几条直线,让学生观察直线与圆的位置关系,总结出直线与圆有哪几种位置关系。

学生可能得出以下结论:直线与圆可能相交、相切或相离。

教师要引导学生用数学语言描述这三种关系。

2. 判定直线与圆的位置关系的方法教师提出问题:“我们如何确定一条直线与一个圆的位置关系?”引发学生的思考。

然后引导学生从定义出发,通过计算直线到圆心的距离d和圆的半径r的关系来判定直线与圆的位置关系。

(1)当d<r时,直线与圆相交;(2)当d=r时,直线与圆相切;(3)当d>r时,直线与圆相离。

(三)例题解析教师选择一些典型的题目进行讲解,帮助学生理解和掌握直线与圆的位置关系的判别方法。

例如:已知圆的方程为x^2+y^2=4,直线方程为y=x+2,试判断直线与圆的位置关系。

解:圆心为原点(0,0),半径r=2。

计算直线到原点的距离d=\sqrt{2}<2,所以直线与圆相交。

(四)课堂练习设计一些习题供学生练习,巩固所学知识。

《直线与圆的位置关系》教案

《直线与圆的位置关系》教案

《直线与圆的位置关系》教案一、教学目标知识与技能:1. 让学生掌握直线与圆的位置关系,理解直线与圆相交、相切、相离的概念。

2. 学会运用直线与圆的位置关系解决实际问题。

过程与方法:1. 通过观察、分析、推理等方法,探索直线与圆的位置关系。

2. 培养学生的空间想象能力和逻辑思维能力。

情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探究精神。

2. 培养学生运用数学知识解决实际问题的能力。

二、教学重点与难点重点:1. 直线与圆的位置关系的判定。

2. 直线与圆相交、相切、相离的性质。

难点:1. 直线与圆的位置关系的推理论证。

2. 运用直线与圆的位置关系解决实际问题。

三、教学准备教具:1. 直尺、圆规、铅笔。

2. 直线与圆的位置关系的图片或模型。

学具:1. 直尺、圆规、铅笔。

2. 直线与圆的位置关系的练习题。

四、教学过程1. 导入:1.1 教师出示一些直线与圆的位置关系的图片或模型,让学生观察。

1.2 学生分享观察到的直线与圆的位置关系。

2. 探究:2.1 教师引导学生通过画图、观察、分析、推理等方法,探索直线与圆的位置关系。

3. 讲解:3.1 教师根据学生的探究结果,讲解直线与圆的位置关系的判定方法和性质。

3.2 教师通过例题,讲解如何运用直线与圆的位置关系解决实际问题。

4. 练习:4.1 学生独立完成练习题,巩固所学知识。

4.2 教师选取部分学生的练习题进行点评,解答学生的疑问。

五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对直线与圆的位置关系的理解和运用能力。

关注学生在学习过程中的情感态度,激发学生的学习兴趣,培养学生的探究精神。

六、教学拓展1. 教师引导学生思考:直线与圆的位置关系在实际生活中有哪些应用?2. 学生举例说明直线与圆的位置关系在实际生活中的应用,如自行车轮子与地面的关系、篮球筐与投篮线的关系等。

七、课堂小结八、作业布置1. 完成课后练习题,巩固直线与圆的位置关系的知识。

直线与圆的位置关系》教案

直线与圆的位置关系》教案直线与圆的位置关系》教案教学目标:1、认识和理解直线与圆的三种位置关系,能够用定义来判断直线与圆的位置关系。

2、掌握圆的切线的判定方法和性质,能够判断一条直线是否是圆的切线,培养逻辑推理能力。

3、了解切线长的概念和定理,能够应用切线长的知识解决简单问题。

教学重点:1、直线和圆的三种位置关系。

2、切线的性质定理和判定定理。

3、切线长定理。

教学难点:1、直线和圆的位置关系的性质与应用。

2、运用切线的判定定理解决问题。

3、应用切线长定理。

教学过程:一、直线和圆的三种位置关系1、复导入、回顾旧知回顾点和圆的位置关系,以及判断方法。

2、创设情境,提出问题通过唐诗和观察太阳升起的过程,引出直线和圆的位置关系。

3、探究发现,建构知识练一:在纸上画圆,利用直尺移动直线,观察直线和圆的位置关系,得出相离、相切、相交的定义和判别依据。

练二:利用所学知识判断直线和圆的位置关系,并进行数量分析。

练三:复点到直线的距离和垂线段的概念。

二、圆的切线1、复导入、回顾旧知回顾圆的性质和定理。

2、创设情境,提出问题通过实例引出圆的切线的概念和判定方法。

3、探究发现,建构知识练一:通过实验和观察,得出圆的切线的性质和定理。

练二:运用切线的判定方法判断一条直线是否是圆的切线,综合运用切线的性质解决问题。

练三:介绍切线长的概念和定理,并应用切线长的知识解决简单问题。

三、课堂练和作业练一:判断直线和圆的位置关系。

练二:判断一条直线是否是圆的切线。

作业:应用所学知识解决相关问题。

通过以上教学过程,学生能够掌握直线和圆的位置关系、圆的切线的判定方法和性质,以及切线长的概念和定理,并能够应用所学知识解决相关问题。

例1如图24-43,Rt△ABC的斜边AB=10cm,∠A=30°。

求以点C为圆心作圆,当半径为多少时,AB与⊙C相切。

另外,以点C为圆心、半径分别为4cm和5cm作两个圆,这两个圆与斜边AB分别有怎样的位置关系?解:(1)过点C作边AB上的高CD。

《直线和圆的位置关系》教学设计方案

师:引导提升,将学生的方法形成理论。
生:接受、理解新知识。
提出本节课的重点知识,实现本节知识重、难点的突破。
(时间3分钟)
即时训练,体验成功——巩固新知
例题:判断下列各直线与圆的位置关系
(1)直线 ,圆 ;
(2)直线 ,圆
解:(1)由方程 知,圆的半径 ,圆心为点C(1,1),圆心C(1,1)到直线l: 的距离d = = 由于 故直线与圆相交。
(时间12分钟)
总结反思,任务后延——掌握新知
1、小结
给出下列提纲引导学生进行课堂小结,并就学生回答内容进行点评。
(1)通过本节课的学习,你学会了什么新知识?
(2)在运用新知识解决问题时要注意些什么?
(3)本节课所学的新知识对你的专业课程的学习有哪些帮助?
生:学生发言,互相补充。
师:对学生的发言及时点评并补充。优胜组接受老师和同学的祝贺!
展 示 区 域
各组积分记录平台
组别
得分
总分


……
七、教学反思
在教学手段上,我有效地利用数字化教学资源(影音视频、PPT动画、微课、数学QQ学习群),弥补了传统教学手段在教学中的许多不足,它可以使静态变为动态,使课堂上原本难以展示的事物变得清晰可见,起到了化难为易,化抽象为具体的重要作用,缩短了学生认知的过程,提高了课堂的效率。但“如何规范学生的手机使用”这个问题一直困绕着我,这是需要我以后要想办法去平衡的地方。在学生反馈的作业中,还有人超出我的预料,例题(2)的结论原本是我要强调的特殊相交关系(直线过圆心的相交),却被他提前写出。在“大胆尝试,解决问题——深化新知”这一环节中,学生回答想一想也让我感到他们对生活中的数学知道的也很多。学生在课堂中的优秀表现让我这名教师对他们刮目相看。

教学设计《直线与圆的位置关系》精选全文

可编辑修改精选全文完整版《直线与圆的位置关系》教学设计这个问题而使教学偏离重点,必要时可使用信息技术工具解决这个问题. 教 学 目 标知识与技能:了解直线与圆的三种位置关系的含义及图示.过程与方法:学会用两种方法判断直线与圆的位置关系.当直线与圆有公共点时,能通过联解方程组得出直线与圆的公共点的坐标.情感态度价值观:通过直线与圆的位置关系的代数化处理,使学生进一步理解到坐标系是联系“数”与“形”的桥梁,从而更深刻地体会坐标法思想.重 点 用解析法判断直线与圆的位置关系难 点 理解能够通过直线与圆的方程所组成的方程组的解来确定它们的位置关系 教 法启发式 探究式教学用具 多媒体 课 时 2课时教学活动 师生活动设计意图1.问题情境问题1.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70km处,受影响的范围是半径长为50km 的圆形区域.已知港口位于台风中心正北70km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?2.揭示课题——直线与圆的位置关系问题2.前面问题能够转化为直线圆的位置关系问题.请问,直线与圆的位置关系有几种?在平面几何中,我们怎样判断直线与圆的位置关系呢?直线与圆的位置关系公共点个数 d 与r 的关系图形相交两个r d让学生实行讨论、交流,启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课.引导学生回忆义务教育阶段判断直线与圆的位置关系的思想过程.能够展示表格,使问题直观形象.让学生感受台风这个实际问题中所蕴含的直线与圆的位置关系,思考解决问题的方案。

通过实际问题引入,让学生体会生活中的数学,突出研究直线与圆的位置关系的重要意义。

从已有的知识经验出发,建立新旧知识之间的联系,构建学生学习的最近发展区,不断加深对问题的理解。

相切 一个r d =相离 没有r d >3.直线与圆位置关系的判断问题3:方法一是用平面几何知识判断直线与圆的位置关系,你能根据直线与圆的方程判断它们之间的位置关系吗?问题4:这是利用圆心到直线的距离d 与半径r 的大小关系判别直线与圆的位置关系(称此法为“dr 法”).请问用“dr 法”的一般步骤如何? 步骤:(1)建立平面直角坐标系;(2)求出直线方程,圆心坐标与圆的半径r ; (3)求出圆心到直线的距离d(4)比较d 与r 的大小,确定直线与圆的位置关系.①当r d >时,直线l 与圆C 相离; ②当r d =时,直线l 与圆C 相切; ③当r d <时,直线l 与圆C 相交. 问题5:对于平面直角坐标系中的直线0:1111=++C y B x A l 和0:2222=++C y B x A l ,联立方程组 00222111=++=++C y B x A C y B x A ,我们有如下一些结论:①1l 与2l 相交,⇔方程组有唯一解;通过教师追问,引起学生思考.教师引导学生分析归纳引导学生用直线与圆的方程判断直线与圆的位置关系,体验坐标法的思想方法。

《直线和圆的位置关系》教学设计

《直线和圆的位置关系》教学设计《直线和圆的位置关系》教学设计(精选5篇)教学设计是把教学原理转化为教学材料和教学活动的计划。

教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。

今天应届毕业生店铺为大家编辑整理了《直线和圆的位置关系》教学设计,希望对大家有所帮助。

《直线和圆的位置关系》教学设计篇1一、素质教育目标㈠知识教学点⒈使学生理解直线和圆的位置关系。

⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。

㈡能力训练点⒈通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。

⒉在7.1节我们曾学习了“点和圆”的位置关系。

⑴点P在⊙O上OP=r⑵点P在⊙O内OP<r⑶点P在⊙O外OP>r初步培养学生能将这个点和圆的位置关系和点到圆心的距离的数量关系互相对应的理论迁移到直线和圆的位置关系上来。

㈢德育渗透点在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以相互转化的。

二、教学重点、难点和疑点⒈重点:使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系。

⒉难点:直线和圆的位置关系与圆心到直线的距离和圆的关径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解。

⒊疑点:为什么能用圆心到直线的距离九圆的关径大小关系判断直线和圆的位置关系?为解决这一疑点,必须通过图形的演示,使学生理解直线和圆的位置关系必转化成圆心到直线的距离和圆的关径的大小关系来实现的。

三、教学过程㈠情境感知⒈欣赏网页flash动画,《海上日出》提问:动画给你形成了怎样的几何图形的印象?⒉演示z+z超级画板制作《日出》的简易动画,给学生形成直线和圆的位置关系的印象,像这样平面上给定一条定直线和一个运动着的圆,它们之间虽然存在着若干种不同的位置关系,如果从数学角度,它的若干位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学基础模块下册
8. 4 直线与圆的位置关系
【教学目标】
1. 依据直线与圆的方程,能熟练求出它们的交点坐标.
2. 能通过比较圆心到直线的距离和半径之间的大小关系来判断直线和圆的位置关系.
3. 理解直线和圆的三种位置关系(相离、相切、相交)与相应的直线和圆的方程所组成的二元二次方程组解(无解、有惟一解、有两组解)的对应关系.
【教学重点】
直线与圆的位置关系.
【教学难点】
直线与圆的位置关系的判断及应用.
【教学方法】
这节课主要采用讲练结合、小组合作探究的教学法.本节之前,学生已学习了如何利用方程来研究两直线的位置关系.根据初中所学知识,可以利用圆心到直线的距离与半径的大小关系研究直线与圆的位置关系.教材在处理直线与圆的位置关系时,从“形”和“数”两个方面进行了分析.
第八章直线和圆的方程
数学基础模块下册。

相关文档
最新文档