马来酸酐改性蛭石的制备及表征英文张尧

合集下载

高膨胀率蛭石制备新工艺研究

高膨胀率蛭石制备新工艺研究

第3期2008年6月矿产保护与利用CO NSERVATI O N AND UT I L IZAT I O N O F M INERAL RESO URCES№.3Jun.2008非金属矿开发利用高膨胀率蛭石制备新工艺研究3杜彦召1,2,陈朝阳2,范艳伟2,王军华2(1.中国科学院研究生院,北京,100049;2.中国科学院新疆理化技术研究所,乌鲁木齐,830011)摘要:对新疆尉犁蛭石样品采用新型微波加热法制备膨胀蛭石,并与电热加热900℃法制备的热膨胀蛭石进行对比分析。

SE M分析结果表明:微波法制备的膨胀蛭石层与层之间分离彻底,层间孔隙多,平均膨胀倍数大;XRD分析结果表明:蛭石层间距变化小。

通过XRD、差热和红外对比分析发现:微波加热对结构破坏较小,只是导致层间水蒸发丢失,而结构水基本没有蒸发,笔者认为这是微波法制备的膨胀蛭石层间距变化小、不发脆的原因。

关键词:膨胀蛭石;微波加热;SE M;XRD;红外;热重-差热中图分类号:T D977+.9;T U55+1.36 文献标识码:B 文章编号:1001-0076(2008)03-0013-05A New M ethod Study on Preparation of Verm iculite with High Expansion RateDU Yan-zhao,CHEN Chao-yang,FAN Yan-w ei,et a l.(G radua te U n ive rs ity o f C h i ne se Academ y o f S c i ence s,B e iji ng100049,C h ina)Abstract:U sing a ver m iculite ore fr om W eili of Xinjiang as ra w material,the expanded ver m iculite was p repared res pectively by m icr owave irradiati on and electric heating at900℃.The m icr ostruc2 ture of expanded ver m iculite was characterized with X-ray diffracti on(XRD),Fourier infrared s pectra and scanning electr on m icr oscope(SE M).Ex peri m ental results indicated that the ex panded ver m iculite p repared by m icr owave irradiati on had more gap s bet w een comp letely separated layers, greater expansi on volume yield and less changed layer distance than that of electric heating and was not friable with silvery col or.The result contributed t o the existence of structure water during m icr o2 wave irradiati on heating.Key words:expanded ver m iculite;m icr owave heating;SE M;XRD;FTI R;TG-DSC1 前言蛭石是一种重要的工业矿物原料。

中英文催化剂的制备与表征(catalysis and physical properties)

中英文催化剂的制备与表征(catalysis and physical properties)

Introduction to this subject
➢ Preparation, characterization and application of a catalyst is crucial to innovate a novel catalyst.是发明一个新催化剂的关键。
➢ Catalyst is usually not the same with other chemicals, especially pure chemicals.催化剂一般与其他化学品一样,特别是纯化学品。
Definition of Catalyst
➢ Ostwald (德国)的观点 催化剂是一种能够改变化学反应的速度,而它本身又不 参与最终产物的 物质。 (流行)
➢ IUPAC定义: 催化剂能够加速反应速率而不改变反应的标准Gibbs自 有焓变化。
➢ 国内新近定义 催化时加速反应速度、控制反应方向或产物构成,而不 影响化学平衡的一类作用。起这种作用的物质称为催化 剂,它不在主反应的化 学计量式中反映出来,即在反应 中不被消耗。
Ideal surface is not perfect
理想的表面是不完美的
扭结
阶梯空位
阶梯位
台阶吸附的原子 台阶空位
球的堆积模型表示不完美表面
Heterogeneous Catalyst
* Metals (Transition metals, IB metals);金属
Fe Co Ni Ru Rh Cu Ag Au Pd Os Ir Pt
Mechanism for heterogeneous Catalysis
Heterogeneous Catalysis
➢ Heterogeneous mechanism is difficult to investigated in the laboratory. Disappearance of reactants and appearance of products are easily followed, but important features such as the rates and energetic of adsorption, structure of active sites, the nature of active intermediates, require separate experimentation using a constantly changing arsenal of techniques. 非均相机理的实验室研究非常困难。反应物的消耗和产物的生成比 较容易追踪,但许多重要的因素比如速度和吸附能,活性位结构、 活性中间体特点等需要通过大量的单因素实验来得出。

SEBS熔融接枝马来酸酐及其接枝机理研究

SEBS熔融接枝马来酸酐及其接枝机理研究

四J11人学硕I学位论殳
成相区分散于弹性基体相中,并将弹性体嵌段锁接成物理交联的网络【11(图
1—2)。
弹性体
相区
Fig.1-2 Phase Structure ofSEBS
SEBS这种独特的三嵌段分子结构赋予了它的多用途特性。以弹性体为 连续相.聚苯乙烯为分散相的网络结构赋予了SEBS与传统硫化橡胶相似的 弹性,具有塑料和橡胶的双重性质。在非动态用途方面可与乙丙橡胶媲美, 不需要硫化就有橡胶的优良应用性能,而且可以像热塑性塑料加工成型,边 角余料可循环回用而不损害其物性和加工性能。使用中具有较好的耐磨性和 柔韧性,此外还具有优异的电气绝缘性,所以SEBS在很多方面都有广泛应
SEBS with maleic anhydride(MAH)and initiator by a twin-screw extruder was descried.It
is confirmed that MAH has grafted on SEBS by means of FTIR.The graft degme and
SEBS melt grafting MAH,analyzing the progress of the reaction of SEBS melt grafting MAH The results show that the grafting process
is divided four steps.Stage number as follows:1,O.8246,O.9775,
0.9689.

It is confirmed that MAH has grafted on SEBS by means of FTIR.
The graft degree and efficiency of SEBS··g-MAH was determined by

丁苯橡胶接枝马来酸酐增容丁苯橡胶_蛭石复合材料的制备

丁苯橡胶接枝马来酸酐增容丁苯橡胶_蛭石复合材料的制备
分别将 以 SBR g MAH 为 增 容 剂 制 备 的 复合材料和未增容的复合材料试样裁剪成边长为 1cm 的正方形,用医用纱 布 包 裹 放 置 在 索 氏 抽 提 器 中 ,用 甲 醇 为 抽 提 剂 抽 提48h后 ,清 水 洗 净80℃ 烘干至恒重,置于 傅 里 叶 变 换 衰 减 全 反 射 红 外 光 谱 (ATR FTIR)测 试 仪 上 测 定 试 样 红 外 光 谱 。 1.6 性 能 测 试 及 断 面 形 态 分 析
研究·开发
弹 性 体 ,2012-08-25,22(4):33~36 CHINA ELASTOMERICS
丁苯橡胶接枝马来酸酐增容丁苯橡胶/ 蛭石复合材料的ቤተ መጻሕፍቲ ባይዱ备*
陈 晓 松1 ,侯 文 顺1 ,李 秀 华1 ,熊 煦1 ,张 明2
(1.常州工程职业技术学院,江苏 常州 213164;2.扬州大学 化学化工学院,江苏 扬州 225002)
摘 要:通过力化学接枝反应制得 丁 苯 橡 胶 接 枝 马 来 酸 酐,用 傅 里 叶 变 换 衰 减 全 反 射 红 外 光 谱 对 接枝物进行了定性表征。将所制备的丁苯橡胶接枝马来酸酐应用于丁苯橡胶/蛭石复 合 材 料 体 系 中,研 究了膨胀蛭石和接枝单体马来酸酐的用量对复合材 料 性 能 的 影 响 ,并 通 过 电 子 扫 描 显 微 镜 观 察 了 复 合 材料内部的微观结构。实验结果表明:当接枝单体用量为6phr、膨胀蛭石用量为15phr时,复 合 材 料 综 合 性 能 较 好 。 适 量 丁 苯 橡 胶 接 枝 马 来 酸 酐 的 生 成 ,有 利 于 改 善 丁 苯 橡 胶 与 膨 胀 蛭 石 两 相 间 的 界 面 结 合 。
本文主要研究通过力化学接枝反应在丁苯橡 胶 (SBR)的 主 链 上 接 枝 马 来 酸 酐 (SBR g MAH),并以生 成 的 SBR g MAH 为 增 容 剂, 通过马来酸酐(MAH)上 的 极 性 基 团 与 蛭 石 相 互 作用改善蛭石与 SBR 的相容性,从而制得综合性

马来酸酐改性蛭石的制备及表征(英文)

马来酸酐改性蛭石的制备及表征(英文)
g t d ae .
Ke r s v r iu i ; x o it d mae ca h d d ; o i e c a im ; al l n ywo d : e c l e e f lae ; li n y r e m d f dme h n s b l mi i g m t i i l
V r c l e i a 1y rd sl ae Ea h 1y r o e. e miui s a e e i c t . c a e f v r t i
关键词 :蛭石 ;剥离 ;马来 酸酐 ;改性 机理 ;球 磨 中图分 类号 :P 7.6 ;T 3 3 5 8 3 B 8 9 文献标 识码 :A 文章编 号 :05- 6 820 )6 05 44 4 4 54(080- 8 f )
CH ARACTERI ZATI oN oF VERM I CULI TE oDI ED M FI BY ALEI ANHYDI M C UDE
张 尧 ,韩 炜 , 李秋影 , , 一 吴驰飞
(.华东理工大学材料科学与工程学院 ,高分子合金研 究室,上海 2 0 3 ;2 长江水利委员会长江科学院,武汉 4 0 1) 1 02 7 . 30 0
摘 要 : 以有机 小分子 马来 酸酐 作为 改性剂 ,利 用球 磨法 在不 同溶 剂 中对蛭 石进 行有机 改 性 。对 有 机改性 的蛭 石进 行 了 x 射 线粉 晶衍射 、F ui 变 or r e
v r c l e d s p e s Ho v r t ev r c l e ly rc n o e e f l t d b l i n y r ei r a i o v n Th c a im emi u i ia p a . we e , e miu i a e a n t x o i e y ma ec a h d i n o g n c s l e t t r h t b a d eme h n s

马来酸酐(MAH)表面改性纳米碳酸钙粉体的制备及表面性能

马来酸酐(MAH)表面改性纳米碳酸钙粉体的制备及表面性能

关键词 : 纳 米碳 酸 钙 ; 马来酸酐 ; 表 面改 性 ; 接 触 角
中 图 分誊 号: 0 6 1 4 . 2 3 1 ; T Q 1 3 2 . 3 ; T Q 2 4 5 . 2 + 3
文献 标识码: A
文章编号: 1 0 0 1 ・ 4 8 6 1 ( 2 0 0 7 ) 0 5 - 0 8 2 2 ・ 0 5
维普资讯
第 5期 2 0 0 7年 5月






C HI N ES E J 0U RNAL OF I N0RG AN I C C HEMI s T R Y
Vo 1 . 2 3 No . 5 Ma y,2 0 07
Ab s t r a c t :S u r f a c e m o d i i f c a t i o n o f n a n o m e t e r c a l c i u m c a r b o n a t e ( n a n o — C a C O 1 w a s a c h i e v e d b y i n t r o d u c t i o n o f
摘 要 :通过 在 两相 法 制 备 纳 米 碳 酸 钙 的 过 程 中 添加 一定 量 的 马 来 酸 酐 ( M A H ) 的方 法 , 在 纳 米 碳 酸 钙 的 表 面引 入 羧 基 、 羟基 、 双 键 等活 性 基 团对 纳 米 碳 酸钙 进 行 表 面 改性 , 并 通 过 调 节 马来 酸 酐 的用 量 , 有 效 地 控 制纳 米 碳 酸 钙 的极 性 和 表 面 能 。接 触 角 实验 结果表明 , 当马 来 酸酐 的加 入 量 为 2 %时 可 以 获得 界 面 性 能最 理 想 的改 性 纳 米碳 酸钙 。还 在 此 基 础 上 提 出 了 马 来 酸 酐( M A H ) 对 纳 米 碳酸 钙进 行 表 面 改性 的过 程 机理 , 并以S E M, A T R . F 1 1 R和 T G A等 手 段 对 上述 过程 机 理 进 行 了验 证 。

马来酸酐_MAH_表面改性纳米碳酸钙粉体的制备及表面性能


2 结果与讨论
2.1 DS A 对纳米碳酸钙接触角的测定 图 1 为 1 ̄5 号样品和水的接触角照片, 其测试
结果数据见表 2。我们实测的纯碳酸钙和水的接触 角为 14.6°, 而 1 ̄5 号样品和水的接触角均在 135° 以上, 说明各样品均得到了很大程度的疏水改性。由 上述结果还可以看出, 样品 3 和水具有最大的接触
ZHANG Jun1,2 BAO Fu-Rong1 DAI Dong-Ping1 ZHOU Ning-Lin1 LI Li LU Shan1 SHEN Jian* ,1,2
(1Jiangsu Engineering Research Center for Biomedical Fuction Materials, Nanjing Normal University, Nanjing 210097) (2 Jiangsu Technological Research Center for Interfacial Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093)
1 实验部分
1.1 实验原料 Ca(OH)2, C.P.,上海化学试剂公司; MAH, A.R.,上
海三爱思试剂有限公司提供; CO2, 食品级。 1.2 实验步骤
1.2.1 功能化纳米碳酸钙的合成 将 37 g 的氢氧化钙置于 963 g 水中, 快速搅拌 制成 3.7%的悬浊液, 然后加入 0.75 g 的硬脂酸钠, 置于反应器中, 通入 CO2(气体流量为 10 L·min-1), 反
本工作在合成碳酸钙的同时加入树脂改性中常 用的马来酸酐, 在不额外增加生产工艺步骤和生产 成本的同时, 有效地改善了纳米填料和高分子树脂 之间的界面相容性。结果表明, 马来酸酐的加入, 不 仅有效地改善了纳米填料的界面性能, 并且通过马 来酸酐引入的羧基、羟基、双键等活性基团还可以和 树脂上的官能基团进行有效的化学键合, 从而实现 无机纳米填料和高分子树脂间的有效接合。同时, 通 过对 MAH 加入量的调节可以有效地控制纳米碳酸 钙的表面键合和表面极性, 从而满足不同树脂体系 对填料表面性能的不同需要。本工作运用接触角实 验 , ATR-FTIR、XRD、TGA 等 手 段 对 不 同 含 量 的 MAH 改性纳米碳酸钙的表面官能团结构及表面性 能进行了表征。

马来酸酐改性丁基橡胶的方法[发明专利]

(10)申请公布号 (43)申请公布日 2010.08.18*CN101805427A*(21)申请号 201010155913.2(22)申请日 2010.04.23C08F 255/10(2006.01)(71)申请人华东理工大学地址200237 上海市徐汇区梅陇路130号申请人江苏圣杰实业有限公司(72)发明人刘峰 熊磊 丁婉 缪可存袁荞龙 刘青 倪萍(74)专利代理机构上海顺华专利代理有限责任公司 31203代理人陈淑章(54)发明名称马来酸酐改性丁基橡胶的方法(57)摘要本发明涉及采用马来酸酐改性丁基橡胶的方法。

所说方法的主要步骤是:将丁基橡胶、马来酸酐和有机溶剂置于反应器中,使马来酸酐与丁基橡胶在高于所用溶剂沸点的温度条件下反应,获得目标物。

本发明既可使丁基橡胶与改性剂充分反应,又可避免使用价格昂贵的添加剂或/和原料,且简化了马来酸酐改性丁基橡胶的制备步骤,是一种具备商业价值的丁基橡胶改性方法。

(51)Int.Cl.(19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书 1 页 说明书 4 页 附图 1 页CN 101805427 AC N 101805427 A1.一种改性丁基橡胶的方法,其特征在于,所说方法的主要步骤是:将丁基橡胶、马来酸酐和有机溶剂置于反应器中,使马来酸酐与丁基橡胶在高于所用有机溶剂沸点的温度条件下反应,获得目标物;其中:所说的有机溶剂选自:烷基苯、C1~C4的卤代烷、C1~C6的烷烃、5-6元环烷烃或四氢呋喃中一种、二种或二种以上的混合物。

2.如权利要求1所述的方法,其特征在于,其中所说的丁基橡胶是指:异丁烯与异戊二烯的橡胶共聚产物。

3.如权利要求1或2所述的方法,其特征在于,其中每100重量份数的丁基橡胶,马来酸酐的用量为1重量份数~20重量份数,有机溶剂的用量为100重量份数~300重量份数。

4.如权利要求3所述的方法,其特征在于,所说方法的主要步骤是:将100重量份数的丁基橡胶、100重量份数~300重量份数的有机溶剂置于可密闭且耐压的反应器中,在有惰性气体存在条件下,向该反应器中加入1重量份数~20重量份数的马来酸酐和0.05重量份数~10重量份数的引发剂,加料毕,密闭该反应器,并将其在80℃~140℃条件下,放置1小时~30小时,将反应器中物料倒入沉淀剂中,搅拌1小时~5小时,依次经过滤、抽提和干燥后的目标物;其中:所说的有机溶剂是:由C1~C3烷基取代苯、C3~C6的烷烃、C1~C4的氯代烷、环己烷或/和四氢呋喃;所说的引发剂是:偶氮二异丁腈、过氧化二苯甲酰、过氧化二碳酸二异丙酯、过氧乙酸叔丁酯、过氧化苯甲酸叔丁酯和/或过氧化二异丙苯;所说的沉淀剂为丙酮和/或乙醇,其用量为反应器中物料体积的1倍~10倍;在所说抽提步骤中,所用的抽提液为丙酮和/或乙醇。

马来酸酐的制备方法[发明专利]

专利名称:马来酸酐的制备方法专利类型:发明专利
发明人:B·M·多什
申请号:CN00811373.4
申请日:20000811
公开号:CN1368968A
公开日:
20020911
专利内容由知识产权出版社提供
摘要:正丁烷和分子氧在第一反应器反应生成马来酸酐,将生成的马来酸酐洗涤分离出马来酸酐,将正丁烷加到洗涤器气体中,并使它们在第二反应器反应生成额外的马来酸酐。

申请人:科学设计公司
地址:美国新泽西州
国籍:US
代理机构:中国国际贸易促进委员会专利商标事务所
代理人:孙爱
更多信息请下载全文后查看。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硅酸盐学报· 850 ·2008年马来酸酐改性蛭石的制备及表征张尧1,韩炜1,2,李秋影1,吴驰飞1(1. 华东理工大学材料科学与工程学院,高分子合金研究室,上海 200237;2. 长江水利委员会长江科学院,武汉 430010)摘要:以有机小分子马来酸酐作为改性剂,利用球磨法在不同溶剂中对蛭石进行有机改性。

对有机改性的蛭石进行了X射线粉晶衍射、Fourier变换红外光谱仪和热重分析表征。

结果表明:在水溶液条件下,球磨能够使蛭石片层被马来酸酐分子剥离,蛭石的(001)面特征衍射峰消失。

在有机溶剂中球磨,蛭石不能够被马来酸酐剥离。

讨论了马来酸酐改性蛭石的机理。

研究了球磨时间对马来酸酐改性蛭石的影响。

关键词:蛭石;剥离;马来酸酐;改性机理;球磨中图分类号:P578.963;TB383 文献标识码:A 文章编号:0454–5648(2008)06–0850–04CHARACTERIZATION OF VERMICULITE MODIFIED BY MALEIC ANHYDRIDEZHANG Yao1,HAN Wei1,2,LI Qiuying1,WU Chifei1(1. Polymer Alloy Laboratory, School of Materials Science and Engineering, East China University of Science and Technology,Shanghai 200237; 2. Changjang River Scientific Research Institute, Wuhan 430010, China)Abstract: Vermiculite was modified by maleic anhydride through ball milling in different solvents. The microstructures and proper-ties of modified vermiculite were characterized by X-ray diffraction, Fourier infrared spectroscopy and thermal gravimetric analysis. Results indicate the vermiculite layer can be exfoliated by maleic anhydride only in water, and the characteristic diffraction peak of vermiculite disappears. However, the vermiculite layer cannot be exfoliated by maleic anhydride in organic solvent. The mechanism of vermiculite modification by maleic anhydride is discussed. The influence of ball milling time on modified vermiculite was investi-gated.Key words: vermiculite; exfoliated; maleic anhydride; modified mechanism; ball millingVermiculite is a layered silicate. Each layer of ver-miculite is made of two silicon-oxygen tetrahedrons and one magnesium-oxygen octahedron. The crystal structure of vermiculite and montmorillonite are quite similar, be-cause they both belong to the montmorillonite-vermiculite group of layered silicates. Based on the analysis of their mineralogical origin, vermiculite seems to be the inter-mediate product of phlogopite-biotite and montmorillo-nite. Compared with montmorillonite, vermiculite has many advantages, such as better crystallographic form, stability, cation interchangeability, temperature retention, light weight, frost resistance, antibiosis, and abundant sources.[1–5] But it is quite difficult to exchange cations with organic molecules because of its high interlayer charge density. Little has been reported about studies on intercalation of vermiculite.[6–8] Because these galleries of layered silicate are generally occupied by metallic cations such as K+, Na+, Ca2+, and Mg2+, usually, layered silicates are modified by exchanging the organic ammonium salts to form organoclays.[9] However, organic ammonium salts are only compatible with polymer matrixes without any chemical reaction. Therefore, in polymer/layer sili-cate nanocomposites prepared by these organoclays, la- yered silicate usually cannot be exfoliated, especially in polyolefine matrixes, and sometimes the mechanical properties of the prepared nanocomposites are even de-creased.[10] So besides the conventional ion exchanged method, research about modified clay prepared with new organic small molecules that have better compatibility or even can react with polymer matrix has become very important and significant.As far as we know, there have been no reports on the收稿日期:2007–07–04。

修改稿收到日期:2008–03–23。

基金项目:长江科学院中央级公益性科研院所基本科研业务费(YWF0729/CL02)资助项目。

第一作者:张尧(1982—),男,博士研究生。

通讯作者:吴驰飞(1960—),男,博士,教授。

Received date:2007–07–04. Approved date: 2008–03–23.First author: ZHANG Y ao (1982–), male, postgraduate student for doctor degree. E-mail: ninanzy@Correspondent author: WU Chifei (1960–), male, Doctor, professor.E-mail: wucf@第36卷第6期2008年6月硅酸盐学报JOURNAL OF THE CHINESE CERAMIC SOCIETYVol. 36,No. 6J u n e,2008张尧等:马来酸酐改性蛭石的制备及表征· 851 ·第36卷第6期modification of vermiculite with non-organic cations. As a continuation of our work on vermiculite modification and polymer/vermiculite nanocomposites,[11–13] we used maleic anhydride (MA) as a modification agent in the ball milling method to prepare organic vermiculite. The effect of preparation conditions such as solvent and ball milling time on the structure of organic vermiculite was studied and the mechanism of the exfoliation of organic vermiculite by MA was discussed.We use MA as modified agent through ball milling method to preparing organic vermiculite (OVMT). The effect of preparing conditions such as solvent, ball mil- ling time to the structure of OVMT was studied and the mechanism of the exfoliated of OVMT by MA was dis-cussed.1 Experiment1.1 Materials and preparation of organic ver-miculiteVermiculite (VMT) with a cation exchange capacity (CEC) value of 98.6mmol/100g was supplied by the Dongping Mining Structural Materials Plant, Shijiaz-huang, China. The composition (in mass, the same below) of the vermiculite was SiO2 41.3%, Al2O3 11.7%, MgO 25.2%, CaO 1.3%, FeO 1.5%, Fe2O3 3.4%, TiO2 1.3%, K2O 6.0%, P2O5 0.1%, H2O 3%, Na2O 1.9%, MnO 0.04%, TiO 5.0%, and burn loss 6.6%. The vermiculite was comminuted in an airflow shatter machine (model QS50, China), purified by sedimentation, dried, shattered and sifted through a 200mesh (<75µm) filter before use. Maleic anhydride, acetic acid and acetone were used as received without further purification.Organic vermiculite was prepared as follows: first, 5g MA was dissolved in 200mL different solvents (deio- nized water, acetic acid and acetone), and then 5g VMT with the above solution were milled by a ball mill (model QM–ISP 2, China) with different time. The rotation speed was 450 r/min. After milling, the compound was washed with deionized water several times, dried in a vacuum oven at 100℃, shattered and sifted out to provide sam-ples.1.2 CharacterizationX-ray diffraction (XRD) measurement was carried out on a diffractometer (Rigaku D/max, Japan) using Cu Kαradiation with a generator voltage of 40kV and a current of 200mA. The diffractogram was scanned in the 2θrange from 1.2° to 40° at a rate of 2°/min. Fourier transform infrared spectroscopy (FTIR) was carried out with a Nicolet 5SXC spectrometer on a KBr Matrix.The thermogravimetric (TG) measurements were taken si-multaneously with a thermal analysis SDTQ600 instru-ment in the temperature range from 20℃ to 1000℃under nitrogen. The rate of heating was 10℃/min. 2 Results and discussion2.1 XRD analysis of OVMT prepared in differentsolventsFigure 1 shows the XRD patterns of VMT and OVMT. The XRD patterns of OVMT samples prepared in diffe- rent solvents are very different. The characteristic peak of d(001) of the VMT appears at 5.9°, corresponding to a basal spacing of 1.48nm. The peak at 2θ=7°–9° corre-sponds to a mica group mineral. The sample of VMT is a vermiculite-hydrobiotite interstratification mineral.[14] In the XRD pattern of the OVMT sample prepared in deio- nized water (VMT–MA–water, 2h), the d(001) of VMT disappears. But in the XRD patterns of the OVMT sam-ples prepared in acetone (VMT–MA–acetone, 2h) and in acetic acid (VMT–MA–acid, 2h), the d(001) of VMT still exists. The disappearance of the d(001) of VMT indicates that the order structure of the VMT layer has been de-stroyed. The MA can interact with the VMT layer by the ball milling method in deionized water, so MA can cause the VMT layer to be exfoliated and dispersed. In two typical organic solvents of acetic acid and acetone, the interaction of MA and the VMT layer is minimal, so the structure of the VMT layer does not change, indicating that the solvent has a very important influence on the preparation of OVMT.Fig.1 XRD patterns of VMT and OVMT samples2.2 Mechanism of OVMT modified by MABased on the above results, the formation mechanism of OVMT is shown in Fig.2. It is well known[15–18] that pristine clay is hydrophilic and can form a stable suspen-sion in water, in which clay is dispersed as isolated sheets or small domains consisting of a few sheets. So in the experimentation with OVMT prepared in water, the VMT layer is dispersed as isolated sheets or small domains consisting of a few sheets and MA molecules are dissolved硅 酸 盐 学 报· 852 ·2008年Fig.2 Schematic representation of clay modificationin water, as shown in Fig.2. MA molecules and the VMT layer can interact with each other by ball milling. When the water is vaporized, if MA is absent, the VMT layer will agglomerate together again by electrostatic interac-tion. Because of the interaction of MA and the VMT layer, the order structure of the VMT layer is destroyed. The VMT layer is exfoliated and dispersed by MA.However, in organic solvent, the VMT layered clay cannot be dispersed as isolated sheets or small domains consisting of a few sheets. So, the MA molecules cannot react with VMT layers in organic solvent.2.3 FTIR analysis of organic vermiculite pre-pared in different solventsThe FTIR patterns of VMT and OVMT samples pre-pared in deionized water by ball milling for 2 h (MA– VMT–water, 2 h) are shown in Fig.3. In VMT, the 3 430 cm –1 peak is due to the —OH stretching vibration of the adsorption water, and the 1 640 cm –1 peak is due to the —OH deformation vibration of the adsorption water. The 1 001 cm –1 peak is attributed to the Si —O stretching vi-bration of VMT. Compared with VMT, three new peaks appear in the pattern of OVMT (MA–VMT–water, 2 h). The 2 920 cm –1 and 2 850 cm –1 peaks are due to the al-kane —CH stretching vibration. The characteristic peak at 1 700 cm –1 is due to the C =O vibration. These new peaks indicate the presence of MA and the interaction ofMA and the VMT layer.Fig.3 FTIR spectra of VMT and OVMT samples2.4 TG analysis of OVMT prepared in differentsolventsFigure 4 shows the TG curves of VMT and OVMT samples prepared in deionized water by ball milling for 2 h (MA–VMT–water, 2 h). The mass loss at 20–160 ℃ is due to the evaporation of interlayer water and adsorption water in VMT and the mass loss after 500 ℃ is due to the dehydroxylation of VMT. In contrast with VMT, a new mass loss appears at 160–500 ℃ in the pattern of OVMT (VMT–MA–Water, 2 h), which is caused by the mass loss of organic molecules. The mass loss at 160–500 ℃ is calculated to be little, only 4.11%, indi-cating a little MA can cause VMT layer exfoliation.Fig.4 TG curves of VMT and OVMT samples2.5 Influence of ball milling time on OVMTFigure 5 shows the XRD patterns of OVMT prepared in deionized water for different ball milling time. The d (001) of VMT become weak but still exist in the XRD patterns of OVMT when the ball milling time is less than2 h, and the peaks at 2θ=7°–9° become strong. This may be because a part of K +in the vermiculite- hydrobio- tite interstratification mineral is dissolved out by MA, and the bivalent cations in the VMT layer exchange with this K +, so the layer space decreases from 1.4 nm to 1.0 nm, and the layer structure of VMT changes张尧等:马来酸酐改性蛭石的制备及表征· 853 ·第36卷第6期Fig.5 XRD patterns of vermiculite and organic vermiculites to hydrobiotite.When the ball milling time is longer than two hours, the d(001) of VMT disappear with the increase of ball milling time, and simultaneously, the peaks at 2θ=7°–9° become weak. This phenomenon may be because the unstable hydrobiotite structure can be de-stroyed by the strong machine force.3 Conclusions(1) MA can be used to modify VMT by the ball mil- ling method in water; the layer of VMT is exfoliated by MA.(2) The layer of VMT cannot be exfoliated by MA in organic solvents such as acetic acid and acetone.(3) The increase of ball milling time is beneficial for the further exfoliation of the VMT layer.References:[1] WANG Pu, PAN Zhaolu, WENG Lingbao, et a1. Systematic Mineral-ogy (second volume) [M] (in Chinese). Beijing: Geological Press, 1984: 464–466.[2] LI Minhua, CHEN Yuhua. The application status and developmentprospects of vermiculite in non-traditional areas [J]. Non-Met Min (in Chinese), 1989 (5): 33–40.[3] JOHN A. Vermiculite: a review of the mineralogy and health effects ofverminculite exploitation [J]. Regul Toxicol Pharm, 1995, 21: 397– 405.[4] WANG Jingliang. The application prospect of vermiculite [J]. Multi-purpose Utilization Mineral Resour (in Chinese), 1996 (3): 18–24. [5] LEBARON P C, WANG Z, PINNA V AIA T J. Polymer-layered silicatenanocomposites: an overview [J]. Appl Clay Sci, 1999, 15(1–2): 11–29.[6] SHELLY D B, HSIEN C W, EMMANUEL P G. Direct polymer inter-calation in single crystal vermiculite [J]. Chem Mater, 1999, 11: 1055– 1060.[7] ZHU Jianxi, HU Daqian, HE Hongping. Study on the influence ofquantity of interlayer water on vermiculite's organic modification [J].Acta Mineralogica Sinica (in Chinese), 2001, 21(3): 464–466.[8] WILLIAMS D S, THOMAS R K. The intercalation of a vermiculite bycationic surfactants and its subsequent swelling with organic solvents [J]. J Colloid Interface Sci, 2002, 255: 303–311.[9] GIANNELIS E P. Polymer layered silicate nanocomposites [J]. AdvMater, 1996, 8(1): 29–35.[10] KADAR F, SZAZDI L, FEKETE E, et a1. Surface characteristics oflayered silicates: influence on the properties of clay/polymer nano-composites [J]. Langmuir, 2006, 22, 7848–7854.[11] HAN Wei, ZHANG Yao, LIU Wei, et a1. Characterization of organicvermiculite prepared by different intercalation techniques [J]. J Chin Ceram Soc (in Chinese), 2006, 34(1): 98–101.[12] HAN Wei, LIU Wei, WU Chifei. Preparation and properties of naturalrubber/organic vermiculite nanocomposites [J]. Acta Mater Compos Sinica (in Chinese), 2006, 23(2): 77–81.[13] SHEN Fei, LI Hui, WU Chifei. Crosslinking induced by in-situ coor-dination in acrylonitrile butadiene rubber/poly (vinyl chloride) alloy, filled with anhydrous copper sulfate particles [J]. J Polym Sci B, 2006, 44(2): 378–386.[14] Guiyang Institute of Geochemistry Academia. X-ray Powder Diffrac-tion of Mineral [M](in Chinese). Beijing: Science Press, 1978: 280– 284.[15] MURRAY R S, QUIRK J P.Clay–water interactions and the mecha-nism of soil swelling [J]. Colloid Surf, 1980, 1: 17–32.[16] MADSEN F T, MULLER V M. The swelling behaviour of clays [J].Appl Clay Sci, 1989, 4: 143–156.[17] HENSEN E J M, SMIT B. Why clays swell [J]. J Phys Chem B, 2002,106, 12664–12667.[18] MORV AN M, ESPINAT D, LAMBARD J, et a1. Ultrasmall- andsmall-angle X-ray scattering of smectite clay suspensions [J]. Colloid Surf A, 1994, 82: 193–203.。

相关文档
最新文档