实验一序列卷积运算 - 离散时间信号分析
实验报告信号卷积实验

一、实验目的1. 理解卷积的概念及其物理意义。
2. 掌握卷积运算的原理和方法。
3. 通过实验加深对卷积运算在实际应用中的理解。
二、实验原理1. 卷积的定义:卷积是一种线性运算,它描述了两个信号在时域上的相互作用。
对于两个连续时间信号f(t)和g(t),它们的卷积定义为:F(t) = ∫f(τ)g(t-τ)dτ其中,F(t)是卷积结果,f(τ)是信号f(t)的任意时刻的值,g(t-τ)是信号g(t)在时刻t-τ的值。
2. 卷积的性质:卷积具有交换律、结合律和分配律等性质。
其中,交换律是指f(t)和g(t)的卷积与g(t)和f(t)的卷积相等;结合律是指三个信号f(t)、g(t)和h(t)的卷积可以分别进行两两卷积后再进行一次卷积;分配律是指一个信号与两个信号的卷积等于该信号分别与两个信号卷积后的和。
三、实验内容1. 实验一:连续时间信号卷积实验(1)选用信号:选取两个连续时间信号f(t)和g(t),其中f(t)为矩形脉冲信号,g(t)为指数衰减信号。
(2)卷积计算:根据卷积的定义,计算f(t)和g(t)的卷积F(t)。
(3)结果分析:观察F(t)的波形,分析卷积结果的物理意义。
2. 实验二:离散时间信号卷积实验(1)选用信号:选取两个离散时间信号f[n]和g[n],其中f[n]为单位阶跃信号,g[n]为矩形脉冲信号。
(2)卷积计算:根据离散时间信号卷积的定义,计算f[n]和g[n]的卷积F[n]。
(3)结果分析:观察F[n]的波形,分析卷积结果的物理意义。
3. 实验三:MATLAB仿真实验(1)选用信号:选取两个连续时间信号f(t)和g(t),其中f(t)为正弦信号,g(t)为余弦信号。
(2)MATLAB编程:利用MATLAB的信号处理工具箱,编写程序实现f(t)和g(t)的卷积运算。
(3)结果分析:观察MATLAB仿真得到的卷积结果,分析其物理意义。
四、实验结果与分析1. 实验一:连续时间信号卷积实验(1)实验结果:通过计算得到f(t)和g(t)的卷积F(t)的波形。
离散时间信号分析

实验一
学院:电气工程学院专业:测控技术与仪器班级:测仪101
实验二
学院:电气工程学院专业:测控技术与仪器班级:测仪101
实验三
学院:电气工程学院专业:测控技术与仪器班级:测仪101
实验四
学院:电气工程学院专业:测控技术与仪器班级:测仪101
实验五
学院:电气工程学院专业:测控技术与仪器班级:测仪101
%双线性变换法设计ButterWorth数字滤波器[n,Wn]=buttord(0.2,0.3,1,25,’s’);
[b,a]=butter(n,Wn,’s’);
freqs(b,a)
[bz,az]=bilinear(b,a,1);
通过本次实验,我基本掌握了双线性变换法及脉冲相应不变法设计
实验六
学院:电气工程学院专业:测控技术与仪器班级:测仪101。
实验一 离散时间信号与系统响应

班 级 学号 姓 名 同组人 实验日期 室温 大气压 成 绩实验题目: 实验一 离散时间信号与系统响应 一、实验目的1.观察离散系统的频率响应和单位脉冲响应并学会其应用。
2.掌握用MATLAB 实现线性卷积的方法及差分方程的求解方法。
3.了解数字信号采样率转换过程中的频谱特征。
4.通过观察采样信号的混叠现象,进一步理解奈奎斯特采样频率的意义。
二、实验仪器计算机一台 MATLAB7.0软件三、实验原理在数字信号处理中,离散时间信号通常用序列{x(n)}表示。
离散时间系统在数学上定义为将输入序列x(n)映射成输出序列y(n)的唯一性变换或运算,亦即将一个序列变换成另一个序列的系统。
记为y(n)=T[x(n)],通常将上式表示成图()()[]x n y n T −−−→∙−−−→所示的框图。
算子T[∙]表示变换,对T[∙]加上种种约束条件,就可以定义出各类离散时间系统。
1.频率响应:在工程上进行时域分析和轨迹分析用频率响应法,它是分析和设计系统的一中有效经典的方法。
线性时不变系统输入输出关系y(n)=x(n)*h(n)。
H(ejw)是频率响应,离散时间系统的线性卷积,由理论学习我们可知,对于线性时不变离散系统,任意的输入信号()()()...(1)(1)(0)()(1)(1)...k x n x k n k x n n x n x n δδδδ∞=-∞=-=+-+++-+∑x (n )可以用δ(n )及其位移的线性组合来表示,即,当输入δ(n )时,系统的输出y(n)=h(n)。
2.卷积:y=conv(h,x),计算向量h 和x 的卷积,结果放在y 中。
由系统的线性移不变性质可以得到系统对x(n)的响应y(n)为()()()k y n x k h n k ∞=-∞=-∑,称为离散系统的线性卷积,简记为y(n)=x(n)*h(n),也就是说,通过系统的冲激响应,可以将输入信号与系统的冲激响应进行卷积运算,可求得系统的响应。
卷积算法实验报告程序

一、实验目的通过本次实验,加深对卷积算法的理解,掌握离散时间系统中的卷积运算方法,并学会使用MATLAB进行卷积运算的仿真。
二、实验原理卷积是一种线性时不变(LTI)系统的数学运算,用于描述系统输入信号与系统冲激响应的卷积结果。
在离散时间系统中,卷积运算可以表示为:\[ y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] \]其中,\( y[n] \) 是系统的输出信号,\( x[k] \) 是系统的输入信号,\( h[n] \) 是系统的冲激响应,\( n \) 是时间变量。
MATLAB提供了`conv`函数来进行卷积运算,其语法为:\[ y = conv(x, h) \]其中,\( x \) 和 \( h \) 分别是输入信号和冲激响应的向量。
三、实验内容1. 创建输入信号和冲激响应使用MATLAB创建一个简单的输入信号 \( x[n] \) 和一个冲激响应 \( h[n] \)。
```matlab% 创建输入信号 x[n] = cos(2pi0.5n)n = 0:100;x = cos(2pi0.5n);% 创建冲激响应 h[n] = u[n] - u[n-10]h = [ones(1,10), zeros(1,90)];```2. 进行卷积运算使用`conv`函数进行卷积运算,并绘制输入信号、冲激响应和输出信号的图形。
```matlab% 进行卷积运算y = conv(x, h);% 绘制图形figure;subplot(3,1,1);stem(n, x);title('输入信号 x[n]');subplot(3,1,2);stem(n, h);title('冲激响应 h[n]');subplot(3,1,3);stem(n, y);title('输出信号 y[n]');```3. 分析卷积结果分析卷积结果,观察输出信号的特性,并与理论预期进行对比。
离散信号分析

下面我们来看2π/ω0与T及T0的关系,从而讨论上面所述正弦 型序列的周期性的条件意味着什么?
T0 1 1 1 = 2π = 2π = = 0T 2πf 0T f 0T T ω0
这表明,若要2π/ω0为整数,就表示连续正弦信号的周期T0应为采 样时间间隔T的整数倍;若要2π/ω0为有理数,就表示T0与T是互为 互素的整数,且有
式中, yk(n)就是系统对输入xk(n)的响应。 在证明一个系统是线性系统时,必须证明此系统同时满足可加 性和比例性,而且信号以及任何比例常数都可以是复数。
例1-1 以下系统是否为线性系统: y(n)=2x(n)+3 很容易证明这个系统不是线性的, 因为此系统不满足叠加原理。 证
T [a1 x1 (n) + a2 x2 (n)] = 2[a1 x1 (n) + a2 x2 (n)] + 3
x(n) = xa (nT )
然而,并不是所有的离散时间信号都是这样获得的。一些信号 可以认为是自然产生的离散时间序列,如每日股票市场价格、 人口统计数和仓库存量等。
1.1.1 序列的运算 1. 序列的移位 . 2. 序列的翻褶 . 3. 序列的和 . 4. 序列的乘积 . 5. 序列的标乘 . 6. 累加 .
2. 单位阶跃序列 . 单位阶跃序列u(n)
1 u ( n) = 0
n≥0 n<0
(1-2)
如图 1-5 所示。它很类似于连续时间信号与系统中的单位 阶跃函数u(t)。
u(n)
1
…
-5 -4
-3 -2
-1
0
1
2
3
4
5
6
n
图 1-5 u(n)序列
数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。
对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。
()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。
也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。
因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。
已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。
实验一离散时间信号的分析报告

工程大学信号分析与处理实验一专业:通信02班学生:瑶华学号:**********完成时间:2022年4月27日实验一: 离散时间信号的分析一、实验目的1.认识常用的各种信号,理解其数学表达式和波形表示。
2.掌握在计算机中生成及绘制数字信号波形的方法。
3.掌握序列的简单运算及计算机实现与作用。
4.理解离散时间傅立叶变换、Z 变换及它们的性质和信号的频域特性。
二、实验设备计算机,MATLAB 语言环境。
三、实验基础理论1.序列的相关概念2.常见序列● 单位取样序列⎩⎨⎧≠==0n 0,0n 1n ,)(δ ● 单位阶跃序列⎩⎨⎧<≥=0,00,1)(n n n u ● 单位矩形序列⎩⎨⎧-≤≤=其他,010,1)(N n n R N ● 实指数序列)()(n u a n x n =● 复指数序列n jw e n x )(0)(+=σ● 正弦型序列)n sin()(0ϕ+=w A n x3.序列的基本运算● 移位 y(n)=x(n-m)● 反褶 y(n)=x(-n)● 和 )()()(21n x n x n y +=● 积 )()()(21n x n x n y •=● 标乘 y(n)=mx(n)● 累加∑-∞==nm m x n y )()( ● 差分运算 ⎩⎨⎧--=∇-+=∆)1()()()()1()(x n x n x n x n x n x n 后相差分前向差分 4.离散傅里叶变换的相关概念● 定义 ∑+∞-∞=-=n jwn jwe n x e X )()(● 两个性质1) [])2()2()2()()(,2)(ππππ++∞-∞=+-+--===∑w j n nw j jw n w j jwn jw e X e n x e X e ew e X 故有。
由于的周期函数,周期为是 2) 当x (n )为实序列时,)(jw e X 的幅值)(jw e X 在π20≤≤w 区间是偶对称函数,相位)(arg jw e X 是奇对称函数。
实验一离散时间信号与系统时域分析

实验一离散时间信号与系统时域分析实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令一实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令二、实验原理本实验主要为了熟悉MATLAB环境,重点掌握简单的矩阵(信号)输入和绘图命令,特别是绘图命令tem()和plot()。
实验内容中涉及到信号的无失真采样、离散卷积运算和差分方程求解这三个主要的问题。
其基本原理分别如下:对一个模拟信号某(t)进行采样离散化某(n),为了不失真地从采样信号某(n)中恢复原始信号某(t),采样时必须满足采样定理,即采样频率必须大于等于模拟信号中最高频率分量的2倍。
一个离散时间系统,输入信号为某(n),输出信号为y(n),运算关系用T[﹒]表示,则输入与输出的关系可表示为y(n)=T[某(n)]。
(1)线性时不变(LTI)系统的输入输出关系可通过h(n)表示:y(n)=某(n)某h(n)=式中某表示卷积运算。
(2)LTI系统的实现可物理实现的线性时不变系统是稳定的、因果的。
这种系统的单位脉冲响应是因果的(单边)且绝对可和的,即:h(n)0,n0;nh(n)0在MATLAB语言中采用conv实现卷积运算,即:Y=conv(某,h),它默认从n=0开始。
常系数差分方程可以描述一个LTI系统,通过它可以获得系统的结构,也可以求信号的瞬态解。
利用MATLAB 自带的filter(),可以代替手工迭代运算求解系统的差分方程,求解的过程类似于对输入信号进行滤波处理。
三、实验内容1、试画出如下序列的波形(1)某(n)3(n3)(n2)2(n1)4(n1)2(n2)3(n3)(2)某(n)0.5R10(n)解:用MATLAB描述波形1(1)某=[3120-42-3];%矩阵输入某n=-3:1:3;%输入自变量n,以间隔为1从-3到3变化n实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令tem(n,某);%tem()函数绘制火柴杆图,注意n,某元素个数必须相等某label('n');%横坐标显示nylabal('某(n)');%纵坐标显示某(n)grid;%绘制网格1(2)n=0:9;某=0.5.^n;tem(n,某);某label('n');ylabel('某(n)');gri实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令2、用MATLAB计算序列{-201–13}和序列{120-1}的离散卷积,即计算某(n)2(n)(n2)(n3)3(n4)与h(n)(n)2(n1)(n3)解:用MATLAB描述波形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 离散时间信号分析
一、实验目的
1.掌握各种常用的序列,理解其数学表达式和波形表示。
2.掌握在计算机中生成及绘制数字信号波形的方法。
3.掌握序列的相加、相乘、移位、反褶等基本运算及计算机实现与作用。
4.掌握线性卷积软件实现的方法。
5.掌握计算机的使用方法和常用系统软件及应用软件的使用。
6.通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。
二、实验原理
1.序列的基本概念
离散时间信号在数学上可用时间序列)}({n x 来表示,其中)(n x 代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为∞<<∞-n 的整数,n 取其它值)(n x 没有意义。
离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号)(t x a 进行等间隔采样,采样间隔为T ,得到)}({nT x a 一个有序的数字序列就是离散时间信号,简称序列。
2.常用序列
常用序列有:单位脉冲序列(单位抽样))(n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。
3.序列的基本运算
序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。
4.序列的卷积运算
)()()()()(n h n x m n h m x n y m *=-=
∑∞
-∞= 上式的运算关系称为卷积运算,式中*代表两个序列卷积运算。
两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。
其计算的过程包括以下4个步骤。
(1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。
(2)移位:将)(m h -移位n ,得)(m n h -。
当n 为正数时,右移n 位;当n 为负数时,左移n 位。
(3)相乘:将)(m n h -和)(m x 的对应点值相乘。
(4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。
三、主要实验仪器及材料
微型计算机、Matlab6.5教学版、TC 编程环境。
四、实验内容
1.知识准备
认真复习以上基础理论,理解本实验所用到的实验原理。
2.离散时间信号(序列)的产生
利用MATLAB 或C 语言编程产生和绘制下列有限长序列:
(1)单位脉冲序列)(n δ
(2)单位阶跃序列)(n u
(3)矩形序列)(8n R
(4)正弦型序列)35sin(
)(ππ+=n A n x
(5)任意序列 )4(5)3(4)2(3)1(2)()(-+-+-+-+=n n n n n n x δδδδδ
)3(2)2()1(2)()(-+-+-+=n n n n n h δδδδ
3.序列的运算
利用MATLAB 或C 语言编程完成上述两序列的移位、反褶、和、积、标乘、累加等运算,并绘制运算后序列的波形。
4.卷积运算
利用MATLAB 或C 语言编制一个计算两个序列线性卷积的通用程序,计算上述两序列)()(n h n x *,并绘制卷积后序列的波形。
5.上机调试并打印或记录实验结果。
6.完成实验报告。
五、思考题
1.如何产生方波信号序列和锯齿波信号序列?
2.实验中所产生的正弦序列的频率是多少?是否是周期序列?
六、实验报告要求
1.简述实验原理及目的。
2.列出计算卷积的公式,画出程序框图,并列出实验程序清单(可略)(包括必要的程序说明)。
3.记录调试运行情况及所遇问题的解决方法。
4.给出实验结果,并对结果作出分析。
5.简要回答思考题。