高纯硅提取原理
提纯高纯硅的原理和作用

提纯高纯硅的原理和作用
提纯高纯硅的原理是通过一系列的物理和化学方法去除杂质,以达到提高硅的纯度的目的。
首先,硅矿石经过破碎和磨矿处理,得到硅矿石粉末。
然后,使用氢气还原法将硅矿石粉末与氯化氢反应生成氯化硅,之后将氯化硅在高温下还原为硅。
接下来,将得到的粗硅通过熔炼、浮选、溶解、蒸馏等方法进行物理处理,去除掉杂质物质。
最后,在化学方法的帮助下,通过溶解、析出、沉淀、结晶等过程,进一步去除掉硅中的残留杂质,从而得到高纯度的硅。
提纯高纯硅的作用主要有以下几个方面:
1. 电子工业:高纯硅被广泛应用于半导体芯片的制造。
高纯硅具有良好的电学特性,能够提供高纯度的半导体材料,用于集成电路、太阳能电池板等电子器件的制造。
2. 太阳能行业:高纯硅也是太阳能电池的重要原材料,用于制造太阳能电池板。
3. 光纤通信:高纯硅用作光纤核心材料,可以提供较低的光损耗和较高的光传输效率。
4. 光电工业:高纯硅还可以应用于激光器、光电二极管、光电晶体管等光电器件的制造。
总之,提纯高纯硅的原理和作用在电子、太阳能、光纤通信以及其他光电工业领域有着广泛的应用。
高纯硅制备的化学原理

高纯硅制备的化学原理首先是炼硅过程。
炼硅是通过化学反应将硅矿石中的硅氧化物还原为金属硅。
传统的炼硅过程包括冶炼炉炼炉法和炭电炉法两种。
冶炼炉炼炉法是一种重要的高纯硅制备方法。
它利用矿石中的硅氧化物与还原剂产生一系列的化学反应来制备高纯硅。
首先,通过加入风化硅矿石、煤、焦炭等在炼炉中进行还原反应,使硅氧化物还原为气态的二氧化硅。
然后,这些气态的二氧化硅进一步通过冷凝等处理方法收集和净化。
最后,通过加热收集的纯化气态的二氧化硅,使其分解为金属硅和二氧化碳。
金属硅随后从反应体中析出,被收集下来。
炭电炉法是另一种常用的炼硅方法。
这种方法将石英砂和焦炭作为原料,放入封闭的炭电炉中进行电化学反应。
在高温高压的环境中,焦炭被加热并电离,生成强还原性的气体(如一氧化碳),而石英砂则被还原为气态的二氧化硅。
随后,这些气体被经过净化和收集处理,其中的二氧化硅再次进行加热和分解反应,最终得到金属硅。
接下来是精炼过程。
炼硅所得的金属硅通常还含有少量的杂质(如铝、钙、铁等),无法满足高纯硅的要求。
因此,需要通过精炼过程进一步提高硅的纯度。
一种常用的精炼方法是多晶硅法。
这种方法是利用多晶硅的晶界比金属硅活性大,因此能迅速吸附和固定金属杂质。
在多晶硅法中,先将金属硅与氯化氢反应,得到不纯的多晶硅。
然后,将这些多晶硅加入到氯化硅或三氯硅烷等硅炼料中,通过炉内加热反应,使其转化为气态硅化物和金属硅。
金属硅作为轻质金属被保留在气态硅化物中,而金属硅则结晶在多晶硅的表面,吸附和固定金属杂质,从而提高硅的纯度。
除了多晶硅法,还有其他的精炼方法,如单晶法、重熔法等。
这些方法可以在炼硅过程中进一步提高硅的纯度。
综上所述,高纯硅制备的化学原理主要包括炼硅和精炼两个过程。
通过化学反应将硅矿石中的硅氧化物还原为金属硅,然后通过精炼方法去除杂质,最终得到高纯度的硅材料。
高纯硅提取原理

高纯硅提取原理高纯硅的制备一般首先由硅石(SiO2)制得工业硅(粗硅),再制成高纯的多晶硅,最后拉制成半导体材料单晶硅。
工业生产中使用硅石(SiO2)和焦炭以一定的比例混合,在电炉中加热至1600〜1800°C而制得纯度为95%〜99%的粗硅,其反应如下:SiO2+2C=Si+2CO 粗硅中一般含有铁、铝、碳、硼、磷、铜等杂质,这些杂质多以硅化构成硅酸盐的形式存在,为了进一步提高工业粗硅的纯度,可采用酸浸洗法,使杂质大部分溶解(有少数的碳化硅不溶)。
其生产工艺过程是:将粗硅粉碎后,依次用盐酸、王水、(HF+H2SO4)混合酸处理,最后用蒸馏水洗至中性,烘干后可得含量为99.9%的工业粗硅。
高纯多晶硅的制备方法很多,据不完全统计有十几种,但所有的方法都是从工业硅(或称硅铁,因为含铁较多)开始,首先制取既易提纯又易分解(即还原)的含硅的中间化合物如SiCl4、SiHCl3、SiH4等,再使这些中间化合物提纯、分解或还原成高纯度的多晶硅。
目前我国制备高纯硅多晶硅主要米用三氯氢硅氢还原法、硅烷热解法和四氯化硅氢还原法。
一般说来,由于三氯氢硅还原法具有一定的优点,目前比较被广泛的应用。
此外,由于SiH4具有易提纯的特点,因此硅烷热分解法是制备高纯硅的很有发展潜力的方法。
下面我们就分别介绍上述三种方法制备高纯硅的化学原理。
1 三氯氢硅还原法(1)三氯氢硅的合成第一步:由硅石制取粗硅硅石(SiO2)和适量的焦炭混合,并在电炉内加热至1600〜1800C可制得纯度为95%〜99%的粗硅。
其反应式如下:SiO2+3C=SiC+2CO (g)f2SiC+SiO2=3Si+2CO (g)f总反应式:SiO2+2C=Si+2CO (g)f生成的硅由电炉底部放出,浇铸成锭。
用此法生产的粗硅经酸处理后,其纯度可达到99.9%。
第二步:三氯氢硅的合成三氯氢硅是由干燥的氯化氢气体和粗硅粉在合成炉中(250°C)进行合成的。
高纯硅的制备和应用

高纯硅的制备和应用随着人工智能、互联网等高新技术的迅速发展,对材料性能的要求也越来越高,高纯硅便是如此一种材料。
高纯硅是含有纯度高于99.9999%的硅的材料,它的存在对于电子信息行业,特别是半导体和微电子行业至关重要。
本文将从高纯硅的制备和应用两个方面进行探讨。
一、高纯硅的制备1.静电提纯法静电提纯法是一种利用信号源、电荷器或稳压电源等设备对硅进行提纯的方法,静电场中的硅分子经过电离、加速、分离和聚积等过程,直接形成高纯度的晶体硅。
该方法可以获得高度纯度的硅,但成本较高。
2.气相化学气相沉积法气相化学气相沉积法是通过基板表面沉积获得高纯度硅材料的方法。
该方法在硅的粉末基础上,利用化学反应产生溶胶、凝胶和气相沉积等物质,将硅材料沉积在基板上。
通过这种方法可以获得高纯度的硅晶体,成本较低。
3.热蒸发法热蒸发法是一种利用空气和高温热源对硅进行提纯的方法。
首先将硅放在高温热源中加热,使其汽化;接着硅气体通过喷嘴喷射入空气中,硅气体氧化生成SiO2,最后再通过还原反应形成纯化的硅。
该方法制备高纯度硅的效率较低,成本较高。
二、高纯硅的应用1.半导体行业高纯硅在半导体行业中具有重要的应用,它是制造芯片和集成电路中必不可少的材料。
硅衬底通过化学气相沉积和物理气相沉积等方法制成,然后芯片制造厂商通过刻蚀、镀膜和精密加工等工艺制造最终的芯片。
2.太阳能电池行业高纯硅在太阳能电池行业中也有着非常重要的应用。
太阳能电池是一种光电转换器件,它将太阳光转化为直流电能,高纯度硅是太阳能电池制造中常用的材料之一。
利用高纯度的硅可以制造高效的太阳能电池。
3.化学工业高纯度硅在化学工业中也有广泛的应用,可以用于生产高级光学玻璃、高温隔热材料和高纯度碳化硅陶瓷等。
总之,高纯硅材料在工业界有着重要的应用。
通过不同的制备方法可以获得高纯度的硅材料,而高纯度的硅材料又可以用来制造半导体、太阳能电池和化学工业领域中的各种材料。
在未来的发展中,高纯硅材料的用途将更加广泛,这也将推动高纯硅制备技术的不断发展和进步。
工业制取高纯硅的化学方程式

工业制取高纯硅的化学方程式制取高纯硅的化学方程式主要有两个常用的方法,分别是化学还原法和电解法。
化学还原法(Siliconthermical reduction method)是通过将含硅矿石与还原剂(如炭粉)进行高温反应来制取高纯硅。
化学还原法的化学方程式如下:SiO2 + 2C → Si + 2CO在这个反应中,二氧化硅(SiO2)与炭粉(C)经过高温反应,生成高纯度的硅(Si)和一氧化碳(CO)。
这种方法主要用于制取电子级硅,因为硅石(SiO2)中存在着杂质(如杂质金属和非金属元素),通过反应可以将杂质与一氧化碳等气体形成挥发性的化合物,从而实现分离和提纯。
另外,还可以通过电解法(Electrolysis method)制取高纯硅,这是一种比较常用的制备电子级硅的方法。
电解法是在高温下,利用电解质内的电流通过含硅原料进行电解,从而分解出高纯度硅。
电解法的化学方程式可以表示如下:SiO2 + 2C → Si + 2COSi + 2Cl2 → SiCl4SiCl4 + 2H2 → Si + 4HCl在这个过程中,首先通过化学还原法将硅石转化为硅粉,然后将硅粉与氯气(Cl2)反应生成四氯化硅(SiCl4),最后通过与氢气(H2)的还原反应,将四氯化硅转化为高纯度硅。
制取高纯硅的参考内容有:1. 《化工技术手册》:对制备高纯硅材料的化学反应和工艺流程进行了详细的介绍和分析。
2. 《无机化学》:介绍了化学还原法和电解法两种方法制备高纯硅的化学反应和原理。
3. 《化学工艺及其自动化》:对制取高纯硅的工艺和方法进行了综合性的介绍和分析。
4. 《电镀与表面处理技术》:对电解法制备高纯硅的工艺和原理进行了深入讲解。
5. 相关学术期刊文章:通过搜索相关学术期刊,可以获取最新的研究成果,了解制备高纯硅的最新进展和方法。
以上参考内容仅供参考,如果需要具体的实验操作步骤和实验条件等信息,请参考相应的实验室操作手册和工艺规范。
硅的提纯原理及应用

硅的提纯原理及应用1. 硅的提纯原理硅是一种非金属的化学元素,其在自然界中以二氧化硅的形式广泛存在于石英、细砂和岩石中。
然而,这些天然硅材料中含有大量的杂质,因此需要进行提纯以满足不同应用的要求。
硅的提纯原理主要包括以下几个步骤: - 步骤一:预处理:将原料进行粉碎,并通过物理或化学方法去除杂质。
- 步骤二:化学处理:通过化学反应将硅与杂质分离,常用的方法包括酸溶解、氧化还原、萃取、离子交换等。
- 步骤三:电冶炼:通过电解将纯化的硅溶液电解成纯度更高的硅块。
2. 硅的提纯应用由于硅具有优异的物理和化学性质,广泛应用于各个领域。
2.1 半导体工业硅作为半导体材料的主要原料之一,被广泛用于制造集成电路、太阳能电池等电子器件。
高纯度的硅是制造这些器件的关键,因为杂质的存在会严重影响器件的性能。
通过提纯过程可得到电子级硅,其杂质含量较低,可满足高精度电子零部件的制造要求。
2.2 太阳能工业硅是太阳能电池的主要材料之一,通过提纯过程可得到高纯度硅晶体。
制造太阳能电池时,高纯度硅晶体会被切割成薄片,然后进行表面处理和接触金属的制备,最终组装成太阳能电池组件。
高纯度的硅晶体可以提高太阳能电池的转换效率。
2.3 光纤工业硅是制造光纤的重要原料,提纯硅可得到具有优异光学性能的高纯度硅材料。
制造光纤时,高纯度硅材料会经过熔化和拉丝等工艺制成光纤毛细管,然后进行镀覆、包裹等步骤,制得具有良好光传输性能的光纤。
2.4 复合材料工业高纯度硅还可用于制造各种复合材料,例如硅碳化物纤维和硅氮化物陶瓷等。
这些材料具有较高的热稳定性和力学性能,广泛应用于航空航天、汽车工业和电力行业。
3. 结论硅的提纯原理主要包括预处理、化学处理和电冶炼三个步骤,通过这些步骤可得到高纯度的硅材料。
高纯度硅在半导体工业、太阳能工业、光纤工业和复合材料工业等领域有着广泛的应用。
随着科学技术的不断发展,硅的提纯技术也在不断改进和创新,使硅材料的应用领域得到进一步拓展。
工业制高纯硅的三个方程式

工业制高纯硅的三个方程式硅是一种非金属元素,它在自然界中广泛存在于硅酸盐矿物中。
硅的化学性质稳定,电子构型为1s2 2s2 2p6 3s2 3p2,它在化学、电子、光电、航空、航天等领域有着广泛的应用。
其中,高纯硅是电子工业和光电工业中的重要原材料,因此,工业制高纯硅的技术和工艺一直是人们研究的热点之一。
下面,我们将介绍制备高纯硅的三个方程式。
一、硅烷(SiH4)分解法硅烷分解法是制备高纯硅的常用方法之一。
硅烷是一种无色、有毒、易燃的气体,它可以通过以下反应制备:Si + 2H2 → SiH4硅烷分解的反应式如下:SiH4 → Si + 2H2硅烷分解法的原理是在高温下使硅烷分解,生成高纯度的硅。
硅烷分解的温度通常在1000℃左右,反应时间较短,可以得到较高的产率和较高的纯度。
但硅烷具有易燃、有毒、爆炸等危险性,需要进行严格的安全措施和操作。
二、硅烷(SiH4)还原法硅烷还原法是另一种常用的制备高纯硅的方法。
硅烷还原法的原理是在高温下,将硅烷与氢气反应,生成高纯度的硅。
硅烷还原法的反应式如下:SiH4 + 2H2 → Si + 2H2O硅烷还原法的温度通常在1000℃以上,反应时间较长,但可以得到较高的产率和较高的纯度。
硅烷还原法操作简单,但硅烷易燃、有毒、爆炸等危险性也需要进行严格的安全措施和操作。
三、氯化硅(SiCl4)还原法氯化硅还原法是制备高纯硅的另一种方法。
氯化硅是一种无色、有毒、易燃的液体,可以通过以下反应制备:Si + 2Cl2 → SiCl4氯化硅还原法的原理是在高温下,将氯化硅与氢气反应,生成高纯度的硅。
氯化硅还原法的反应式如下:SiCl4 + 2H2 → Si + 4HCl氯化硅还原法的温度通常在1000℃以上,反应时间较长,但可以得到较高的产率和较高的纯度。
氯化硅还原法操作简单,但氯化硅易燃、有毒、腐蚀性强等危险性也需要进行严格的安全措施和操作。
总之,制备高纯硅的三个方程式分别是硅烷分解法、硅烷还原法和氯化硅还原法。
硅的提纯原理

硅的提纯原理硅的提纯是指从硅源材料中去除杂质,提高纯度的过程。
硅的提纯原理主要包括物理方法和化学方法。
下面将详细介绍这些方法以及其原理。
一、物理方法1. 熔炼法熔炼法是通过升高硅源材料的温度使其熔化,然后冷却凝固,将杂质分离出去。
熔炼法的原理是根据杂质和硅的熔点差异,利用温度的变化使硅和杂质分离。
例如,将原料与氢氧化钙共同加热冶炼,杂质形成的化合物会溶解在熔融的氢氧化钙中,通过过滤分离杂质。
2. 气相法气相法是利用硅和杂质在不同温度下的汽相蒸馏分离,原理是根据各杂质的汽化温度差异选择合适的温度进行分离。
通常使用氯化硅作为原料,在高温下与氢气或氯气反应生成氯化硅蒸气,然后在冷凝器中冷却、凝固成为纯净的硅。
3. 溶液法溶液法是通过在溶液中选择合适的溶剂,使杂质溶解于溶液中,然后从溶液中析出纯净的硅。
原理是根据杂质和硅在溶液中的溶解度差异实现分离。
例如,可使用酸性溶液如氢氟酸溶液,将硅源材料溶解在溶液中,杂质溶解度比硅低,通过过滤或离心等方法将溶液中的杂质分离出去,得到纯净的硅溶液。
二、化学方法1. 氧化方法氧化方法是利用硅在高温下与氧气反应生成氧化硅,然后将氧化硅还原为纯净的硅。
原理是根据硅和氧的亲和力差异以及氧化硅和硅的熔点差异实现分离。
例如,将硅源材料在高温下与氧气反应生成氧化硅,然后使用还原剂如纯氢或碳等将氧化硅还原成硅。
2. 溶解还原法溶解还原法是通过将硅源材料溶解于适当的溶剂中,然后通过还原反应得到纯净的硅。
原理是通过溶液中的化学反应使杂质与硅发生反应生成易生成沉淀或溶解度较低的产物,分离出去。
例如,将硅源材料溶解于酸性溶液中,其中的杂质与溶剂中的酸发生反应生成易生成沉淀的化合物,通过过滤或离心等方法将杂质分离出去,然后通过还原反应将溶液中的硅还原成纯净的硅。
3. 氧化还原法氧化还原法是通过将硅源材料与适当的氧化剂反应生成过氧化或氯化硅等化合物,然后再通过还原反应将其还原为纯净的硅。
原理是根据硅和氧化剂的反应生成易分离的化合物,然后通过还原反应将其还原成硅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高纯硅提取原理
高纯硅的制备一般首先由硅石(SiO2)制得工业硅(粗硅),再制成高纯的多晶硅,最后拉制成半导体材料单晶硅。
工业生产中使用硅石(SiO2)和焦炭以一定的比例混合,在电炉中加热至1600~1800℃而制得纯度为95%~99%的粗硅,其反应如下:SiO2+2C=Si+2CO 粗硅中一般含有铁、铝、碳、硼、磷、铜等杂质,这些杂质多以硅化构成硅酸盐的形式存在,为了进一步提高工业粗硅的纯度,可采用酸浸洗法,使杂质大部分溶解(有少数的碳化硅不溶)。
其生产工艺过程是:将粗硅粉碎后,依次用盐酸、王水、(HF+H2SO4)混合酸处理,最后用蒸馏水洗至中性,烘干后可得含量为99.9%的工业粗硅。
高纯多晶硅的制备方法很多,据不完全统计有十几种,但所有的方法都是从工业硅(或称硅铁,因为含铁较多)开始,首先制取既易提纯又易分解(即还原)的含硅的中间化合物如SiCl4、SiHCl3、SiH4等,再使这些中间化合物提纯、分解或还原成高纯度的多晶硅。
目前我国制备高纯硅多晶硅主要采用三氯氢硅氢还原法、硅烷热解法和四氯化硅氢还原法。
一般说来,由于三氯氢硅还原法具有一定的优点,目前比较被广泛的应用。
此外,由于SiH4具有易提纯的特点,因此硅烷热分解法是制备高纯硅的很有发展潜力的方法。
下面我们就分别介绍上述三种方法制备高纯硅的化学原理。
1 三氯氢硅还原法
(1)三氯氢硅的合成
第一步:由硅石制取粗硅硅石(SiO2)和适量的焦炭混合,并在电炉内加热至1600~1800℃可制得纯度为95%~99%的粗硅。
其反应式如下:
SiO2+3C=SiC+2CO(g)↑
2SiC+SiO2=3Si+2CO(g)↑
总反应式:SiO2+2C=Si+2CO(g)↑
生成的硅由电炉底部放出,浇铸成锭。
用此法生产的粗硅经酸处理后,其纯度可达到99.9%。
第二步:三氯氢硅的合成三氯氢硅是由干燥的氯化氢气体和粗硅粉在合成
炉中(250℃)进行合成的。
其主要反应式如下:Si+3HCl=SiHCl3+H2(g)(2)三氯氢硅的提纯
由合成炉中得到的三氯氢硅往往混有硼、磷、砷、铝等杂质,并且它们是有害杂质,对单晶硅质量影响极大,必须设法除去。
近年来三氯氢硅的提纯方法发展很快,但由于精馏法工艺简单、操作方便,所以,目前工业上主要用精馏法。
三氯氢硅精馏是利用三氯氢硅与杂质氯化物的沸点不同而分离提纯的。
一般合成的三氯氢硅中常含有三氯化硼(BCl3)、三氯化磷(PCl3)、四氯化硅(SiCl4)、三氯化砷(AsCl3)、三氯化铝(Al2Cl3)等氯化物。
其中绝大多数氯化物的沸点与三氯氢硅相差较大,因此通过精馏的方法就可以将这些杂质除去。
但三氯化硼和三氯化磷的沸点与三氯氢硅相近,较难分离,故需采用高效精馏,以除去这两种杂质。
精馏提纯的除硼效果有一定限度,所以工业上也采用除硼效果较好的络合物法。
三氯氢硅沸点低,易燃易爆,全部操作要在低温下进行,一般操作环境温度不得超过25℃,并且整个过程严禁接触火星,以免发生爆炸性的燃烧。
(3)三氯氢硅的氢还原
提纯三氯氢硅和高纯氢混合后,通入1150℃还原炉内进行反应,即可得到硅,总的化学反应是:SiHCl3+H2=Si+3HCl
生成的高纯多晶硅淀积在多晶硅载体上。
2. 硅烷热解法
在高纯硅的制备方法中,有发展前途的是硅烷热分解法。
这种方法的整个工艺流程可分为三个部分:SiH4的合成、提纯和热分解。
(1)硅烷的合成
硅化镁热分解生成硅烷是目前工业上广泛采用的方法。
硅化镁(Mg2Si)是将硅粉和镁粉在氢气(也可真空或在Ar气中)中加热500~550℃时混合合成的,其反应式如下:
2Mg+Si= Mg2Si
然后使硅化镁和固体氯化铵在液氨介质中反应得到硅烷。
Mg2Si+4NH4Cl=SiH4↑+ 2MgCl2+4NH3↑
其中液氨不仅是介质,而且它还提供一个低温的环境。
这样所得的硅烷比较纯,但在实际生产中尚有未反应的镁存在,所以会发生如下的副反应:
Mg+ 2NH4Cl=MgCl2+2NH3+H2↑
所以生成的硅烷气体中往往混有氢气。
生产中所用的氯化铵一定要干燥,否则硅化镁与水作用生成的产物不是硅烷,而是氢气,其反应式如下:
2Mg2Si+8 NH4Cl+H2O=4 MgCl2+Si2H2O3+8 NH3↑+6 H2↑由于硅烷在空气中易燃,浓度高时容易发生爆炸,因此,整个系统必须与氧隔绝,严禁与外界空气接触。
(2)硅烷的提纯
硅烷在常温下为气态,一般来说气体提纯比液体和固体容易。
因为硅烷的生成温度低,大部分金属杂货在这样低的温度下不易形成挥发性的氢化物,而即便能生成,也因其沸点较高难以随硅烷挥发出来,所以硅烷在生成过程中就已经经过一次冷化,有效地除去了那些不生成挥发性氢化物的杂质。
硅烷是在液氨中进行的,在低温下乙硼烷(B2H6)与液氨生成难以挥发的络合物(B2H6•2NH3)而被除去,因而生成的硅烷不合硼杂质,这是硅烷法的优点之一。
但硅烷中还有氨、氢及微量磷化氢(PH3)、硫化氢(H2S)、砷化氢(AsH3)、锑化氢(SbH3)、甲烷(CH4)、水等杂质。
由于硅烷与它们的沸点相差较大,所以,可用低温液化方法除去水和氨,再用精馏提纯除去其它杂质。
此外,还可用吸附法、预热分解法(因为除硅烷的分解温度高达600℃外,其它杂质氢化物气体的分解温度均低于380℃,所以把预热炉的温度控制在380℃左右,就可将杂质的氢化物分解,从而达到纯化硅烷的目的),或者将多种方法组合使用都可以达到提纯的目的。
(3)硅烷的热分解
将硅烷气体导入硅烷分解炉,在800~900℃的发热硅芯上,硅烷分解并沉积出高纯多晶硅,其反应式如下:SiH4=Si+ 2H2 ↑
硅烷热分解法有如下优点:
①分解过程不加还原剂,因而不存在还原剂的玷污。
②硅烷纯度高。
在硅烷合成过程中,就已有效地去除金属杂质。
尤其可贵的是
因为氨对硼氢化合物有强烈的络合作用,能除去硅中最难以分离的有害杂质硼。
然后还能用对磷烷、砷烷、硫化氢、硼烷等杂质有很高吸附能力的分子筛提纯硅烷,从而获得高纯度的产品,这是硅烷法的又一个突出的优点。
③硅烷分解温度一般为800~900℃,远低于其它方法,因此由高温挥发或扩散引入的杂质就少。
同时,硅烷的分解产物都没有腐蚀性,从而避免了对设备的腐蚀以及硅受腐蚀而被玷污的现象。
而四氯化硅或三氯氢硅氢气还原法都会产生强腐蚀性的氯化氢气体。
因硅烷气是易燃易爆的气体,所以整个吸附系统以及分解室都要有高度严密性,必须隔绝空气。
贮藏和运输硅烷常采用两种方法:一种是用分子筛吸附硅烷,使用时可用氖气携带;另一种是把硅烷压入钢瓶,再以氢气稀释,使其浓度降低5%以下,从而避免爆炸、燃烧的危险。
3. 四氯化硅氢还原法
(1)工业粗硅氯化制备四氯化硅
目前,SiCl4的工业制备方法,一般是采用直接氯化法,将工业粗硅在加热条件下直接与氯反应制得SiCl4。
工业上常用不锈钢(或石英)制的氯化炉,将硅铁装入氯化炉,从氯化炉底部通入氯气,加热至200~300℃时,就开始反应生成SiCl4,其化学反应为:
Si + 2Cl2 = SiCl4
生成的SiCl4以气体状态从炉体上部转至冷凝器,冷却为液态后,再流入储料槽。
在生产中,一般将氯化温度控制在450~500℃,这样一方面可提高生产率,另一方面可保证质量,因为温度低时不仅反应速度慢,而且有副产品Si2Cl6、Si3Cl8等生成,影响产品纯度,但若温度过高,硅铁中其它难挥发杂质氯化物也会随SiCl4一起挥发出来,影响SiCl4纯度。
(2)精馏提纯四氯化硅
四氯化硅中通常含有铁、铝、钛、硼、磷等杂质,但这些杂质可以通过精馏的方法除去。
其原理就是根据四氯化硅与杂质沸点不同,它们具有不同的挥发能力,因而可以通过控制温度而将SiCl4与杂质分离,达到提纯的目的。
(3)纯四氯化硅的氢还原
精馏提纯后的四氯化硅与高纯度的氢气在高温的还原炉内发生还原反应而制得高纯硅,其反应如下:
SiCl4+2H2=Si+4HCl↑
实际反应比较复杂。
由于SiCl4被氢还原的速率较SiHCl3氢还原法低,因此目前使用SiCl4氢还原法制高纯硅的较少。