方差分析案例
15.1.115方差分析

3
21
28
19
26
26
4
13
27
15
23
27
方差分析
方差分析从观测变量的方差入手,研究诸多控制变量中哪些变量对观测变量 具有显著影响,以及对这些显著的控制变量的不同水平的影响程度进行分析。
方差分析认为,观测变量的数据差异由两部分组成: 第一类是控制因素造成的差异,也称系统误差。 第二类是随机ቤተ መጻሕፍቲ ባይዱ素的造成的差异,也称随机误差。
“机器Z”的F值为10.835,显著性水平为0.000说 明各机器间的完工时间存在显著性差异。
工人与机器的交互作用的F值为13.670,显著性水 平为0.000,说明工人Y与机器Z之间的交互作用对 完工时间具有影响。
双因素方差分析结果
4)工人Y两两对比检验结果 由于方差齐次检验已经证明分 组数据具有方差齐次性,所以 应该采用表格的上半部分数据。 数据显示工人甲与丙、甲与丁、 乙与丙、乙与丁、丁与丙之间 的完工时间存在显著性差异。
双因素方差分析结果
5)机器Z两两对比检验结果 由于方差齐次检验已经证明分 组数据具有方差齐次性,所以 应该采用表格的上半部分数据。 数据显示机器A与B、A与C、 B与D、C与D之间的完工时间 存在显著性差异。
感谢观看
一元方差分析的软件实现及应用
案例:某电池厂设计了4种不同的生产工艺A、B、C、D,生产了4批电池, 在每批电池中随机抽取12个为样本, 现检验其寿命是否相同,具体数据如下 所示。
1.单击按钮使变量“电池寿命” 和“生产工艺”分别进入因变 量列表和因子列表。
2.对比:对平均数的变动进行趋势检验,比 较专业。
一元方差分析的结果
4)多重比较检验结果显示: A与C、A与D、B与C、B与 D这几种生产工艺生产的电 池使用寿命有无显著性的差 异。
方差分析案例

方差分析案例方差分析(Analysis of Variance, ANOVA)是一种统计方法,用于检验三个或更多样本均值之间的差异是否具有统计学意义。
它广泛应用于社会科学、生物科学、工程学等领域。
下面是一个方差分析的案例,展示了如何使用ANOVA来分析数据。
假设我们想要研究不同教学方法对学生考试成绩的影响。
我们选择了三种不同的教学方法:传统教学法、项目式学习和翻转课堂。
每种方法分别应用于三组学生,每组有20名学生。
在教学结束后,我们收集了所有学生的考试成绩。
首先,我们需要收集数据。
对于每种教学方法,我们记录下每名学生的考试成绩。
这些数据将被用来进行方差分析。
接下来,我们使用统计软件进行ANOVA测试。
在软件中,我们将考试成绩作为因变量输入,教学方法作为自变量输入。
软件将计算出F值和对应的P值。
F值是方差分析中的关键统计量,它反映了不同组间(这里是教学方法)的方差与组内(学生成绩)的方差之间的比例。
如果F值显著大于1,并且对应的P值小于我们设定的显著性水平(通常是0.05),那么我们就可以拒绝原假设,即不同教学方法之间存在显著差异。
假设我们的ANOVA结果显示F值为5.3,P值为0.003。
这意味着我们有足够的证据拒绝原假设,认为至少有一种教学方法与其他方法相比在提高学生考试成绩方面有显著差异。
为了进一步探究哪些教学方法之间存在显著差异,我们可能需要进行事后多重比较测试。
常用的事后测试方法包括Tukey HSD(Honest Significant Difference)测试、Bonferroni校正等。
这些测试可以帮助我们确定哪些特定的教学方法组合之间存在显著差异。
最后,我们将分析结果整理成报告,包括数据收集、分析方法、ANOVA 结果、事后测试结果以及结论。
报告中会详细说明不同教学方法对学生考试成绩的具体影响,并提出可能的解释和建议。
通过这个案例,我们可以看到方差分析是一种强大的工具,可以帮助我们理解不同因素如何影响结果,并为决策提供科学依据。
方差分析(F检验)

10
因组间变异数大小与组数(组间自由度K-1)有关,故用 组间变异数除以自由度所得组间均方来表示组间变异。
ss 组间 ms 组间 k 1
k=组数
因组内变异数大小与各样本含量大小即组内自由度∑(ni –1) 有关,故用组内变异数除以组内自由度所得组内均方来表示 组内变异。
ms 组内
ss 组内 1 ) (n i
I
2019/2/11
23
15例患者体温降至正常 所需要的天数 甲法 乙法 丙法 5 5 7 5 5 9 5 7 9 7 7 9 7 7 9
[ 问题 2] 例 2 的总变异来源与例 1 有何异同点? [ 答案 2] 共同点是其总变异来源都是来自于 处理因素变异和抽样误差变异,这不仅是它们 的共同点,而且是所有方差分析资料总变异来 源的共同点。
2019/2/11
17
随机区组设计资料 方差分析
研究酵解作用对血糖 受试者号 放置时间(分) 浓度的影响,从8名健康 45 90 135 人中抽取了血液并制备成 (区组) 0 1 5.27 5.27 4.94 4.61 血滤液,每个受试者的血 2 5.27 5.22 4.88 4.66 滤液分成四份,再随机把 3 5.88 5.83 5.38 5.00 4 5.44 5.38 5.27 5.00 4份血液分别放置0、45、 5 5.66 5.44 5.38 4.88 90、135分钟后测定其血 6 6.22 6.22 5.61 5.22 糖浓度,试分析放置不同 7 5.83 5.72 5.38 4.88 时间的血糖浓度有无变化。 8 5.27 5.11 5.00 4.44
2
2019/2/11
6
15例患者体温降至 正常所需要的天数 甲法 乙法 丙法 5 5 7 5 5 9 5 7 9 7 7 9 7 7 9
方差分析回归分析

案例二:不同地区教育水平的方差分析
总结词
通过比较不同地区的教育水平,了解各 地区教育发展的差异,为政府制定教育 政策提供科学依据。
VS
详细描述
收集不同地区的教育水平数据,包括学校 数量、教师质量、学生成绩等。利用方差 分析方法,分析各地区教育水平是否存在 显著差异,并探究影响教育水平的因素。 根据分析结果,提出针对性的教育政策建 议,促进教育公平和发展。
应用范围
方差分析主要应用于实验设计、质量控制等领域,而回归 分析则广泛应用于预测、建模和决策等领域。
04
方差分析的实际应用案例
案例一:不同品牌电视销量的方差分析
总结词
通过对比不同品牌电视的销量,分析品牌、型号、价格等因素对销量的影响,有助于企业了解市场需 求和竞争态势。
详细描述
选取市场上不同品牌、型号、价格的电视,收集其销量数据。利用方差分析方法,分析各品牌电视销 量是否存在显著差异,并进一步探究价格、功能等变量对销量的影响。根据分析结果,为企业制定营 销策略提供依据。
05
回归分析的实际应用案例
案例一:预测股票价格与成交量的回归分析
总结词
股票价格与成交量之间存在一定的相 关性,通过回归分析可以预测股票价 格的走势。
详细描述
通过收集历史股票数据,分析股票价 格与成交量之间的相关性,建立回归 模型。利用该模型,可以预测未来股 票价格的走势,为投资者提供决策依 据。
详细描述
方差分析在许多领域都有广泛的应用,如心理学、社会科学、生物统计学和经济学等。它可以用于比较不同组数 据的均值差异,探索因子对因变量的影响,以及处理分类变量和连续变量的关系。通过方差分析,研究者可以更 好地理解数据结构和关系,为进一步的数据分析和解释提供依据。
SPSS-单因素方差分析(ANOVA)案例解析word版本

S P S S-单因素方差分析(A N O V A)案例解析SPSS-单因素方差分析(ANOVA) 案例解析2011-08-30 11:10这几天一直在忙电信网上营业厅用户体验优化改版事情,今天将我最近学习SPSS单因素方差分析(ANOVA)分析,今天希望跟大家交流和分享一下:继续以上一期的样本为例,雌性老鼠和雄性老鼠,在注射毒素后,经过一段时间,观察鼠死亡和存活情况。
研究的问题是:老鼠在注射毒液后,死亡和存活情况,会不会跟性别有关?样本数据如下所示:(a代表雄性老鼠 b代表雌性老鼠 0代表死亡 1 代表活着 tim 代表注射毒液后,经过多长时间,观察结果)点击“分析”——比较均值———单因素AVOVA,如下所示:从上图可以看出,只有“两个变量”可选,对于“组别(性别)”变量不可选,这里可能需进行“转换”对数据重新进行编码,点击“转换”—“重新编码为不同变量”将a,b"分别用8,9进行替换,得到如下结果”此时的8 代表a(雄性老鼠) 9代表b雌性老鼠,我们将“生存结局”变量移入“因变量列表”内,将“性别”移入“因子”框内,点击“两两比较”按钮,如下所示:“勾选“将定方差齐性”下面的 LSD 选项,和“未假定方差齐性”下面的Tamhane's T2选项点击继续点击“选项”按钮,如下所示:勾选“描述性”和“方差同质检验”以及均值图等选项,得到如下结果:结果分析:方差齐性检验结果,“显著性”为0,由于显著性0<0.05 所以,方差齐性不相等,一般情况下,不能够进行方差分析但是对于SPSS来说,即使方差齐性不相等,还是可以进行方差分析的,由于此样本组少于三组,不能够进行多重样本对比从结果来看“单因素 ANOVA”分析结果,显著性0.098,由于0.098>0.05所可以得出结论:生存结局受性别的影响不显著很多人,对这个结果可能存在疑虑,下面我们来进一步进行论证,由于“方差齐性不相等”下我们来进行“非参数检验”检验结果如下所示:(此处采用的是“Kruskal-Wallis "检验方法)通过“Kruskal-Wallis ”检验方法,我们得出“sig=0.098"跟我们先前分析的结果一样,都是0.098,事实得到论证。
spss相关分析案例多因素方差分析

本次实验采用2005年东部、中部和西部各地区省份城镇居民月平均消费类型划分的数据(课本139页),将东部、中部和西部看作三个不同总体,31个数据分别来自于这三个总体。
本人对这三个不同地区的城镇居民月平均消费水平进行比较,并选取人均粮食支出、副食支出、烟酒及饮料支出、其他副食支出、衣着支出、日用杂品支出、水电燃料支出和其他非商品支出八个指标来衡量城镇居民月平均消费情况。
在进行比较分析之前,首先对个数据是否服从多元正态分布进行检验,输出结果为:表一如表一,因为该例中样本数n=31<2000,所以此处选用Shapiro-Wilk统计量。
由正态性检验结果的sig.值可以看到,人均粮食支出、烟酒及饮料支出、其他副食支出、水电燃料支出和其他非商品支出均明显不遵从正态分布(Sig.值小于,拒绝服从正态分布的原假设),因此,在下面分析中,只对人均副食支出、衣着支出和日用杂品支出三项指标进行比较,并认为这三个变量组成的向量都遵从正态分布,并对城镇居民月平均消费状况做出近似的度量。
另外,正态性的检验还可以通过Q-Q图来实现,此时应判别数据点是否与已知直线拟合得好。
如果数据点均落在直线附近,说明拟合得好,服从正态分布,反之,不服从。
具体情况这里不再赘述。
下面进行多因素方差分析:一、多变量检验表二由地区一栏的(即第二栏)所列几个统计量的Sig.值可以看到,无论从那个统计量来看,三个地区的城镇居民月平均消费水平都是有显著差别的(Sig.值小于,拒绝地区取值不同,对Y,即城镇居民月平均消费水平的取值没有显著影响的原假设)。
二、主体间效应检验表三如表三,可以看到三个指标地区一栏的(即第三栏)Sig.值分别为、、,说明三个地区在人均衣着支出指标上没有明显的差别(Sig.值大于,不拒绝地区取值不同,对指标的取值没有显著影响的原假设),反之,而在人均副食支出和日用杂品支出指标上有显著差别。
三、多重比较表四Contrast Results (K Matrix)地区 Simple Contrast aDependent Variable 人均副食支出(元/人)人均日用杂品支出(元/人)人均衣着支出(元/人)Level 1 vs. Level 3 Contrast EstimateHypothesized Value0 0 0 Difference (Estimate - Hypothesized) Std. Error Sig..001.036.51795% Confidence Interval for DifferenceLower Bound.173Upper BoundLevel 2 vs. Level 3 Contrast EstimateHypothesized Value0 0 0 Difference (Estimate - Hypothesized) Std. Error Sig..668.343.63895% Confidence Interval for DifferenceLower BoundUpper Bound表四Contrast Results (K Matrix)地区 Simple Contrast aDependent Variable 人均副食支出(元/人)人均日用杂品支出(元/人)人均衣着支出(元/人)Level 1 vs. Level 3 Contrast EstimateHypothesized Value0 0 0 Difference (Estimate - Hypothesized) Std. Error Sig..001.036.51795% Confidence Interval for DifferenceLower Bound.173Upper BoundLevel 2 vs. Level 3 Contrast EstimateHypothesized Value0 0 0 Difference (Estimate - Hypothesized) Std. Error Sig..668.343.63895% Confidence Interval for DifferenceLower BoundUpper Bounda. Reference category = 3如表四,在显著水平下,东部和西部的人均副食支出(Sig.值为)和日用杂品支出(Sig.值为)指标有明显差别(小于,拒绝原假设),而在人均衣着支出(Sig.值为)指标上没有明显的差别。
SPSS单因素方差分析案例

SPSS单因素方差分析案例
一、案例简介
本案例主要探讨不同年龄组对对不同种类游戏的不同评价。
采用
SPSS软件进行单因素方差分析,研究对象为50名参与游戏评测的受试者,其中25名为年龄段20-30,25名为年龄段30-40。
每位受试者都被分配3
种不同类型的游戏来评价,评价方式为3分制,值得1,2,3分,分别表
示很差,一般,不错。
二、SPSS分析
1.数据的输入
①打开SPSS软件,点击“文件”-“打开”,选择需要进行分析的数据;
②若原始数据是excel格式,选择“所有的excel文件”,点击“打开”;
③若原始数据是文本格式,选择“所有文本文件”,点击“打开”;
④若原始数据是spss格式,选择“spss 调查”,点击“打开”;
⑤若原始数据是SAS格式,选择“所有SAS文件”,点击“打开”。
2.数据分析
①点击“统计”菜单,在下拉菜单中选择“多元统计分析”;
②在多元统计分析对话框中,在“因变量”栏中选择需要分析的评测
结果;
③在“自变量”栏中选择“受试者的年龄”;
④点击“确定”按钮,开始进行单因素方差分析;
⑤点击“分析”按钮,在下拉菜单中选择“单因素方差分析”;
⑥点击“分析”按钮。
双因素方差分析实验案例

制造酒品时,不同的原料品种和储存温度,往往会影响制酒成品的酒精浓度及口味,因此,工厂的研发人员,选取了来自苗栗及屏东等地区的葡萄品种,作为实验对象,在三种不同的温度下,抽取所制成的酒品,得到如下的观察值:
10度
0度
-10度
苗栗
35
95
60
45
100
55
25
80
70
40
90
50
30
110
70
屏东
65
90
30
65
105
25
55
100
35
60
90
40
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“地域”与“抑郁”
朱平辉改编自西南财大网(案例分析者刘玲同学)
一、案例简介
美国人作了一项调查,研究地理位置与患抑郁症之间的关系。
他们选择了60个65岁以上的健康人组成一个样本,其中20个人居住在佛罗里达,20个人居住在纽约、20个人居住在北卡罗来纳。
对中选的每个人给出了测量抑郁症的一个标准化检验,搜集到表1中的资料,较高的得分表示较高的抑郁症水平。
研究的第二部分考虑地理位置与患有慢性病的65岁以上的人患抑郁症之间的关系,这些慢性病诸如关节炎、高血压、心脏失调等。
这种身体状况的人也选出60个组成样本,同样20个人居住在佛罗里达,20个人居住在纽约、20个人居住在北卡罗来纳。
这个研究记录
央视主持人崔永元对外公开其患有抑郁症后,使人们对这种精神疾病有了更多的关注。
通过对以上两个数据集统计分析,你能从中看出什么结论?你对该疾病有什么认识?
二、抑郁症的相关知识
抑郁症有两种含义,广义的抑郁症包括情感性精神病、抑郁性神经症、反应性抑郁症、更年期抑郁症等;狭义的则仅指情感性精神病抑郁症。
抑郁症在国外是一种十分常见的精神
疾病,据报告,其患病率最高竟占人群的10%左右,而且社会经济情况较好的阶层,患病率越高。
世界卫生组织预测,抑郁症将成为21世纪人类的主要杀手。
全世界患有抑郁症的人数在不断增长,而抑郁症患者中有10—15%面临自杀的危险……引起抑郁症的原因有很多,为了了解地理位置对抑郁症是否有影响,我们做如下的案例分析:
三、地理位置与患抑郁症之间是否有关系
作为对65岁以上的人长期研究的一部分,在纽约洲北部地区的Wentworth医疗中心的社会学专家和内科医生进行了一项研究,以调查地理位置与患抑郁症之间的关系。
选择了60个相当健康的人组成一个样本,其中20人居住在佛罗里达,20人居住在纽约,20人居住在北卡罗米纳。
对中选的人给出了测量抑郁症的一个标准化实验,搜集到表1中的资料,较高的分表示较高的抑郁症水平。
研究的第二部分考虑地理位置与患有慢性病的65岁以上的人患抑郁症之间的关系,这些慢性病诸如关节炎、高血压、心脏失调等。
这种状况的人也选出60个组成样本,同样20人居住在佛罗里达,20人居住在纽约,20人居住在北卡罗米纳。
要求根据所给的样本数据,做出以下管理报告:
描述统计学方法概括说明两部分研究的资料,关于抑郁症的得分,你的初步观测结果是什么?
对两个数据集使用方差分析方法,陈述每种情况下被检验的假设,你的结论是什么?
用推断法说明单个处理均值的合理性
讨论这个研究的推广和你认为有用的其他分析
四、有关统计方法
本案例是通过单因素的方差分析,对各个地区的抑郁症得分均值进行假设检验。
分别检验地理位置对健康人群和慢性病患者是否有影响,以及影响程度,进而得出结论。
五、案例分析
首先:数据资料中的数据,并不能直接看出地区与患抑郁症之间有联系与否。
我们可以根据所给的样本资料,得到以下信息:
(一)健康的被调查者中:佛罗里达地区平均得分=5.55
纽约地区平均得分=8
北卡罗米纳地区平均得分=7.05
(二)患抑郁症的被调查者中:佛罗里达地区平均得分=13.6
纽约地区平均得分=15.25
北卡罗米纳地区平均得分=13.95
(三)我们给出不同地区所有被调查者的平均得分情况
佛罗里达地区平均得分=9.575
纽约地区平均得分=11.625
北卡罗米纳地区平均得分=10.5
根据计算出的样本均值,给出相同地区不同健康状况下平均得分的比较图示以及不同地区所有被调查者的数据均值如图所示:
由以上图示,初步观测结论如下:
从同一地区来看,患慢性病的被调查者患抑郁症的水平明显高于健康者;
从地区差异来看,纽约地区患抑郁症的平均水平最高,北卡罗米纳次之,佛罗里达最低。
然后:为了进一步探讨地理位置与患抑郁症之间是否有显著关系,我们进行假设检验。
该案例实质是检验不同水平下总体均值是否相等。
我们把其他因素固定,只保留“地理位置”这个因素,来检验在不同地理位置,患抑郁症水平是否显著不同。
方差分析表如下所示:
方差分析:单因素方差分析
SUMMARY
组计数
求
和平均方差
佛罗里达40
3
839.575
26.55
833
纽约40
4
65
11.62
5
24.13
782
北卡罗米
纳40
4
2010.5
20.35
897
方差分析
差异源SS
D
f MS F
P-valu
e
F
crit
组间84.3166242.15 1.7790.1731 3.073
783395682765
组内2771.15
1
17
23.68
504
总计
2855.46
7
1
19
从分析结果看,由于P值0.173182大于给定的显著性水平0.05,因此有充分的理由接受原假设,即不同地理位置下患抑郁症的测试平均水平相同,所以地理位置与抑郁症之间无显著性关系。
由表1数据资料,进行单因素方差分析如下表:
方差分析:单因素方差分析
SUMMARY
组计数
求
和平均方差
佛罗里达20
1
11 5.55
4.5763
16
纽约20
1
608
4.8421
05
北卡罗来
纳20
1
417.058.05
方差分析
差异源SS
d
f MS F
P-va
lue
F
crit
组间
61.0333
32
30.51
667
5.2408
86
0.00
814
3.158
846
组内331.9
5
7
5.822
807
总计
392.933
3
5
9
从分析结果看,由于P值0.00814小于给定的显著性水平0.05,因此有理由拒绝原假设,即不同地理位置中患抑郁症的测试平均水平不相同,所以地理位置与抑郁症有关系。
同上,由表2中数据资料,进行方差分析可得下表:
方差分析:单因素方差分析
SUMMARY
组计数求和平均方差
佛罗里达2027213.6
15.831 58
纽约2030515.25
17.039 47
北卡罗来2027913.958.6815
纳79方差分析
差异源SS df MS F
P-va
lue
F
crit
组间
30.23
3332
15.11
667
1.0913
87
0.34
2663
3.158
846
组内789.557
13.85 088
总计
819.7
33359
从分析结果看,由于P值0.342663大于给定的显著性水平0.05,因此有充分的理由接受原假设,即不同地理位置下患抑郁症的测试平均水平相同,所以地理位置与抑郁症之间无显著性关系。
综上所述:人们的健康状况对其抑郁症水平有影响;不同的健康状况下,地理位置对抑郁症的影响也有不同,即地理位置对健康人群有显著性影响,而对慢性病患者没有显著性影响。