高二数学下学期期末考试试题 理
广西桂林市2024_2025学年高二数学下学期期末考试试题理含解析

广西桂林市2024-2025学年高二数学下学期期末考试试题理(含解析)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.函数,则()A. 0B. 1C.D.2.设复数,则的实部为()A. -1B. 2C. -2D.3.用反证法证明“ 是无理数”时,正确的假设是()A. 不是无理数B. 是整数 C. 不是有理数 D. 是无理数4.5个人排成一排照相,其中的甲乙两人要相邻,则有不同的排法种数为()A. 24种B. 36种 C. 48种 D. 72种5.()A. B.C.D.6.在样本频率分布直方图中,各小长方形的高的比从左到右依次为,则第2组的频率是()A. 0.4B.0.3 C. 0 .2 D. 0.1 7.向量,向量,若,则实数()A. B.1 C. -2 D.8.从1,2,3,4,5中任取2个不同的数,记事务A为“取到的2个数之和为偶数”,记事务B为“取到的两个数均为偶数”,则()A. B. C.D.9.若随机变量X的分布列如下表所示,则a的值为()X 1 2 3P 0.2 a 3aA. 0.1B.0.2 C. 0 .3 D. 0.410.正方体中,与平面所成角的余弦值为()A. B.C.D.11.已知随机变量听从正态分布,且,则()A. 0.0799B. 0.1587C. 0.3D. 0.341312.若函数有两个不同的极值点,则实数的取值范围是()A. B.C.D.二、填空题:本题共4小题,每小题5分,共20分.13.某校有学生4500人,其中高三学生1500人,为了解学生的身体素养状况,采纳按年级分层抽样的方法,从该校学生中抽取一个300人的样本.则样本中高三学生的人数为________.14.已知为虚数单位,则 ________.15. ________.16.在中,,,,是斜边上一点,以为棱折成二面角,其大小为60°,则折后线段的最小值为________.三、解答题:本题共6小题,共70分.解答应给出文字说明、证明过程及演算步骤.17.在的绽开式中,求(1)含的项;(2)绽开式中的常数项.18.已知函数.(1)当时,求的图象在点处的切线方程;(2)设是的极值点,求的微小值.19.如图,长方体的底面是正方形,点在棱上,.(1)证明:平面;(2)若,,求二面角的余弦值.20.已知数列的前项和.(1)计算,,,,并猜想的通项公式;(2)用数学归纳法证明(1)中的猜想.21.在某校组织的一次篮球定点投篮竞赛中,两人一对一竞赛规则如下:若某人某次投篮命中,则由他接着投篮,否则由对方接替投篮.现由甲、乙两人进行一对一投篮竞赛,甲和乙每次投篮命中的概率分别是,.两人共投篮3次,且第一次由甲起先投篮,假设每人每次投篮命中与否均互不影响.(1)求3次投篮的人依次是甲、甲、乙的概率;(2)若投篮命中一次得1分,否则得0分,用表示甲的总得分,求的分布列和数学期望.22.已知函数.(1)若在单调递增,求实数的取值范围;(2)若,且仅有一个极值点,求实数的取值范围,并证明:.答案解析部分一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.函数,则()A. 0B. 1C.D.【答案】 B【考点】导数的运算【解析】【解答】解:由题意得f'(x)=e x,则f'(0)=e0=1.故答案为:B【分析】依据导数的运算求解即可.2.设复数,则的实部为()A. -1B. 2C. -2D.【答案】 B【考点】复数的基本概念【解析】【解答】解:依据复数的概念得z的实部为2.故答案为:B【分析】依据复数的概念干脆求解即可.3.用反证法证明“ 是无理数”时,正确的假设是()A. 不是无理数B. 是整数 C. 不是有理数 D. 是无理数【答案】 A【考点】反证法【解析】【解答】解:依据反证法,正确的假设是:不是无理数.故答案为:A【分析】依据反证法干脆求解即可.4.5个人排成一排照相,其中的甲乙两人要相邻,则有不同的排法种数为()A. 24种B. 36种 C. 48种 D. 72种【答案】 C【考点】排列、组合的实际应用,排列、组合及简洁计数问题【解析】【解答】解:依据捆绑法,先把甲乙开成一个元素,再与另外3人排列,则共有种.故答案为:C【分析】依据捆绑法干脆求解即可.5.()A. B.C.D.【答案】 A【考点】二项式定理的应用【解析】【解答】解:依据二项式定理得1+3x+3x2+x3=x3+3x2+3x+1=故答案为:A【分析】依据二项式定理干脆求解即可.6.在样本频率分布直方图中,各小长方形的高的比从左到右依次为,则第2组的频率是()A. 0.4B.0.3 C. 0 .2 D. 0.1 【答案】 A【考点】频率分布直方图【解析】【解答】解:由题意易知各小长方形的面积的比从左往右依次为2:4:3则可设s1:s2:s3s4=2s:4s:3s:s则2s+4s+3s+s=1解得则第2组的频率是4s=0.4故答案为:A【分析】依据频率分布直方图的性质求解即可.7.向量,向量,若,则实数()A. B.1 C. -2 D.【答案】 C【考点】向量的数量积推断向量的共线与垂直【解析】【解答】解:∵∴2×1+4×2+5t=0解得t=-2故答案为:C【分析】依据向量垂直的充要条件求解即可.8.从1,2,3,4,5中任取2个不同的数,记事务A为“取到的2个数之和为偶数”,记事务B为“取到的两个数均为偶数”,则()A. B . C.D.【答案】 B【考点】古典概型及其概率计算公式,条件概率与独立事务【解析】【解答】解:,∵∴∴故答案为:B【分析】依据古典概型,结合条件概率求解即可.9.若随机变量X的分布列如下表所示,则a的值为()X 1 2 3P 0.2 a 3aA. 0.1B.0.2 C. 0 .3 D. 0.4【答案】 B【考点】离散型随机变量及其分布列【解析】【解答】解:由题意得0.2+a+3a=1,解得a=0.2故答案为:B【分析】依据离散型随机变量的分布列的性质求解即可.10.正方体中,与平面所成角的余弦值为()A. B.C.D.【答案】 D【考点】直线与平面所成的角【解析】【解答】解:因为BB1// DD1,所以BB1与平面ACD1所成的角等于DD1与平面ACD1所成的角,在三棱锥D-ACD1中,由三条侧棱两两垂直得点D在平面ACD1的射影为等边三角形ACD1的垂心(即中心0) ,连结DO,D1O,则∠DD1O为DD1与平面ACD1所成的角,设正方体的棱长为a, 则故答案为:D【分析】依据直线与平面所成角的定义,利用几何法干脆求解即可.11.已知随机变量听从正态分布,且,则()A. 0.0799B. 0.1587C. 0.3D. 0.3413【答案】 B【考点】正态分布曲线的特点及曲线所表示的意义【解析】【解答】解:∵X 听从正态分布,且∴故答案为:B【分析】依据正态分布的性质求解即可.12.若函数有两个不同的极值点,则实数的取值范围是()A. B.C.D.【答案】 A【考点】利用导数探讨函数的单调性,利用导数探讨函数的极值,利用导数求闭区间上函数的最值【解析】【解答】解:由题意可得,f'(x)=e x-4ax=0有2个不同的实数根,即有2个不同的实数根,令,则令g'(x)>0,可得x>1;令g'(x)<0,可得x<1,所以g(x)在(-∞,1)上单调递减,在(1, +∞)上单调递增,所以g(x)的最小值为故故答案为:A【分析】依据化归思想,将函数有两个不同的极值点等价转化为方程有两个不同的实数根,运用数形结合思想,结合利用导数探讨函数的单调性与最值求解即可.二、填空题:本题共4小题,每小题5分,共20分.13.某校有学生4500人,其中高三学生1500人,为了解学生的身体素养状况,采纳按年级分层抽样的方法,从该校学生中抽取一个300人的样本.则样本中高三学生的人数为________.【答案】 100【考点】分层抽样方法【解析】【解答】解:依据分层抽样,易得样本中高三学生的人数为故答案为:100【分析】依据分层抽样干脆求解即可.14.已知为虚数单位,则 ________.【答案】【考点】复数代数形式的混合运算【解析】【解答】解:(2-3i)(i+1)=2i+2-3i2-3i=5-i故答案为:5-i【分析】依据复数的运算干脆求解即可.15. ________.【答案】 1【考点】定积分【解析】【解答】易知 .故 .【分析】由于,利用微积分基本定理,干脆求得定积分的值.16.在中,,,,是斜边上一点,以为棱折成二面角,其大小为60°,则折后线段的最小值为________.【答案】【考点】向量的线性运算性质及几何意义,与二面角有关的立体几何综合题,二面角的平面角及求法,同角三角函数基本关系的运用,运用诱导公式化简求值【解析】【解答】解:如图,过C,B作AD的垂线,垂足分别为E,F,故BF⊥EF,EC⊥EF,所以以AD为棱折叠后,则有故因为以D为棱折成60°的二面角C-AD-B所以与的夹角为120°令∠BAD=α,则∠CAE=90°-α,在Rt△ABF中,BF=ABsinα=6sinα,AF=6cosα,在Rt△ACE中,EC=ACsin(90°-α)=8cosα,AE=ACcos(90°-α)=8sinα,故EF=AE-AF=8sinα-6cosα,所以故当α=45°时,有最小值28故线段BC最小值为故答案为:【分析】依据向量的线性运算,结合二面角的定义以及同角三角函数的基本关系、诱导公式求解即可.三、解答题:本题共6小题,共70分.解答应给出文字说明、证明过程及演算步骤.17.在的绽开式中,求(1)含的项;(2)绽开式中的常数项.【答案】(1)由题意知,,1,2,3,4,5,6;令,得,所以含的项为.(2)由(1)知,得,所以常数项为.【考点】二项式系数的性质,二项式定理的应用【解析】【分析】(1)(2)依据二项绽开式通项公式求解即可;18.已知函数.(1)当时,求的图象在点处的切线方程;(2)设是的极值点,求的微小值.【答案】(1)即,;则,,故所求切线方程为,即.(2),由题知,解得,则,,当时,当时所以当时取微小值.【考点】导数的几何意义,利用导数探讨函数的极值,利用导数探讨曲线上某点切线方程【解析】【分析】(1)利用导数的几何意义求解即可;(2)依据函数极值的性质,结合利用导数探讨函数的极值干脆求解即可.19.如图,长方体的底面是正方形,点在棱上,.(1)证明:平面;(2)若,,求二面角的余弦值.【答案】(1)由已知得,平面,平面,故又,所以平面(2)由(1)知.由题设知,所以,故,以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系,则,,,,,,设平面的法向量为,则即所以可取设平面的法向量为,则,即可取于是所以,二面角的余弦值为.【考点】直线与平面垂直的判定,直线与平面垂直的性质,用空间向量求平面间的夹角【解析】【分析】(1)依据直线与平面垂直的判定定理与性质定理求证即可;(2)利用向量法干脆求解即可.20.已知数列的前项和.(1)计算,,,,并猜想的通项公式;(2)用数学归纳法证明(1)中的猜想.【答案】(1)当时,,∴ ;当时,,∴ ;当时,,∴ ;当时,,∴ .由此猜想.(2)证明:①当时,,猜想成立.②假设(且)时,猜想立,即,那么时,,∴ .∴当时,猜想成立.由①②知猜想成立.【考点】数列递推式,数学归纳法【解析】【分析】(1)依据a n与s n的关系干脆求解,(2)依据数学归纳法干脆证明即可.21.在某校组织的一次篮球定点投篮竞赛中,两人一对一竞赛规则如下:若某人某次投篮命中,则由他接着投篮,否则由对方接替投篮.现由甲、乙两人进行一对一投篮竞赛,甲和乙每次投篮命中的概率分别是,.两人共投篮3次,且第一次由甲起先投篮,假设每人每次投篮命中与否均互不影响.(1)求3次投篮的人依次是甲、甲、乙的概率;(2)若投篮命中一次得1分,否则得0分,用表示甲的总得分,求的分布列和数学期望.【答案】(1)记“3次投篮的人依次是甲,甲,乙”为事务,依题意,得∴3次投篮的人依次是甲、甲、乙的概率是.(2)由题意可能取值为0,1,2,3,则,,,;所以,分布列为0 1 2 3所以的期望.【考点】相互独立事务的概率乘法公式,离散型随机变量及其分布列,离散型随机变量的期望与方差【解析】【分析】(1)依据独立事务的概率干脆求解即可;(2)依据独立事务,结合离散型随机变量的分布列与期望求解即可.22.已知函数.(1)若在单调递增,求实数的取值范围;(2)若,且仅有一个极值点,求实数的取值范围,并证明:.【答案】(1)在单调递增,∴ 在恒成立∴ 在恒成立,∴ .(2)设,,①当时,令得:,,,单调递增,,,单调递减,若,恒成立,无极值;若,,而,,此时有两个极值点;故不符合题意.②当时,,,单调递减,,,单调递增,所以有唯一微小值点,.③当时,恒成立,单调递增;取满意且时,,而,此时由零点存在定理知:有唯一的零点,只有一个极值点,且,由题知,又,∴ ,∴ ,设,,当,,单调递减,∴ ,∴ 成立综上,只有一个极值点时,的取值范围为,且.【考点】利用导数探讨函数的单调性,利用导数求闭区间上函数的最值,函数零点的判定定理【解析】【分析】(1)依据化归思想,将函数的单调性问题等价转化为不等式恒成立问题,再转化为求函数的最值问题即可;(2)构造函数g(x)=h'(x),利用导数g'(x)探讨函数g(x)的单调性与最值,再结合分类探讨思想与零点存在定理求解即可.。
河北省张家口市2022高二数学下学期期末考试试题 理(含解析)

.
(Ⅱ) ,
,
, .
【点睛】本题主要考查复数的求法和复数的运算,考查复数模的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.
18.某地为了调查市民对“一带一路”倡议的了解程度,随机选取了 名年龄在 岁至 岁的市民进行问卷调查,并通过问卷的分数把市民划分为了解“一带一路”倡议与不了解“一带一路”倡议两类.得到下表:
【详解】解:(Ⅰ)根据已知数据得到如下列联表
年龄低于 岁 人数
年龄不低于 岁的人数
合计
了解
不了解
合计
故有 的把握认为以 岁为分界点“一带一路”倡议的了解有差异.
(Ⅱ)由题意,得市民了解“一带一路”倡议的概率为 , .
, , ,
, ,
则 的分布列为
, .
【点睛】本题要注意选取4人是在总体中选,而不是在100人的样本中选,如果看成是在样本中100人选4人,很容易误用超几何分布模型求解.
(2)对方程根的个数转化为函数零点个数,通过对参数 进行分类讨论,利用函数的单调性、最值、零点存在定理等,判断函数图象与 轴的交点个数.
【详解】(Ⅰ) 的导数为 .
在区间 , , 是增函数;在区间 上, , 是减函数.
为奇函数, ,
令 ,其图象如图所示,则 ,
设曲边梯形ABCD的面积为 ,则 ,
,
原式的值为 .
【点睛】在求积分时,如果原函数不易求时,可考虑用积分的几何意义,把求积分值转化为求面积问题.
12.函数 ,若 有8个不相等的实数根,则 的取值范围是
A. B. C. D.
【答案】A
【解析】
【分析】
方程有8个不相等的实数根指存在8个不同 的值;根据函数 的图象,可知方程 必存在2个大于1的不等实根.
2019-2020年高二下学期期末考试数学(理)试题 含答案

2019-2020年高二下学期期末考试数学(理)试题 含答案命题教师:张金荣一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A ={x |y =lg(2x -x 2)},B ={y |y =2x ,x >0},R 是实数集,则(∁R B )∩A 等于( )A .[0,1]B .(0,1]C .(-∞,0]D .以上都不对2.函数f(x)=ln(x-2)-的零点所在的大致区间是( )A .(1,2) B.(2,3) C.(3,4) D.(4,5)3.函数f(x)=的定义域为( )A . B. C. D.4.设a =60.7,b =0.76,c =log 0.76,则a ,b ,c 的大小关系为 ( )A .c <b <aB .c <a <bC .b <a <cD .a <c <b5.以下说法错误的是( )A .命题“若x 2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2-3x+2≠0”B .“x=1”是“x 2-3x+2=0”的充分不必要条件C .若p ∧q 为假命题,则p,q 均为假命题D .若命题p:∃x 0∈R,使得+x 0+1<0,则﹁p:∀x ∈R,则x 2+x+1≥06.函数y=lg|x |x 的图象在致是( )7.偶函数y=f (x )在x ∈时,f (x )=x-1,则f(x -1)<0的解集是( )A .{x|-1<x <0B .{x|x <0或1<x <2C .{x|0<x <2D .{x|1<x <28.函数f(x)= 满足对任意成立,则实数a 的取值范围是( )A .B .C .D .9.若不等式x 2+ax+1≥0对于一切x(0,)恒成立,则a 的取值范围是( )A .a≥0B .a≥-2C .a≥-D .a≥-310.已知函数f (x )=的值域为[0,+∞),则它的定义域可以是( )A .(0,1]B .(0,1)C .(-∞,1]D .(-∞,0]11.已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,() A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( ) A .(0,12]∪[2,+∞) B .[14,1)∪(1,4] C .[12,1)∪(1,2] D .(0,14]∪[4,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=ax 2+bx+3a+b 是偶函数,定义域为[a-1,2a],则a+b= .14.已知函数f(x)是定义在区间上的函数,且在该区间上单调递增,则满足f(2x-1)<f()的x 的取值范围为__________15.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________.16.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时f (x )=(12)1-x ,则 ①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数;③函数f (x )的最大值是1,最小值是0;④当x ∈(3,4)时,f (x )=(12)x -3. 其中所有正确命题的序号是________.三、解答题(共70分)17.(12分)给定两个命题::对任意实数都有恒成立;:关于的方程有实数根;如果P ∨q 为真,P ∧q 为假,求实数的取值范围.18.(12分)对定义在实数集上的函数f (x ),若存在实数x 0,使得f (x 0)=x 0,那么称x 0为函数f (x )的一个不动点.(1)已知函数f (x )=ax 2+bx -b (a ≠0)有不动点(1,1)、(-3,-3),求a 、b ;(2)若对于任意实数b ,函数f (x )=ax 2+bx -b (a ≠0)总有两个相异的不动点,求实数a 的取值范围.19.(12分)已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a 2x (a ∈R). (1)写出f (x )在[0,1]上的解析式;(2)求f (x )在[0,1]上的最大值.20.(12分)C D E AB P 经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元). (1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.21.(12分)已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x ,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4—1: 几何证明选讲.如图,在正ΔABC 中,点D 、E 分别在边BC, AC 上,且,,AD ,BE 相交于点P.求证:(I) 四点P 、D 、C 、E 共 圆;(II) AP ⊥CP 。
河南省郑州市2021-2022学年高二数学下学期期末试题 理(原卷版)

1河南省郑州市2021-2022学年高二数学下学期期末试题 理一、选择题:本大题共12个小题,每小题5分,共60分.在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 已知复数z 在复平面内对应的点的坐标为,则()A. 1B. 2D. 52. 若函数,则的值为()A. B. C. D. 3. 用反证法证明命题“设实数、、满足,则、、中至少有一个数不小于”时假设的内容是()A. 、、都不小于B. 、、都小于C. 、、至多有一个小于D. 、、至多有两个小于4. 已知,若a ,b ,,且,,,则的值()A. 大于0B. 等于0C. 小于0D. 不能确定.5. 若离散型随机变量X 的分布列如表所示,则a 的值为()X 12PA.或 B.C.D. 6. 某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x /万元1020304050销售额y /万元62758189根据收集到的数据(如表),由最小二乘法求得回归方程为.现发现表中有一个数据模糊看不清,则该数据为()A. 68B. 68.3C. 68.5D. 707. 下列说法错误的是()()1,2-z =()()2121262f x f x x '=-+-()2f '-2468a b c 6a b c ++=a b c 2a b c 2a b c 2a b c 2a b c 2()32f x x x =+R c ∈0a b +<0a c +<0b c +<()()() f a f b f c ++41a -23a a+132-132-120.6754.9y x =+2A. 方差描述了一组数据围绕平均数波动的大小,方差越大,数据的离散程度越大,方差越小,数据的离散程度越小B. 用相关指数来刻画回归效果,越小说明拟合效果越好C. 某人每次投篮的命中率为,现投篮5次,设投中次数为随机变量,则D. 对于独立性检验,随机变量的观测值k 值越小,判定“两分类变量有关系”犯错误的概率越大8. 在一组样本数据,,,(,,,…,不全相等)的散点图中,若所有样本点都在直线上,则这组样本数据的样本相关系数为()A. 1B.C.D. 9. 2022年,为保障广大人民群众的生产生活能够有序进行,郑州市政府多次组织进行全员核酸检测.某社区计划从报名参加志愿者工作的5名男生和4名女生中抽取两人加入志愿者团队,用A 表示事件“抽到的两名志愿者性别相同”,B 表示事件“抽到的两名志愿者都是女生”,则()A.B.C.D.10. 已知函数.若函数恰有3个零点,则实数a 的取值范围是()A. B. C. D. 11. 将名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶个项目进行培训,每名志愿者只分配到个项目,每个项目至少分配名志愿者,则不同的分配方案共有()种.A. B. C. D. 12. 已知函数,,若,则的最小值是()A. B. 0C. D. 二、填空题:本题共4小题,每小题5分,共20分.13. 由直线和曲线所围图形的面积___________.14. 在某次高三联考中,学生的数学成绩服从正态分布.已知参加本次考试的学生有人.2R 2R 35ζ7(2)1E ζ+=2K 11(,)x y 22(,)x y L (,)n n x y 2n ≥1x 2x n x (),i i x y ()1,2,,i n = 32y x =-+1-1515-()|P B A =172718383239,0(),0xx x x x f x xe x -⎧--≤=⎨->⎩()y f x a =+1,0e⎛⎫- ⎪⎝⎭1,5e⎛⎫- ⎪⎝⎭15,e ⎛⎫-- ⎪⎝⎭10,e ⎛⎫ ⎪⎝⎭64111560144026402160()e xf x x =()lng x x x =()()(0)f a g b t t ==>1ln tab -21e -1e-32e -y x =2y x =()95,100N 100003则本次考试数学成绩大于分的大约有___________人.(参考数据:,)15. 若曲线在点处的切线与直线平行,则___________.16. 在我国南宋数学家杨辉所著作的《详解九章算法》一书中,用如图所示的三角形(杨辉三角)解释了二项和的乘方规律,下面的数字三角形可以看做当依次取、、、、时展开式的二项式系数,相邻两斜线间各数的和组成数列,例,,,,设数列的前项和为.若,则___________.三、解答题:共70分.解答题应写出文字说明、证明过程或验算步骤.17. 已知复数z 满足.(1)求复数;(2)若复数在复平面内对应的点在第四象限,求实数a 的取值范围.18.用数学归纳法证明:.19. 已知在的展开式中,所有偶数项的二项式系数的和为32.(1)求n 的值;(2)求展开式中系数最大的项.20. 已知函数.(1)当时,求该函数在点处的切线方程;105()0.6826P X μσμσ-<<+≈(22)0.9544P X μσμσ-<<+≈(3)(1)(1)(2)4ln(31)]4ln 4y x x x x x x =--++++-()1,02x ay =+=a n 0123L ()na b +{}n a 11a =211a =+312a =+L {}n a n n S 20243a m =+2022S =()13i i z +=+z ()2i z a +()()()()()*12213521n n n n n n n N ++⋅⋅+=⋅⋅⋅⋅⋅-∈2nx ⎛⎝()()221ln af x x a x x=-+-1a =11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭4(2)讨论函数的单调性.21.某工厂生产一种产品测得数据如下:尺寸384858687888质量16.818.820.722.42425.5质量与尺寸的比0.4420.3920.3570.3290.3080.290(1)若按照检测标准,合格产品的质量与尺寸之间近似满足关系式(c 、d 为大于0的常数),求y 关于x 的回归方程;(2)已知产品的收益z (单位:千元)与产品尺寸和质量的关系为,根据(1)中回归方程分析,当产品的尺寸x 约为何值时(结果用整数表示),收益z 的预报值最大?附:(1)参考数据:,,,.(2)参考公式:对于样本,其回归直线的斜率和截距的最小二乘估计公式分别为:,,.22. 已知函数,其中.(1)若函数在区间上单调递增,求实数a 的取值范围;(2)若函数有两个极值点,且,当时,证明:.()f x ()mm x ()g y yx()g y ()mm x dy c x =⋅20.32z y x =-()61ln ln 75.3i i i x y =⋅=∑()61ln 24.6i i x ==∑()61ln 18.3i i y ==∑()621ln 101.4i i x ==∑(),i i v u (1,2,,)i n = u bv a =⋅+ ()()()1122111ˆnniii i i i nnii i v v uu v unvu b v v vnv====---==--∑∑∑∑ˆˆau bv =-e 2.7182≈21()e 312xf x ax ax =+++a ∈R [)1,-+∞()f x 12,x x 12x x <2131339x x +≤≤+1252ln36ln362x x ≤-≤+-。
2022年年高二下学期数学(理)期末试卷(附答案)

年高二下学期数学(理)期末试卷考试说明:(1)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分, 满分150分.考试时间为120分钟;(2)第I 卷,第II 卷试题答案均答在答题卡上,交卷时只交答题卡.第I 卷 (选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 若复数z 满足()543=-z i ,则z 的虚部为 A. i 54- B.54- C. i 54 D.542. 命题“0232,2≥++∈∀x x R x ”的否定为A.0232,0200<++∈∃x x R xB. 0232,0200≤++∈∃x x R xC. 0232,2<++∈∀x x R xD. 0232,2≤++∈∀x x R x3. 已知随机变量ξ服从正态分布2(1,)N σ,且(2)0.6P ξ<=,则(01)P ξ<<= A. 0.4 B. 0.3 C. 0.2 D. 0.14. 在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.()()q p ⌝∨⌝B.()q p ⌝∨C.()()q p ⌝∧⌝D.q p ∨5. 某校从高一中随机抽取部分学生,将他们的模块测试成绩分成6组:[)[),60,50,50,40[)[),80,70,70,60 [)[)100,90,90,80加以统计,得到如图所示的频率分布直方图.已知 高一共有学生600名,据此 统计,该模块测试成绩不少于60分的学生人数为A.588B.480C.450D.120 6. 若不等式62<+ax 的解集为()2,1-,则实数a 等于A.8B.2C.4-D.8- 7. 在极坐标系中,圆2cos 2sin ρθθ=+的圆心的极坐标是A. (1,)2πB. (1,)4πC. (2,)4πD. (2,)2π8. 已知2=x 是函数23)(3+-=ax x x f 的极小值点, 那么函数)(x f 的极大值为 A. 15 B. 16 C. 17 D. 189. 阅读如下程序框图, 如果输出5=i ,那么在空白矩形框中应填入的语句为 A. 22-*=i S B. 12-*=i S C. i S *=2 D. 42+*i10. 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号. 若η2-=ξa ,1)(=ηE , 则a 的值为A. 2B.2-C. 5.1D. 311. 观察下列数的特点:1,2,2,3,3,3,4,4,4,4,… 中,第100项是A .10 B. 13 C. 14 D.10012. 若函数x x f a log )(=的图象与直线x y 31=相切,则a 的值为 A. 2e e B. e3e C. e e5D. 4ee第Ⅱ卷 (非选择题, 共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上)13. 曲线⎩⎨⎧==ααsin 4cos 6y x (α为参数)与曲线⎩⎨⎧==θθsin 24cos 24y x (θ为参数)的交点个数 为__________个.14. 圆222r y x =+在点()00,y x 处的切线方程为200r y y x x =+,类似地,可以求得椭圆183222=+y x 在()2,4处的切线方程为________.15. 执行右面的程序框图,若输入的ε的值为25.0,则输出的n 的值为_______.16. 商场每月售出的某种商品的件数X 是一个随机变量, 其分布列如右图. 每售出一件可 获利 300元, 如果销售不出去, 每件每月需要保养费100元. 该商场月初进货9件这种商品, 则销售该商品获利的期望为____.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) X 1 2 3···12P121121 121 ···1210,1==S i1+=i i 输出i结束开始i 是奇数12+*=i S10<S是否否 是第9题图17. 在平面直角坐标系xOy 中,直线l 的参数方程为232252x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数).在极 坐标系(与直角坐标系xOy 取相同的单位长度,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为25sin ρθ=. (I )求圆C 的直角坐标方程;(II )设圆C 与直线l 交于,A B 两点,若点P 坐标为(3,5),求PB PA ⋅的值.18. 目前四年一度的世界杯在巴西举行,为调查哈三中高二学生是否熬夜看世界杯用简单随机抽样的方法调查了110名高二学生,结果如下表:男 女 是 40 20 否2030(I )若哈三中高二共有1100名学生,试估计大约有多少学生熬夜看球; (II )能否有99%以上的把握认为“熬夜看球与性别有关”? 2()P K k ≥0.050 0.010 0.001 k3.8416.63510.82822()()()()()n ad bc K a b c d a c b d -=++++19. 数列{}n a 中,11=a ,且12111+=++n a a nn ,(*∈N n ). (Ⅰ) 求432,,a a a ;(Ⅱ) 猜想数列{}n a 的通项公式并用数学归纳法证明.20. 已知函数x x f ln )(=,函数)(x g y =为函数)(x f 的反函数.(Ⅰ) 当0>x 时, 1)(+>ax x g 恒成立, 求a 的取值范围; (Ⅱ) 对于0>x , 均有)()(x g bx x f ≤≤, 求b 的取值范围.性别是否熬夜看球21. 哈三中高二某班为了对即将上市的班刊进行合理定价,将对班刊按事先拟定的价格进行试销,得到如下单价x (元) 8 8.2 8.4 8.6 8.8 9 销量y (元)908483807568(I )求回归直线方程y bx a =+;(其中121()(),()n i i i ni i x x y y b a y bx x x ==∑--==-∑-)(II )预计今后的销售中,销量与单价服从(I )中的关系,且班刊的成本是4元/件,为了获得最大利润,班刊的单价定为多少元?22. 已知函数a x f -=)(x2ex a e )2(-+x +,其中a 为常数.(Ⅰ) 讨论函数)(x f 的单调区间;(Ⅱ) 设函数)e 2ln()(x ax h -=2e 2--+x a x (0>a ),求使得0)(≤x h 成立的x 的最小值; (Ⅲ) 已知方程0)(=x f 的两个根为21,x x , 并且满足ax x 2ln 21<<.求证: 2)e e (21>+x x a .数学答案一. 解答题:22. (Ⅰ) 因为)1)(12()(+-+='xxae e x f ,所以, 当0≤a 时, 函数)(x f 在),(+∞-∞上为单调递增函数; 当0>a 时, 函数)(x f 在)1ln,(a-∞上为单调递增, 在).1(ln ∞+a 上为单调递减函数.(Ⅲ) 由(Ⅰ)知当0≤a 时, 函数)(x f 在),(+∞-∞上为单调递增函数, 方程至多有一根,所以0>a ,211ln ,0)1(ln x ax a f <<>,又因为 =--)())2(ln(11x f e a f x 022)2ln(111>--+-x ae e a xx ,所以0)())2(ln(11=>-x f e a f x , 可得2)2ln(1x e ax<-.即212xx e e a<-, 所以2)(21>+x x e e a .。
广西桂林市高二数学下学期期末试卷理(含解析)

广西桂林市高二数学下学期期末试卷理(含解析)一、选择题(共12小题,每小题5分,满分60分。
在每小题给出的四个选项中,有且只有一个选项是符合题目要求的)1.已知=(λ+1,0,2λ),=(6,0,2),∥,则λ的值为()A.B.5 C.D.﹣52.函数y=cos2x的导数是()A.﹣sin2x B.sin2x C.﹣2sin2x D.2sin2x3.已知i是虚数单位,则对应的点在复平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102根据上述规律,13+23+33+43+53+63=()A.192B.202C.212D.2225.若随机变量X的分布列如下表,且EX=6.3,则表中a的值为()X 4 a 9P 0.5 0.1 bA.5 B.6 C.7 D.86.已知小王定点投篮命中的概率是,若他连续投篮3次,则恰有1次投中的概率是()A.B.C.D.7.用反证法证明“若x+y≤0则x≤0或y≤0”时,应假设()A.x>0或y>0 B.x>0且y>0 C.xy>0 D.x+y<08.已知变量X服从正态分布N(2,4),下列概率与P(X≤0)相等的是()A.P(X≥2)B.P(X≥4)C.P(0≤X≤4) D.1﹣P(X≥4)9.由曲线xy=1,直线y=x,y=3所围成的平面图形的面积为()A.B.2﹣ln3 C.4+ln3 D.4﹣ln310.正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.11.在哈尔滨的中央大街的步行街同侧有6块广告牌,牌的底色可选用红、蓝两种颜色,若要求相邻两块牌的底色不都为蓝色,则不同的配色方案共有()A.20 B.21 C.22 D.2412.已知定义在R上的可导函数f(x)的导函数为f'(x),满足f'(x)<f(x),且f(x+3)为偶函数,f(6)=1,则不等式f(x)>e x的解集为()A.(﹣∞,0)B.(0,+∞)C.(1,+∞)D.(4,+∞)二、填空题(共4小题,每小题5分,满分20分)13.已知,则P(AB)= .14.(e x+x)dx= .15.若三角形内切圆半径为r,三边长为a,b,c,则三角形的面积S=(a+b+c)r,利用类比思想:若四面体内切球半径为R,四个面的面积为S1,S2,S3,S4,则四面体的体积V= .16.若关于x的方程xlnx﹣kx+1=0在区间[,e]上有两个不等实根,则实数k的取值范围是.三、解答题(共6小题,满分70分.解答应给出文字说明、证明过程及演算步骤))17.(1)已知A=6C,求n的值;(2)求二项式(1﹣2x)4的展开式中第4项的系数.18.已知函数f(x)=x3+ax2+bx在x=﹣与x=1处都取得极值.(1)求a,b的值;(2)求曲线y=f(x)在x=2处的切线方程.19.设数列{a n}满足:a1=2,a n+1=a n2﹣na n+1.(1)求a2,a3,a4;(2)猜想a n的一个通项公式,并用数学归纳法证明.20.某企业招聘中,依次进行A科、B科考试,当A科合格时,才可考B科,且两科均有一次补考机会,两科都合格方通过.甲参加招聘,已知他每次考A科合格的概率均为,每次考B 科合格的概率均为.假设他不放弃每次考试机会,且每次考试互不影响.(I)求甲恰好3次考试通过的概率;(II)记甲参加考试的次数为ξ,求ξ的分布列和期望.21.如图所示,已知长方体ABCD中,为DC的中点.将△ADM沿AM折起,使得AD⊥BM.(1)求证:平面ADM⊥平面ABCM;(2)是否存在满足的点E,使得二面角E﹣AM﹣D为大小为.若存在,求出相应的实数t;若不存在,请说明理由.22.已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx(1)当a=1时,求f(x)的单调区间;(2)若函数f(x)在(0,)上无零点,求a最小值.2016-2017学年广西桂林市高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分。
西安中学高二数学下学期期末考试试题理含解析

当 时, 。
当 时,原不等式等价于 ,解得 ,∴ ;
②当 时,原不等式等价于 ,
=2(2 1
≥3+4 7.
当且仅当x ,y=4取得最小值7.
故选C.
【点睛】本题考查基本不等式的运用:求最值,注意乘1法和满足的条件:一正二定三等,考查运算能力,属于中档题.
11。 已知函数 ,则不等式 的解集为( )
A。 B. C。 D.
【答案】C
【解析】
【分析】
根据条件先判断函数是偶函数,然后求函数的导数,判断函数在 , 上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可.
所以 ,
令 所以函数g(x)在(0,+∞)上单调递增,
由题得
所以函数g(x)是奇函数,所以函数在R上单调递增.
因为对 ,不等式 恒成立,
所以 ,
因为a〉0,所以当x≤0时,显然成立。
当x>0时, ,
所以 ,所以函数h(x)在(0,1)单调递减,在(1,+∞)单调递增。
所以 ,
所以a<e,
所以正整数 的最大值为2.
14。 设 .若曲线 与直线 所围成封闭图形的面积为 ,则 ______。
【答案】:
【解析】
试题分析:因为,曲线 与直线 所围成封闭图形的面积为 ,所以, = = ,解得, .评:简单题,利用定积分的几何意义,将面积计算问题,转化成定积分计算.
15. 直线 与曲线 相切,则 的值为________.
A. 己申年B. 己酉年C. 庚酉年D。 庚申年
【答案】B
【解析】
【分析】
由题意可得数列天干是以10为等差的等差数列,地支是以12为公差的等差数列,以1949年的天干和地支分别为首项,即可求出答案.
高中高二数学下学期期末试题 理(含解析)-人教版高二全册数学试题

2016-2017学年某某省某某市普通高中高二(下)期末数学试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.若复数a+bi(a,b∈R)与2﹣3i互为共轭复数,则a﹣b=()A.1 B.﹣1 C.7 D.﹣72.设随机变量ξ~N(l,25),若P(ξ≤0)=P(ξ≥a﹣2),则a=()A.4 B.6 C.8 D.103.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A.24 B.48 C.60 D.724.在二项式(x+a)10的展开式中,x8的系数为45,则a=()A.±1 B.±2 C.± D.±35.计算(e x+1)dx=()A.2e B.e+1 C.e D.e﹣16.甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为()A.B.C.D.7.由抛物线y=x2与直线y=x+4所围成的封闭图形的面积为()A.15 B.16 C.17 D.188.已知x,y的取值如表,画散点图分析可知,y与x线性相关,且求得回归直线方程为=x+1,则m的值为()x 0 1 2 3 4y 1.2 m 2.9 4.1 4.7A.1.8 B.2.1 C.2.3 D.2.59.在Rt△ABC中,两直角边分别为a,b,斜边为c,则由勾股定理知c2=b2+a2,则在四面体P﹣ABC中,PA⊥PB,PA⊥PC,PB⊥PC,类比勾股定理,类似的结论为()A.S△PBC2=S△PAB2+S△PAC2B.S△ABC2=S△PAB2+S△PAC2C.S△ABC2=S△PAB2+S△PAC2+S△PBC2D.S△PBC2=S△PAB2+S△PAC2+S△ABC210.已知(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017,则a1+2a2+3a3+…+2017a2017=()A.1 B.﹣1 C.4034 D.﹣403411.已知函数f(x)=x2﹣cos(π+x)+l,f′(x)为f(x)的导函数,则y=f′(x)的函数图象大致为()A.B.C.D.12.已知f(x)定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)>﹣(x+1)f′(x),则不等式f(x+l)>(x﹣2)f(x2﹣5)的解集是()A.(﹣2,3)B.(2,+∞)C.(,3)D.(,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.已知离散型随机变量ξ~B(5,),则D(ξ)=.14.()dx=.15.已知函数f(x)=x2+f′(2)(lnx﹣x),则f′(﹣)=.16.已知曲线C: +y2=1与直线l:(t为参数)相交于A、B两点,则线段|AB|的长度为.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…以此归纳出S n的表达式,并用数学归纳法证明.18.已知函数f(x)= [(x﹣5)2+121nx],(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数y=f(x)的极值.19.某市调研考试后,某校对甲、乙两个高三理科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个高三理科班全部100人中随机抽取1人为优秀的概率为.优秀非优秀合计甲班10乙班30合计(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”?P(K20.15 0.10 0.05 0.025 0.010 0.005 0.001≥k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.828参考数据:(K2=,其中n=a+b+c+d)20.以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2(1+3sin2θ)=4.(Ⅰ)求曲线C的参数方程;(Ⅱ)若曲线C与x轴的正半轴及y轴的正半轴分别交于点A、B,在曲线C上任取一点P,求点P到直线AB的距离的最大值.21.某某市区某“好一多”鲜牛奶店每天以每盒3元的价格从牛奶厂购进若干盒鲜牛奶,然后以每盒5元的价格出售,如果当天卖不完,剩下的牛奶作垃圾回收处理.(1)若牛奶店一天购进50盒鲜牛奶,求当天的利润y(单位:元)关于当天需求量n(单位:盒,n∈N*)的函数解析式.(2)牛奶店老板记录了 100天鲜牛奶的日需求量(单位:盒),整理得下表:曰需48 49 50 51 52 53 54求量频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若牛奶店一天购进50盒鲜牛奶,X表示当天的利润(单位:元),求X的分布列,数学期望;(ⅱ)若牛奶店计划一天购进50盒或51盒鲜牛奶,从统计学角度分析,你认为应购进50盒还是51盒?请说明理由.22.已知函数f(x)=lnx﹣.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:x>0,x<(x+l)ln(x+1),(Ⅲ)比较:()100,e的大小关系,(e为自然对数的底数).2016-2017学年某某省某某市普通高中高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.若复数a+bi(a,b∈R)与2﹣3i互为共轭复数,则a﹣b=()A.1 B.﹣1 C.7 D.﹣7【考点】A2:复数的基本概念.【分析】直接由题意求得a,b的值,则答案可求.【解答】解:∵a+bi(a,b∈R)与2﹣3i互为共轭复数,∴a=2,b=3,则a﹣b=﹣1.故选:B.2.设随机变量ξ~N(l,25),若P(ξ≤0)=P(ξ≥a﹣2),则a=()A.4 B.6 C.8 D.10【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】根据正态分布的对称性即可得出a﹣2=2.【解答】解:∵随机变量ξ~N(l,25),∴P(ξ≤0)=P(ξ≥2),∴a﹣2=2,即a=4.故选A.3.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为()A.24 B.48 C.60 D.72【考点】D8:排列、组合的实际应用.【分析】根据题意,分2步进行分析:①、在2、4之中任选1个,安排在个位,②、将剩下的4个数字安排在其他四个数位,分别求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,分2步进行分析:①、要求五位数为偶数,需要在2、4之中任选1个,安排在个位,有2种情况,②、将剩下的4个数字安排在其他四个数位,有A44=24种情况,则有2×24=48个五位偶数,故选:B.4.在二项式(x+a)10的展开式中,x8的系数为45,则a=()A.±1 B.±2 C.± D.±3【考点】DC:二项式定理的应用.【分析】在二项式(x+a)10的展开式中,令x的幂指数等于8,求得r的值,可得x8的系数,再根据x8的系数为45,求得a的值.【解答】解:二项式(x+a)10的展开式的通项公式为 T r+1=•x10﹣r•a r,令10﹣r=8,求得r=2,可得x8的系数为•a2=45,∴a=±1,故选:A.5.计算(e x+1)dx=()A.2e B.e+1 C.e D.e﹣1【考点】67:定积分.【分析】由题意首先求得原函数,然后利用微积分基本定理即可求得定积分的值.【解答】解:由微积分基本定理可得.故选:C.6.甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为()A.B.C.D.【考点】CM:条件概率与独立事件.【分析】由题意利用条件概率的计算公式,求得甲中奖的前提下乙也中奖的概率.【解答】解:每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,设甲中奖概率为P(A),乙中奖的概率为P(B),两人都中奖的概率为P(AB),则P(A)=0.6,P(B)=0.6,两人都中奖的概率为P(AB)=0.4,则已知甲中奖的前提下乙也中奖的概率为P(B/A)===,故选:D.7.由抛物线y=x2与直线y=x+4所围成的封闭图形的面积为()A.15 B.16 C.17 D.18【考点】67:定积分.【分析】本题考查定积分的实际应用,首先求得交点坐标,然后结合题意结合定积分的几何意义计算定积分的数值即可求得封闭图形的面积.【解答】解:联立直线与曲线的方程:可得交点坐标为(﹣2,2),(4,8),结合定积分与几何图形面积的关系可得阴影部分的面积为:.故选:D.8.已知x,y的取值如表,画散点图分析可知,y与x线性相关,且求得回归直线方程为=x+1,则m的值为()x 0 1 2 3 4y 1.2 m 2.9 4.1 4.7A.1.8 B.2.1 C.2.3 D.2.5【考点】BK:线性回归方程.【分析】根据表中数据计算、,代入回归直线方程中求出m的值.【解答】解:根据表中数据,计算=×(0+1+2+3+4)=2,=×(1.2+m+2.9+4.1+4.7)=,代入回归直线方程=x+1中,得=2+1,解得m=2.1.故选:B.9.在Rt△ABC中,两直角边分别为a,b,斜边为c,则由勾股定理知c2=b2+a2,则在四面体P﹣ABC中,PA⊥PB,PA⊥PC,PB⊥PC,类比勾股定理,类似的结论为()A.S△PBC2=S△PAB2+S△PAC2B.S△ABC2=S△PAB2+S△PAC2C.S△ABC2=S△PAB2+S△PAC2+S△PBC2D.S△PBC2=S△PAB2+S△PAC2+S△ABC2【考点】F3:类比推理.【分析】由题意结合平面与空间类比的关系即可得出题中的结论.【解答】解:平面与空间的对应关系为:边对应着面,边长对应着面积,结合题意类比可得.故选:C.10.已知(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017,则a1+2a2+3a3+…+2017a2017=()A.1 B.﹣1 C.4034 D.﹣4034【考点】DC:二项式定理的应用.【分析】在所给的等式中,两边同时对x求导,再令x=2,可得a1+2a2+3a3+…+2017a2017 的值.【解答】解:在(3﹣2x)2017=a0+a1(x﹣1)+a2(x﹣1)2+…+a2017(x﹣1)2017中,两边同时对x求导,可得﹣2×2017(3﹣2x)2016=a1+2a2(x﹣1)+…+2017a2017(x﹣1)2016,再令x=2,可得a1+2a2+3a3+…+2017a2017=﹣4034,故选:D.11.已知函数f(x)=x2﹣cos(π+x)+l,f′(x)为f(x)的导函数,则y=f′(x)的函数图象大致为()A.B.C.D.【考点】3O:函数的图象.【分析】求出f′(x)的解析式,判断奇偶性,再根据f″(x)的单调性得出f′(x)的增长快慢变化情况,得出答案.【解答】解:f′(x)=x+sin(x+π)=x﹣sinx,∴f′(﹣x)=﹣x+sinx=﹣f′(x),∴f′(x)是奇函数,图象关于原点对称,排除B,D;∵f″(x)=1﹣cosx在(0,π)上是增函数,∴f′(x)在(0,π)上的增加速度逐渐增大,排除C,故选A.12.已知f(x)定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)>﹣(x+1)f′(x),则不等式f(x+l)>(x﹣2)f(x2﹣5)的解集是()A.(﹣2,3)B.(2,+∞)C.(,3)D.(,+∞)【考点】6B:利用导数研究函数的单调性.【分析】根据函数的单调性得到x+1>x2﹣5>0,解不等式即可.【解答】解:∵f(x)>﹣(x+1)f′(x),∴[(x+1)•f(x)]′>0,故函数y=(x+1)•f(x)在(0,+∞)上是增函数,由不等式f(x+1)>(x﹣2)f(x2﹣5)得:(x+2)f(x+1)>(x+2)(x﹣2)f(x2﹣5),即(x+2)f(x+1)>(x2﹣4)f(x2﹣5),∴x+1>x2﹣5>0,解得:﹣2<x<3,故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知离散型随机变量ξ~B(5,),则D(ξ)=.【考点】CH:离散型随机变量的期望与方差.【分析】利用二项分布的性质求解即可.【解答】解:∵离散型随机变量ξ~B(5,),Dξ=5×=,故答案为:.14.()dx=.【考点】67:定积分.【分析】本题考查定积分的几何意义,首先确定被积函数表示的几何图形,然后结合图形的形状和圆的面积公式即可求得定积分的数值.【解答】解:函数即:(x﹣1)2+y2=1(x≥1,y≥0),表示以(1,0)为圆心,1为半径的圆在x轴上方横坐标从1到2的部分,即四分之一圆,结合定积分的几何意义可得.故答案为.15.已知函数f(x)=x2+f′(2)(lnx﹣x),则f′(﹣)= ﹣9 .【考点】63:导数的运算.【分析】由题意首先求得f'(2)的值,然后结合导函数的解析式即可求得最终结果.【解答】解:由函数的解析式可得:∴f′(x)=2x+f′(2)(﹣1),∴f′(2)=4+f′(2)(﹣1),解得f′(2)=,则∴.故答案为:﹣9.16.已知曲线C: +y2=1与直线l:(t为参数)相交于A、B两点,则线段|AB|的长度为.【考点】KL:直线与椭圆的位置关系.【分析】由曲线C的直角坐标方程,代入直线的参数方程,运用韦达定理,可得|AB|=|t1﹣t2|,化简整理即可得到所求值;【解答】解:把代入+y2=1可得:,整理得:8t2+4t﹣3=0,,|AB|=|t1﹣t2|==.故答案为:.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…以此归纳出S n的表达式,并用数学归纳法证明.【考点】RG:数学归纳法.【分析】归纳S n的表达式,再根据数学归纳法的证题步骤进行证明.【解答】解:记数列{a n}的前n和为S n,且满足以下规律:a1=12﹣22,a2=32﹣42,…,a n=(2n﹣1)2﹣(2n)2S1=12﹣22=﹣1×(2×1+1),S2=l2﹣22+32﹣42=﹣2×(2×2+1),S3=l2﹣22+32﹣42+52﹣62=﹣3×(2×3+1),…S n=l2﹣22+32﹣42+52﹣62+…+(2n﹣1)2﹣(2n)2=﹣n×(2n+1),证明如下:①当n=1时,显然成立,②假设当n=k时,等式成立,即S k=l2﹣22+32﹣42+52﹣62+…+(2k﹣1)2﹣(2k)2=﹣k×(2k+1),那么当n=k+1时,即S k+1=l2﹣22+32﹣42+52﹣62+…+(2k﹣1)2﹣(2k)2+(2k+1)2﹣(2k+2)2=﹣k×(2k+1)+(2k+1)2﹣(2k+2)2=﹣(2k2+5k+3)=﹣(k+1)(2k+3)即n=k+1时,等式也成立.故由①和②,可知等式成立.18.已知函数f(x)= [(x﹣5)2+121nx],(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求函数y=f(x)的极值.【考点】6H:利用导数研究曲线上某点切线方程;6D:利用导数研究函数的极值.【分析】(Ⅰ)求出f (x)的导数,可得切线的斜率和切点,由点斜式方程可得所求切线的方程;(Ⅱ)求出函数f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间,再由极值的定义,可得所求极值.【解答】解:(Ⅰ)函数f(x)= [(x﹣5)2+121nx]的导数为f′(x)=x﹣5+=,可得y=f (x)在点(1,f(1))处的切线斜率为2,切点为(1,8),即有切线的方程为y﹣8=2(x﹣1),即为2x﹣y+6=0;(Ⅱ)由f′(x)=x﹣5+=,结合x>0,由f′(x)>0,可得x>3或0<x<2,f(x)递增;由f′(x)<0,可得2<x<3,f(x)递减.则f(x)在x=2处取得极大值,且为;f(x)在x=3处取得极小值,且为2+6ln3.19.某市调研考试后,某校对甲、乙两个高三理科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个高三理科班全部100人中随机抽取1人为优秀的概率为.优秀非优秀合计甲班10乙班30合计(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”?P(K20.15 0.10 0.05 0.025 0.010 0.005 0.001≥k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.828参考数据:(K2=,其中n=a+b+c+d)【考点】BL:独立性检验.【分析】(Ⅰ)首先由题意求得优秀的人数,据此结合列联表的特征写出列联表即可;(Ⅱ)结合(1)中的列联表结合题意计算K2的值即可确定喜欢数学是否与性别有关.【解答】解:(Ⅰ)由题意可知:所有优秀的人数为:人,据此完成列联表如下所示:优秀非优秀合计甲班10 30 40乙班30 30 60合计40 60 100(Ⅱ)由列联表中的结论可得:,则若按99%的可靠性要求,不能认为“成绩与班级有关系”.20.以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2(1+3sin2θ)=4.(Ⅰ)求曲线C的参数方程;(Ⅱ)若曲线C与x轴的正半轴及y轴的正半轴分别交于点A、B,在曲线C上任取一点P,求点P到直线AB的距离的最大值.【考点】Q4:简单曲线的极坐标方程.【分析】(Ⅰ)由x=ρcosθ,y=ρsinθ,求了曲线C的直角坐标方程为,由此能求出曲线C的参数方程;(Ⅱ)求得直线AB的方程,设P点坐标,根据点到直线的距离公式及正弦函数的性质,即可求得点P到直线AB的距离的最大值.【解答】解:(Ⅰ)曲线C的极坐标方程为ρ2(1+3sin2θ)=4,即ρ2(sin2θ+cos2θ+3sin2θ)=4,由x=ρcosθ,y=ρsinθ,得到曲线C的直角坐标方程为x2+4y2=4,即;∴曲线C的参数方程为(α为参数);(Ⅱ)∵曲线与x轴的正半轴及y轴的正半轴分别交于点A,B,∴由已知可得A(2,0),B(0,1),直线AB的方程:x+2y﹣2=0,设P(2cosφ,sinφ),0<φ<2π,则P 到直线AB的距离d==丨sin(φ+)﹣1丨,∴当φ+=π,即φ=时d取最大值,最大值为(+1).点P到直线AB的距离的最大值(+1).21.某某市区某“好一多”鲜牛奶店每天以每盒3元的价格从牛奶厂购进若干盒鲜牛奶,然后以每盒5元的价格出售,如果当天卖不完,剩下的牛奶作垃圾回收处理.(1)若牛奶店一天购进50盒鲜牛奶,求当天的利润y(单位:元)关于当天需求量n(单位:盒,n∈N*)的函数解析式.(2)牛奶店老板记录了 100天鲜牛奶的日需求量(单位:盒),整理得下表:48 49 50 51 52 53 54曰需求量频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若牛奶店一天购进50盒鲜牛奶,X表示当天的利润(单位:元),求X的分布列,数学期望;(ⅱ)若牛奶店计划一天购进50盒或51盒鲜牛奶,从统计学角度分析,你认为应购进50盒还是51盒?请说明理由.【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)根据利润公式得出函数解析式;(2)(i)求出利润的可能取值及其对应的概率,得出分布列和数学期望;(ii)求出n=51时对应的数学期望,根据利润的数学期望大小得出结论.【解答】解:(1)当n≤50时,y=5n﹣50×3=5n﹣150,当n>50时,y=50×(5﹣3)=100,∴y=.(2)(i)由(1)可知n=48时,X=90,当n=49时,X=95,当n≥50时,X=100.∴X的可能取值有90,95,100.∴P(X=90)==,P(X=95)==,P(X=100)==,∴X的分布列为:X 90 95 100P∴E(X)==98.(ii)由(i)知当n=50时,E(X)=98,当n=51时,y=,∴当n=48时,X=87,当n=49时,X=92,当n=50时,X=97,当n≥51时,X=102,∴P(X=87)=,P(X=92)=,P(X=97)==,P(X=102)=.∴E(X)=87+++=97.7.∵98>97.7,∴每天应购进50盒比较合理.22.已知函数f(x)=lnx﹣.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:x>0,x<(x+l)ln(x+1),(Ⅲ)比较:()100,e的大小关系,(e为自然对数的底数).【考点】6B:利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,通过讨论a的X围,求出函数的单调区间即可;(Ⅱ)问题等价于ln(x+1)>,令t=x+1,则x=t﹣1,由x>0得t>1,问题等价于:lnt>,根据函数的单调性证明即可;(Ⅲ)根据<1,令x=,得到(1+)ln(x+1)>1,判断大小即可.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),因为f′(x)=,当a≤0时,f'(x)>0,所以函数f(x)在(0,+∞)上单调递增;当a>0时,由f'(x)<0得0<x<a,由f'(x)>0得x>a,所以函数f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(Ⅱ)证明:①因为x>0,x<(x+l)ln(x+1)等价于ln(x+1)>,令t=x+1,则x=t﹣1,由x>0得t>1,所以不等式ln(x+1)>(x>0)等价于:lnt>,即:lnt﹣>0(t>1),由(Ⅰ)得:函数g(t)=lnt﹣在(1,+∞)上单调递增,所以g(t)>g(1)=0,即:ln(x+1)>;②因为x>0,不等式 x<(x+l)ln(x+1)等价于ln(x+1)<x,令h(x)=ln(x+1)﹣x,则h′(x)=﹣1=,所以h'(x)<0,所以函数h(x)=ln(x+1)﹣x在(0,+∞)上为减函数,所以h(x)<h(0)=0,即ln(x+1)<x.由①②得:x>0时,x<(x+l)ln(x+1);(Ⅲ)由(Ⅱ)得:x>0时,<1,所以令x=,得100×ln(+1)<1,即ln()100<1,所以()100<e;又因为>(x>0),所以(1+)ln(x+1)>1,令x=得:100×ln>1,所以ln()100>1,从而得()100>e.所以()100<()100.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
峨山一中2014—2015学年下学期期末考高二数学(理)试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
总分为150分,考试时间为120分钟。
注意事项:1. 答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并认真核准条形码上的准考证号、姓名、考场号、座位号,在规定的位置贴好条形码。
2. 每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
3. 答非选择题时,必须使用黑色碳素笔,将答案书写在答题卡规定的位置上。
4. 所有题目必须在答题卡上作答,在试题卷上答题无效。
第I 卷(选择题 60分)一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知集合A =2{|430},{|24}x x x B x x -+<=<<,则A B =.A (1,3) .B (1,4) .C (2,3) .D (2,4) 2. 已知复数z 满足(1)1z i i -=+,则z =A. 2i --B.2i -+C. 2i -D.2i + 3.下列函数为奇函数的是 A.y x =sin y x = C.cos y x = D.x x y e e -=-4.若2,4a b ==,且()a b a +⊥,则a 与b 的夹角是 A .3π B .23π C .43πD .23π-5.下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是A. 2214y x -= B.2214x y -=正视图侧视图C.2214y x -=D.2214x y -=6.如右图所示是某一容器的三视图,现向容器中匀速注 水,容器中水面的高度h 随时间t 变化的可能图象是7.已知x 、 y 满足约束条件100,0x x y x +-≤⎧⎪-≤⎨⎪≥⎩则 z = x + 2y 的最大值为A. -2B. -1C. 1D. 28.已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a = A.172 B. 192C. 10D. 12 9.执行如图所示的程序框图,则输出的结果为 A .2 B .1 C .21D .1-10.下列说法正确的是DA. “0x <”是“ln(1)0x +<”的充要条件B. “2x ∀≥,2320x x -+≥”的否定..是“2,x ∃<2320x x -+<” C. 采用系统抽样法从某班按学号抽取5名同学参加活动,学号为5,16,27,38,49的同学均被选出,则该班学生人数可能为60D. 在某项测量中,测量结果X 服从正态分布2(1,)(0)N σσ>,若X 在(0,1)内取值的概率为0.4,则X 在(0,2)内取值的概率为0.811.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于Othh t Oh t OOth BADCA. 21n -B. 121n --C. 121n -+D.21n +12.已知函数()f x 对定义域R 内的任意x 都有()(4)f x f x =-,且当2x ≠时其导函数()f x '满足()2()xf x f x ''>,若24a <<则A .2(2)(3)(log )a f f f a <<B .2(3)(log )(2)a f f a f <<C .2(log )(2)(3)a f a f f <<D .2(log )(3)(2)a f a f f <<第II 卷(90分)二、填空题:(本大题共4小题,每小题5分,满分20分)13.()52x + 的展开式中,2x 的系数等于 .(用数字作答) 14.设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________. 15.曲线2y x = 与直线y x = 所围成的封闭图形的面积为 .16.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为__________.三.解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)设ABC ∆的内角C B A 、、所对的边分别为c b a 、、.已知1=a ,2=b ,41cos =C . (Ⅰ)求ABC ∆的周长;(Ⅱ)求()C A -cos 的值.18.(本小题满分12分)如图,三棱柱ABC —A 1B 1C 1中, 侧棱与底面垂直,AB=BC=2AA 1,∠ABC=90°,M 是BC 中点。
(Ⅰ)求证:A 1B∥平面AMC 1;(Ⅱ)求直线CC 1与平面AMC 1所成角的正弦值。
ABCA 1B 1C 1M19.(本小题满分12分)为了了解在校学生“通过电视收看世界杯”是否与性别有关,从全校学生中随机抽取30名学生进行了问卷调查,得到了如下列联表: 男生 女生 合计 收看 10 8 合计30已知在这30名同学中随机抽取1人,抽到“通过电视收看世界杯”的学生的概率是158. (I)请将上面的列联表补充完整,并据此资料分析“通过电视收看世界杯”与性别是否有关? (II)若从这30名同学中的男同学中随机抽取2人参加一活动,记“通过电视收看世界杯”的人数为X,求X 的分布列和均值. 附表及公式2()p K k ≥0.15 0.100.0500.0100.001k2.0722.7063.841 6.635 10.82822()()()()()n ad bc K a d c d a c b d -=++++20.(本题小满分12分)已知椭圆C :22221(0)x y a b a b+=>>的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程.(2)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .证明:OT 平分线段PQ (其中O 为坐标原点).21.(本小题满分12分) 已知函数2()ln (0,1)x f x a x x a a a =->≠+, (1)求函数)(x f 在点))0(,0(f 处的切线方程; (2)求函数)(x f 单调递增区间;(3)若存在]1,1[,21-∈x x ,使得e e x f x f (1)()(21-≥-是自然对数的底数),求实数a 的取值范围.22.(本小题满分10分)选修4—4:坐标系与参数方程 已知曲线C 1的参数方程为45cos 55sin x ty t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴 为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=. (Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标()0,02ρθπ≥≤<.峨山一中2014-2015学年下学期期末考 高二理科数学参考答案 一、选择题:60分1~12: CCDBC BDBCD AD二、填空题:(本大题共4小题,每小题5分,满分20分) 13、 80 14、1215、16 16、144π三.解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)解:(Ⅰ)∵441441cos 2222=⨯-+=-+=C ab b a c ∴2=c ∴ABC ∆的周长为5221=++=++c b a . ………6分(Ⅱ)∵41cos =C ,∴415411cos 1sin 22=⎪⎭⎫ ⎝⎛-=-=C C ,∴8152415sin sin ===cC a A ,∵c a <,∴C A <,故A 为锐角, ∴878151sin 1cos 22=⎪⎪⎭⎫ ⎝⎛-=-=A A ∴()C A -cos C A C A sin sin cos cos +=16114158154187=⨯+⨯=. .……12分 18.(本小题满分12分)解:(Ⅰ)连接1A C 交1AC 于O ,连接OM . 在三角形1A BC 中,OM 是三角形1A BC 的中位线, 所以OM ∥1A B ,又因OM ⊂平面1AMC ,1A B ⊄平面1AMC所以OM ∥平面1AMC 。
………6分(2)如图以BC 所在的直线为x 轴, 以BA 所在的直线为y 轴, 以1BB 所在的直线为z 轴,以1BB 的长度为单位长度建立空间直角坐标系. 则(0,0,0)B ,(2,0,0)C ,(0,2,0)A ,(1,0,0)M ,1(2,0,1)C ,1(0,1,0)B ,1(0,2,1)A .设直线1CC 与平面1AMC 所成角为θ,平面1AMC 的法向量为(,,)n x y z =.则有1(0,0,1)CC =,(1,2,0)AM =-,1(1,0,1)C M =--, 100n C M n AM ⎧=⎪⎨=⎪⎩,,200.x y x z -=⎧⇒⎨--=⎩,令2x =,得(2,1,2)n =-, ∴122sin cos ,33n CC θ-=<>==. …………12分 19.(本小题满分12分)解:(Ⅰ) 男生 女生 合计 收看 10 6 16 不收看 6 8 14 合计161430由已知数据得:2230(10866) 1.158 3.84116141614K ⨯-⨯=≈<⨯⨯⨯所以,没有充足的理由认为“通过电视收看世界杯”与性别有关 .…………6分 (Ⅱ)X 的可能取值为0,1,2.211661022161611(0),(1)82C C C P X P X C C ======,2102163(2).8C P X C === 所以X 的分布列为:X 0 1 2P18 12 38X 的均值为:1135012.8284EX =⨯+⨯+⨯=………12分20.(本题小满分12分)解:(1)由已知可得⎩⎨⎧a 2+b 2=2b ,2c =2a 2-b 2=4,解得a 2=6,b 2=2,所以椭圆C 的标准方程是x 26+y 22=1. …………4分(2)证明:由(1)可得,F 的坐标是(-2,0),设T 点的坐标为(-3,m ),则直线TF 的斜率k TF =m -0-3-(-2)=-m .当m ≠0时,直线PQ 的斜率k PQ =1m.直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得222162x my x y =-⎧⎪⎨+=⎪⎩消去x ,得(m 2+3)y 2-4my -2=0,…………8分 其判别式Δ=16m 2+8(m 2+3)>0. 所以y 1+y 2=4m m 2+3,y 1y 2=-2m 2+3,x 1+x 2=m (y 1+y 2)-4=-12m 2+3. 设M 为PQ 的中点,则M 点的坐标为2262,33m m m -⎛⎫⎪++⎝⎭所以直线OM 的斜率OM k =-m3,又直线OT 的斜率OT k =-m3,所以点M 在直线OT 上,因此OT 平分线段PQ . …………12分21.(本题小满分12分)解:(1)因为函数2()ln (0,1)x f x a x x a a a =->≠+,所以()ln 2ln x f x a a x a '=-+,(0)0f '=,又因为(0)1f =,所以函数()f x 在点(0,(0))f 处的切线方程为1y =. ………4分(2)由(1)可知,()ln 2ln 2(1)ln x x f x a a x a x a a '=-=-++, 因为当0,1a a >≠时,总有()f x '在R 上是增函数, 又(0)0f '=,所以不等式()0f x '>的解集为(0,)∞+, 故函数()f x 的单调增区间为(0,)∞+.………8分(3)因为存在12,[1,1]x x ∈-,使得12()()e 1f x f x --≥成立, 而当[1,1]x ∈-时,12max min ()()()()f x f x f x f x --≤, 所以只要max min ()()e 1f x f x --≥即可.又因为x ,()f x ',()f x 的变化情况如下表所示:x (,0)-∞(0,)∞+()f x ' -+()f x减函数极小值增函数所以()f x 在[1,0]-上是减函数,在[0,1]上是增函数,所以当[1,1]x ∈-时,()f x 的最小值()()min 01f x f ==,()f x 的最大值()max f x 为()1f -和()1f 中的最大值.因为11(1)(1)(1ln )(1ln )2ln f f a a a a a a a--=--=--+++,令1()2ln (0)g a a a a a =-->,因为22121()1(1)0g a a a a'=-=->+,所以1()2ln g a a a a=--在()0,a ∈+∞上是增函数. 而(1)0g =,故当1a >时,()0g a >,即(1)(1)f f >-; 当01a <<时,()0g a <,即(1)(1)f f <-.所以,当1a >时,(1)(0)e 1f f --≥,即ln e 1a a --≥,函数ln y a a =-在(1,)a ∈+∞上是增函数,解得e a ≥;当01a <<时,(1)(0)e 1f f ---≥,即1ln e 1a a +-≥,函数1ln y a a=+在(0,1)a ∈上是减函数,解得10ea <≤.综上可知,所求a 的取值范围为1(0,][e,)ea ∈∞+. ………12分 22.(本小题满分10分)选修4—4:坐标系与参数方程 解:将45cos 55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程22(4)(5)25x y -+-=,即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得,28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=; ………5分 (Ⅱ)2C 的普通方程为2220x y y +-=,aa 由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩, ∴1C 与2C 的交点的极坐标分别为4π),(2,)2π. ………10分。