弹性力学-边界条件共24页文档
合集下载
弹性力学圣维南边界条件

➢它要求在边界上不同点(所有y值处),应力分量必须处
处与面力分量对等。这种严格的边界条件是较难满足的。
➢但是当l≥h时,左右两端边界是小边界,这时可应用圣维
南原理,用如下静力等效条件来代替上述条件:在这一局 部边界上,使应力的主失量和主矩分别等于对应的面力的 主失量和主矩。(绝对值相等,方向相同)
圣维南原理及应用
➢应用圣维南原理后的积分边界条件具体表达式为:
ห้องสมุดไป่ตู้
h/2
h/2
h / 2 ( x ) xl dy 1 h / 2 f x ( y)dy 1
h/2
h/2
( ) h / 2
x xl
ydy 1
h/ 2
f x ( y) ydy 1
h/2
h/2
h / 2 ( xy ) xl dy 1 h / 2 f y ( y)dy 1
平面问题的应力边界条件
➢具体解题时,建立次要边界上的积分边界条件
的方法有三种:
方法一:
1、在次要边界上应力的主失量和主矩的数值应当等 于相应面力的主失量和主矩的数值(绝对值) 。
2、面力的主失量和主矩的方向就是应力的主失量和 主矩的方向。
例题
习题2-8第二部分:列出图2-14所示问题的边界条件(
上式表明:
(1)等式左右两边的数值是相等的、方向是一致的。
(2)等式左边的符号可以按照应力的符号规定来确定: 应力的正方向就是应力失量的正方向;正的应力乘以正的 矩臂就是应力主矩的正方向。
圣维南原理及应用
➢如果给出的不是面力的分布,而是单位宽度上面力的
主失量和主矩,则具体表达式为:
h/2
h / 2 ( x ) xl dy 1 FN
处与面力分量对等。这种严格的边界条件是较难满足的。
➢但是当l≥h时,左右两端边界是小边界,这时可应用圣维
南原理,用如下静力等效条件来代替上述条件:在这一局 部边界上,使应力的主失量和主矩分别等于对应的面力的 主失量和主矩。(绝对值相等,方向相同)
圣维南原理及应用
➢应用圣维南原理后的积分边界条件具体表达式为:
ห้องสมุดไป่ตู้
h/2
h/2
h / 2 ( x ) xl dy 1 h / 2 f x ( y)dy 1
h/2
h/2
( ) h / 2
x xl
ydy 1
h/ 2
f x ( y) ydy 1
h/2
h/2
h / 2 ( xy ) xl dy 1 h / 2 f y ( y)dy 1
平面问题的应力边界条件
➢具体解题时,建立次要边界上的积分边界条件
的方法有三种:
方法一:
1、在次要边界上应力的主失量和主矩的数值应当等 于相应面力的主失量和主矩的数值(绝对值) 。
2、面力的主失量和主矩的方向就是应力的主失量和 主矩的方向。
例题
习题2-8第二部分:列出图2-14所示问题的边界条件(
上式表明:
(1)等式左右两边的数值是相等的、方向是一致的。
(2)等式左边的符号可以按照应力的符号规定来确定: 应力的正方向就是应力失量的正方向;正的应力乘以正的 矩臂就是应力主矩的正方向。
圣维南原理及应用
➢如果给出的不是面力的分布,而是单位宽度上面力的
主失量和主矩,则具体表达式为:
h/2
h / 2 ( x ) xl dy 1 FN
第二章 弹性力学的基本理论

2
0 0 0
0 0 0
0
0
0
x (2-18)
y
0 0 0
0
0
z
yz
0 0
0
0
66
zx xy
61
弹性力学简明教程
二、平面问题
平面问题{ 平面应力问题 平面应变问题 1、平面应力问题:
z zx zy 0
xz yz 0
由(2-15)式知:
z
fy
0
(2-4)
xz
x
yz
y
z
z
fz
0
x
0
0
0
y 0
0
0 z
0
z y
z
0
x
x
y x
0
36
y
z yz
zx xy
61
fx fy fz
31
0 31
H P 0
36
61
31
31
(2-6)
弹性力学简明教程
二、空间问题的平衡微分方程
弹性力学简明教程
§2 平衡微分方程
一、平面问题的平衡微分方程
y
y
y
dy
x
fy
yx
yx
y
dy
xy
xy
x
dx
y
xy
dy c dx
fx
yx
x
x
x
dx
o(z)
x y
平衡微分方程:
Fx 0 Fy 0
微元体:厚度为1
平面问题的特点:
一切现象都看作是在一个平面内发生的
Fx 0 Fy 0
Mc 0
有限元分析第3章弹性力学基础知识2

应变能密度的性质
U0 1 x x y y z z xy xy yz yz zx zx 2 1 1 2 2 2 2 2 2 U 0 ij x y z x y y z z x xy yz zx 2E E 2G 1 2 2 2 2 2 2 2 U 0 ij e 2 G G x y z xy yz zx 2
1
1
1 1
1 0 0 0
0 0 0 1 2 2 1 0 0
0 0 0 0 1 2 2 1 0
1
0 0 0
xy yz zx
xy
G
yz
G
0 x 0 y z 0 xy yz 0 zx 1 2 2 1 0
2、力的边界条件
边界上给定面力时,则物体边界上的应 力应满足与面力相平衡的力的平衡条件
X 0
以二维问题为例
注意ds为边界斜边的长度,边界外法 线n的方向余弦l=dy/ds,m=dx/ds
有:
一、弹性力学的边界条件
以二维问题为例
同理:
Y 0
M 0
一、弹性力学的边界条件
以二维问题为例
x z y
T
w (x,y,z) dz v dx u
Sp
dy
Ω
Su
一、弹性力学的边界条件
1、位移边界条件
T 边界上已知位移时,应建 立物体边界上点的位移与 给定位移相等的条件
w (x,y,z) dz v dx u dy
弹性力学 第二章_3

理
第二章 平面问题的基本理论
2. 主矢量和主矩的正方向
h/2
h/2
h/ 2 (σ x )xl d y h/ 2 fx ( y) d y FN ,
h/2
h/2
h/2 (σx )xl y d y
h / 2
fx
(
y)
y
d
y
M
,
h/2
h/2
h/ 2 ( xy )xl d y h/ 2 f y ( y) d y FS .
可以取单位宽度的梁研
x
究,任意截面的弯矩为:
1x 1
qx3
M qx x
2l 3
6l
则:
x
My Iz
qx3 6l
y
/
1 h3 12
2qx3 y lh3
(1)
第二章 平面问题的基本理论
x
2qx3 y lh3
代入平衡微分方程:
x xy 0
x y
得:
xy
y h
2
x
x
dy
f x
应力
代入平衡微分方程
含u,v的两个微分方程
第二章 平面问题的基本理论
以平面应力问题为例:
x
u x
y
v y
xy
u y
v x
代入
x
1
E
2
x y
,
x
E
1 2
u x
v y
,
y
E
1 2
y x
,
xy
E
21
xy
得:
y
E
1 2
v y
u x
,
弹性力学基础(二)

边值问题的提法:
给定作用在物体全部边界或内部的外界作用(包括温度影响、外力等), 求解物体内由此产生的应力场和位移场。
对物体内任意一点,当它处在弹性阶段时,其应力分量、应变分量、 位移分量等15个未知函数要满足平衡方程、几何方程、本构方程,这15个 泛定方程,同时在边界上要满足给定的全部边界条件。
定解条件:
满足基本方程和边界条件的解是存在的,而且在小变形条件下,对于受 一组平衡力系作用的物体,应力和应变的解是唯一的。
7.6 弹性力学问题的基本解法
7.6.1 位移法 以位移作为基本未知量,将泛定方程用位移u,v,w来表示。
sx
2G
x
u 1 2u
sy
2G
y
u 1 2u
sz
2G
z
u 1 2u
t xy 2G xy t yz 2G yz t zx 2G zx
t zx z
Fbx
0
t xy x
s y y
t zy z
Fby
0
t xz x
t yz y
s z z
Fbz
0
将本构关系代入到平衡方程中
x
2u
Fbx
0
y
2v Fby
0
z
2w
Fbz
0
u j, ji ui, jj 0
式中▽2为拉普拉斯(Laplace)算子
2u 2u 2v 2w x2 y 2 z 2
x
u x
y
v y
z
w z
xy
u y
v x
yz
v z
w y
zx
w x
u
z
将几何关系代入到本构关系中
给定作用在物体全部边界或内部的外界作用(包括温度影响、外力等), 求解物体内由此产生的应力场和位移场。
对物体内任意一点,当它处在弹性阶段时,其应力分量、应变分量、 位移分量等15个未知函数要满足平衡方程、几何方程、本构方程,这15个 泛定方程,同时在边界上要满足给定的全部边界条件。
定解条件:
满足基本方程和边界条件的解是存在的,而且在小变形条件下,对于受 一组平衡力系作用的物体,应力和应变的解是唯一的。
7.6 弹性力学问题的基本解法
7.6.1 位移法 以位移作为基本未知量,将泛定方程用位移u,v,w来表示。
sx
2G
x
u 1 2u
sy
2G
y
u 1 2u
sz
2G
z
u 1 2u
t xy 2G xy t yz 2G yz t zx 2G zx
t zx z
Fbx
0
t xy x
s y y
t zy z
Fby
0
t xz x
t yz y
s z z
Fbz
0
将本构关系代入到平衡方程中
x
2u
Fbx
0
y
2v Fby
0
z
2w
Fbz
0
u j, ji ui, jj 0
式中▽2为拉普拉斯(Laplace)算子
2u 2u 2v 2w x2 y 2 z 2
x
u x
y
v y
z
w z
xy
u y
v x
yz
v z
w y
zx
w x
u
z
将几何关系代入到本构关系中
弹性力学-边界条件

y
yx
x
P y
fx
n
l cosn, x cos m cosn, y sin
xy
由 x s m xy s f x xy s m y s f y
fy
x s cos yx s sin 0
h 2 h 2
h 2 h 2
f x ydy M
则边界条件可以写成(P.23 (b)):
x x l
dy Fx ,
xy x l
dy Fy ,
x x l
ydy M
悬臂梁的例子:
y
h 2 h 2
y y x
h 2 h 2
x
P
L
L
对边界条件的积分为: (P.23 (b)):
x yx
xy l fx y s m fy
x 上面:l=0,m=-1 左面: 右面: l=-1 l=1 m=0 m=0 下面:l=0,m=1 y
(2).上下两面 ( ) f l 0 m 1 ( ) f
二、应力边界条件 在边界上的楔形体(单位厚度)如图所示: 弹性体内单元体斜面上的 y 应力分量与坐标面应力的 yx 关系有(静力平衡) f xn X x p x x xy l p y m y yx
• 所得到的应力分量必须在所有边界上各点处严 格满足应力边界条件,才是所论问题的解答。 • 在小边界上,如果不能严格满足边界条件,可 以用圣维南原理在静力等效意义上满足(积分 意义上的)边界条件。 • 根据这个原理:两组面力其分布尽管不同,但 如果两者的合力与合力矩相同(静力等效),此 时它们所产生的作用结果仅仅在局部有比较大 的差异,远离这个局部,结果基本相同。
yx
x
P y
fx
n
l cosn, x cos m cosn, y sin
xy
由 x s m xy s f x xy s m y s f y
fy
x s cos yx s sin 0
h 2 h 2
h 2 h 2
f x ydy M
则边界条件可以写成(P.23 (b)):
x x l
dy Fx ,
xy x l
dy Fy ,
x x l
ydy M
悬臂梁的例子:
y
h 2 h 2
y y x
h 2 h 2
x
P
L
L
对边界条件的积分为: (P.23 (b)):
x yx
xy l fx y s m fy
x 上面:l=0,m=-1 左面: 右面: l=-1 l=1 m=0 m=0 下面:l=0,m=1 y
(2).上下两面 ( ) f l 0 m 1 ( ) f
二、应力边界条件 在边界上的楔形体(单位厚度)如图所示: 弹性体内单元体斜面上的 y 应力分量与坐标面应力的 yx 关系有(静力平衡) f xn X x p x x xy l p y m y yx
• 所得到的应力分量必须在所有边界上各点处严 格满足应力边界条件,才是所论问题的解答。 • 在小边界上,如果不能严格满足边界条件,可 以用圣维南原理在静力等效意义上满足(积分 意义上的)边界条件。 • 根据这个原理:两组面力其分布尽管不同,但 如果两者的合力与合力矩相同(静力等效),此 时它们所产生的作用结果仅仅在局部有比较大 的差异,远离这个局部,结果基本相同。
弹性力学4-物理方程、边界条件

其中等式左边是应力分量的边界值,而等式右边则是边 界上的面力分量,是边界上坐标的已知函数。 l 和 m 为 该点处边界面外法线的方向余弦。
第二章 平面问题的基本理论 2.6 边界条件
应力边条件较为复杂,比较常用,需要说明的几点: 1.应力边界条件中的面力和应力具有不同的正负号规 定,且分别作用于通过边界点的不同面上。
这两种方法应用见后面的例子。
第二章 平面问题的基本理论
2.6 边界条件
例2.1:悬臂梁受力如图,试写出其上、下两边应
力边界条件。
p
上表面:y h l 0 , m 1
x
2
q y
xy yh 2 0
y yh 2 p
下表面:y h
(l x m xy )s fx (s)
2
l 0 , m 1
应力边界条件:若给定了部分边界上面力分量,则由 边界上任意点的静力平衡条件,导出边界上每一点的应 力与面力的关系式。可将[P13式(2-3)]应力分量px和py
分别用面力分量 fx (s), fy (s) 代替可得:
(l x m xy )s fx (s)
(l xy m y )s f y (s)
(l xy m y )s f y (s) xy yh 2 q
y yh 2 0
第二章 平面问题的基本理论 2.6 边界条件
例2.2:如图,为左侧受静水压力、下边固定的水 坝,试写出其应力边界条件(固定边不写)。
右侧面: x cos xy sin 0 xy cos y sin 0
混合边界条件:
一部分边界具有已知位移,因而具有位移边界条件,如 式(2-14);另一部分边界具有已知面力,因而具有应力 边界条件,如式(2-15); 另外,在同一部分边界上还可能出现混合边界条件,即 两个边界条件中,一个是位移边界条件,而另一个是应力 边界条件,课本图2-7。
第二章 平面问题的基本理论 2.6 边界条件
应力边条件较为复杂,比较常用,需要说明的几点: 1.应力边界条件中的面力和应力具有不同的正负号规 定,且分别作用于通过边界点的不同面上。
这两种方法应用见后面的例子。
第二章 平面问题的基本理论
2.6 边界条件
例2.1:悬臂梁受力如图,试写出其上、下两边应
力边界条件。
p
上表面:y h l 0 , m 1
x
2
q y
xy yh 2 0
y yh 2 p
下表面:y h
(l x m xy )s fx (s)
2
l 0 , m 1
应力边界条件:若给定了部分边界上面力分量,则由 边界上任意点的静力平衡条件,导出边界上每一点的应 力与面力的关系式。可将[P13式(2-3)]应力分量px和py
分别用面力分量 fx (s), fy (s) 代替可得:
(l x m xy )s fx (s)
(l xy m y )s f y (s)
(l xy m y )s f y (s) xy yh 2 q
y yh 2 0
第二章 平面问题的基本理论 2.6 边界条件
例2.2:如图,为左侧受静水压力、下边固定的水 坝,试写出其应力边界条件(固定边不写)。
右侧面: x cos xy sin 0 xy cos y sin 0
混合边界条件:
一部分边界具有已知位移,因而具有位移边界条件,如 式(2-14);另一部分边界具有已知面力,因而具有应力 边界条件,如式(2-15); 另外,在同一部分边界上还可能出现混合边界条件,即 两个边界条件中,一个是位移边界条件,而另一个是应力 边界条件,课本图2-7。
弹性力学-边界条件

1 (
y x) s
f
x
o
x
上面:l=0,m=-1
左面:
右面:
l=-1
l=1
m=0
m=0
下面:l=0,m=1 y
边界面于坐标轴平行时的简单写法: 每个边界条件只含有一个应力分量(l=0 or m=0) 边界上的面力按应力分量的符号规定,不考虑l,m
图中的面力采用矢量 符号规则
举例:
yxx
xy y
s
l m
f f
x y
fYyn
注意:以上在推导时,斜 面上的应力px,py采用矢量 符号规定-与面力相同。
应力边界条件的写法是:左端为边界上微元体的 应力分量;右端为面力分量。可以各自采用各 自的符号规定。但需要用边界的方向余弦
O yyຫໍສະໝຸດ l cos m sin
x yx
xy y
s
l m
f f
x y
x s cos
xy
sin
s
0
xy
cos
s
y
sin
s
0
y
唯一性定理
• 表述-1:在没有初始应力的情况下,如果边界 条件足以确定全部刚体位移,则弹性力学边值问 题的解答是唯一的。
cos
yx
s in
s
0
xy
cos
s
y
s in
s
0
x
s
ytg 2
p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:1)右边界(x=0) x x 0 y
x
O
xy x 0 0
n
y
2)左边界(x=y×tg)
cosn, x cos
y
m cosn, y cos( )
2
sin
y
fx 0, fy 0
由:
x n
xs mxy s fx xy s my s fy
O
y
l co sm sin
一.位移边界条件
在位移边界问题中,物体在全部边界上的位移
分量是已知的,即: 式中:
us u, vs v (2~14
us、 vs —是位移的边界值;
u、v — 边界上坐标的已知函数或边界上
已知的位移分量。
二、应力边界条件
边界上面力分量为已知。建立边界上微元体的应 力分量与面力分量的关系
二、应力边界条件
位 移 边 界 条 件 不 能 完 全 满 足 。
圣维南原理的应用
• 所得到的应力分量必须在所有边界上各点处严 格满足应力边界条件,才是所论问题的解答。
• 在小边界上,如果不能严格满足边界条件,可 以用圣维南原理在静力等效意义上满足(积分 意义上的)边界条件。
• 根据这个原理:两组面力其分布尽管不同,但 如果两者的合力与合力矩相同(静力等效),此 时它们所产生的作用结果仅仅在局部有比较大 的差异,远离这个局部,结果基本相同。
• 证明概要:只需注意方程都是线性的, 同时边界条件也是线性的即可。
• 推广:以上两组外力可以推广到n组外力。 • 分解原理:根据叠加原理,可以把原问
题分解成几个简单的问题单独求解。
§2-7.圣维南原理(局部性原理)
一.圣维南原理的叙述
描述-1、如果把物体的一小部分边界上 的面力以等效力系(主矢及主矩均为相同) 代换,则在加载附近的的应力发生显著变 化,而在稍远处的影响可忽略不计,亦即 与载荷在边界上的作用形式无关。 描述-2、如果物体在一小部分边界上的 面力是一个平衡力系(主矢及主矩均为 零),则面力就只会使近处产生显著的应 力,远处的应力可忽略不计。
二. 圣维南原理的应用条件
1、必须用等效力系代替。
2、载荷区域必须比物体的最小尺寸为小(小边界上)
举例 P
P 图(a)
q P A
q
图(b)
P 图(c)
( 1 ) 以 (b )代 (a)应 力 边 界 条 件 可 以 近 似 满 足 。 ( 2 ) 以 (b )代 (c)应 力 边 界 条 件 可 以 近 似 满 足 ,但
x yx
xyysm l ffxy
y
xscosxyssi n0
xyscosyssi n0
y
唯一性定理
• 表述-1:在没有初始应力的情况下,如果边界 条件足以确定全部刚体位移,则弹性力学边值问 题的解答是唯一的。
• 表述-2:在没有初始应力的情况下,弹性力学 边值问题的解在相差一组刚体位移的意义下是唯 一的。
o
x
上 面 : l=0, m=-1
左面:
右面:
l=-1
l=1
m=0
m=0
下 面 : l=0, m=1 y
边界面于坐标轴平行时的简单写法: 每个边界条件只含有一个应力分量(l=0 or m=0) 边界上的面力按应力分量的符号规定,不考虑l,m
图中的面力采用矢量 符号规则
举例:
X 0,Y q
l0;m1
X q Y 0
y
X 0,Y q
x
X q Y 0
(1).左右 (2).上下
l 1 ( x)s fx
m
0 ( Y m1 ( yx)s X
右 : ( x) s q , ( xy ) s 0 左 : ( x) s q , ( xy ) s 0 上 : ( y) s q , ( yx ) s 0 下 : ( y ) s q , ( yx ) s 0
静力等效边界条件:对于严格要求的条件在局部放松
y
线性分布的边界力所形
h 2 h 2
L
y
M 成的力偶等于M x 由材力弯曲公式: M yy
Iz
严格面力
fx
M yy Iz
h
f y 0
2
y
h 2
x 严格边界条件
L
x
xL
M yy Iz
只有在右端弯矩是由线性分布的外力引起时, xy
应力边界条件的写法是:左端为边界上微元体的 应力分量;右端为面力分量。可以各自采用各 自的符号规定。但需要用边界的方向余弦
特例--边界面与坐标轴平行时 (1).左右两面
x yx
xyysm l ffxy
l 1 ( x)s fx m0 ( xy)s fy (2).上下两面 l 0 ( y)s fy m1 ( yx)s fx
三、混合边界条件 1、在一部分边界上的位移分量为已知,另一
部分边界上应力分量已知。 2、在同一边界上,已知一个位移分量和一个
应力分量。 图(b)
图(a)
o
x
x
y
us u 0
xy
fy
0
y
(
x)s fx 0
vs v 0
例1:小锥度杆承受轴向拉力。利用边界条件证明,横截面上,
除与正应y力的 关y 系外。,(还假有设剪任应何力界面 x上y 。y方并向确的定正边应界力上均匀 分x 、布) xy
在边界上的楔形体(单位厚度)如图所示:
弹性体内单元体斜面上的 应力分量与坐标面应力的
y
关系有(静力平衡)
yx
ppxyyxx
xyl ym
x
xy
Xf xn
单元体斜面恰为边界面则 面力分量与坐标面应力的 关系有应力边界条件
yxx xyysm l ffxy
fYy n
注意:以上在推导时,斜 面上的应力px,py采用矢量 符号规定-与面力相同。
• 证明概要:只要证明在体力和面力都为零的情况 下,边值问题只可能有零解(应力、应变和位移 全为零)。后者则需要用到应变能的概念。
• 据此,任何一组应力应变和位移,如果它们确能 满满足方程和边界条件,就肯定是该问题的解。
叠加原理
• 叠加原理:两组外力同时作用在物体上 所产生的结果等于他们分别作用产生的 结果之和。
o
y
解:
y
P A( y)
y
yx
lcons,xcos
mcons,ysin
x
xy
fx
由 xs mxy s fx
P
n
xy s my s fy
y
fy
xscosyxssin0 xyscosyssin0
xs ytg2Apytg2
xysytgApytg
[例] 写出应力边界条件。设液体比重为