冷冻水泵控制系统方案
冷机群控控制逻辑说明

冷机群控逻辑说明一正常供冷正常供冷时,冷机群控模块会根据需求开启相应的冷水机组,主机接到开机指令后,主机会发出水泵需求指令,控制器接到水泵需求指令后,开启相应冷水机组冷凝器和蒸发器侧的出水电动蝶阀,以及冷却塔上的进出水电动蝶阀, 同时开启冷冻水泵,冷却水泵,冷却塔风机.冷冻水泵以及冷却水泵的数量与主机开启的数量是一致的,冷却塔风机最少开启的数量是主机的两倍,如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止.具体如下:(1)冷冻水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组蒸发器侧的出水电动蝶阀,同时会开启相应数量的冷冻水泵.1. 冷冻水泵切换条件如下:1.1冷冻水泵有故障;1.2冷冻水泵检测不到自动状态,既冷冻水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期1.3当冷冻水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷冻水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2.冷冻水泵的频率调节是根据冷冻水供回水压力差值及冷冻水供回水压差设定值比较,PID调节冷冻水泵频率. 供回水压力差值越小,频率越高; 冷冻水泵最小频率目前设定38Hz.3.根据冷冻水供回水压差值与冷冻水供回水压差设定值比较PID调节冷冻水旁通阀.压差越高,旁通阀开度越大.(2)冷却水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组冷凝器侧的出水电动蝶阀,同时会开启相应数量的冷却水泵.1. 冷却水泵切换条件如下:1.1冷却水泵有故障;1.2冷却水泵检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.1.3当冷却水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷却水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2. 冷却水泵的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却水泵频率.温度越高,频率越高;冷冻水泵最小频率目前设定40Hz.3.根据各自冷却水回水温度与设定值比较PID调节冷却水旁通阀.温度越高,旁通阀开度越小(3)冷却塔逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,除了会开启相应冷水机组冷凝器侧的出水电动蝶阀以及开启相应数量的冷却水泵外,还会发出冷却塔的需求指令,刚开始时,冷却塔组(每个塔组含两个风机,两个进水阀,两个出水阀)的数量与主机开启的数量是一致的.同时会开启相应的电动蝶阀.1. 冷却塔风机切换条件如下:1.1冷却塔风机有故障;1.2冷却塔风机塔检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.1.3当发出了开冷却塔风机指令后,延时8秒钟后,控制器还没检测到冷却塔风机运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个,就会造成风机锁定不能开启. 能开启的条件就是: 风机无故障,手自动转换开关打到”自动”档,水泵无开启失败.当以上条件造成了同一组冷塔里的两台风机同时不能开启时, 会自动选择同时满足以上三点并运行时间最少的冷却塔组.2. 冷却塔风机的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却塔风机频率. 温度越高,频率越高; 冷却塔风机最小频率目前设定40Hz.3. 如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止,与此相反, 如果冷却塔冷却后的温度低于设定值1度以上含1度,并维持5分钟以上,则会减少一组塔,但开启的塔组数不会少于冷机数量.二蓄冷罐充冷(1)充冷条件1.至少要有一台冷水机组开启;2.放冷结速后至少要两个小时后才能充冷;以上两个条件必须要同时满足才能充冷.(2)充冷模式在满足上述两个充冷条件下,充冷有两种模式.1.一种是手动模式,在手动模式下,用户可以自行开启,关闭各个蓄冷罐的充冷工况.2.另一种是自动模式,在自动模式下,当蓄冷罐里的平均温度高于设定值时,充冷工况开始运行;3.一次只能有一个蓄冷罐充冷,无论在手动还是自动模式.三蓄冷罐放冷(1)放冷条件在放冷总开关处于启用状态下:1. 没有一台冷水机组开启;2.冷冻水总管平均供水温度高于设定值并维持一定时间;3.所有机组都处于失电报警状态下.当放冷总开关处于启用状态时,以上三个条件只要任何一个,同时相应充许放冷的蓄冷罐平均温度不高于设定值,以及单个蓄冷罐的放冷开关打到”ON”时, 此时相应的蓄冷罐就会放冷.(2)放冷时,冷冻水泵开启的数量与蓄冷罐放冷的数量是一样的,同时也会执行与正常供冷时的轮换与故障切泵.四系统加减机功能增加制冷需求Additional Cooling Required – ACR 加载的流程a. 当ACR温度传感器所测的冷冻水供水温度,高于当前的冷冻水供水温度设定点与一个可调整的温度偏差值相加后的所得值IDC:ACR温度传感器=南北侧集分水器温度平均值,冷冻水供水温度设定点=12 o C,温度偏差值=0.6 o C,平均温度>(12+0.6)即12.6 o C时条件满足b. 运行冷水机组的温度降低速率小于1.5oC /分钟c. 有可加载的机组IDC:有未开启的机组,且该机组的控制模式=CCN,且该机组的报警状态=Normal(未报警)*以上各项要求a~c均能满足,才进入以下机组加载程序d. 新冷水机组启动的延迟时间已经结束(延迟时间可以设定)IDC:延时时间=15分钟以上各项要求均能满足,新冷水机组立即启动参数设置原则,1)上述温度设定12根据供水要求2)温度偏差0.6和延时15分钟为了在满足正常使用情况下,系统更稳定加载减少制冷需求Reduce Cooling Required – RCR 卸载的流程a. 目前运行的机组台数多于一台(均运行于CCN模式)b. 运行机组的平均负载电流百分比小于卸载电流百分比IDC:例如已运行2台机组,1号负载电流百分比51%,2号负载电流百分比47%,如运算卸载电流百分比=54%,平均负载=(51%+47%)/2=49%)则条件满足c. 当RCR温度传感器所测的冷冻水供水温度,小于当前的冷冻水供水温度设定点与一个可调整温度偏差值的0.6倍相加后的所得值。
冰机冷却水泵及冷却塔变频改造方案图文

0.5 1项 0.5
6
冷却塔plc自控费用
0.5 1项 0.5
7
电缆线材及辅材费用
0.5 1项 0.5
8
人工及安装费
0.5 1项 0.5
9
其他
含税 为以上各项目总价之和:12.5万元 总价
注:可看出项目投资运营后约3个月即可收回投资并开始产生收益。
Company Name Dept. Name
改造方案组织设计:
的64%,跟冰机电流负荷60%基本一致。此时冷凝器温差2.9℃,并未达到冰 机额定的设计温差5℃,可以得到大冰机冷却水泵流量严重过量,如果温差拉 到5℃,即可通过降低冷却水泵流量做到,这既是本次节能根本出发点。
Company Name Dept. Name
5、通过之前的实际工况分析,节能空间在于降低3#冷却水泵的流量,额 定流量为1500m³,根据能量守恒定律,通过降低电源频率将流量由 1500吨降至870吨即可满足要求。 由于离心式水泵流量与转速的一次方关系,而功率与转速的立方 关系。转速与电源频率的正比关系: 可以得出:流量下降比1500/870,则电源频率下降至约30Hz。而 电功率因频率下降降至31.2kw,可节约128.8kw。 另外由于二次泵变频转速调节中流量与扬程存在的二次方关系: H1/H2=(n1/n2) ²,扬程则会由原来的25m下降至8.41m,不足一公斤 的压头,加上回水的高位势能约0.5公斤,实际出水压头约为13.5m, 还是可能会造成冷却水无法泵送至屋面冷却塔,故为保障系统稳定运 行,必须设置最低压头及最低频率,经过厂家咨询将最低出水压头确 定为15m,则理论扬程应由25m降至10m即可。则反推流量将降低至 949m³/h,此时理论制冷量约为:4450kw,约为63%冰机额定负荷,另 频率降至31.6Hz(最低安全频率),而功率降至40.51kw,可节约能 耗为160-40.51≈120kw。
水泵节能控制方案

10
KMS-HB
中央空调调速节能原理
1)由于目前冷却水循环泵为工频满负荷运转,在制 冷周期的前期和后期,环境温度较低,冷却水回水温度 较低,会造成溴化锂结晶,导致空调机组效率降低,甚 至保护。采用变频恒温差控制后,回水温度得到有效控 制,将大大提高空调机组的效率,达到节能目地。 2)由于冷冻水循环泵也在工频满负荷运转,而不能 根据室内温度的要求自动调节流量,而通过变频改造后 冷冻泵能根据室外温度及室内温度要求能自动调节流量, 提高效率,达到节能目地。
15
KMS-HB
Байду номын сангаас
14
KMS-HB
〔2〕制热模式下冷冻水泵系统的闭环控制 该模式是在中中央空调中热泵运行(即制热)时冷冻水 泵系统的控制方案。同制冷模式控制方案一样,在保证 最末端设备冷冻水流量供给的情况下,确定一个冷冻泵 变频器工作的最小工作频率,将其设定为下限频率并锁 定,变频冷冻水泵的频率调节是通过安装在冷冻水系统 回水主管上的温度传感器检测冷冻水回水温度,再经由 温度控制器设定的温度来控制变频器的频率增减。不同 的是:冷冻回水温度小于设定温度时频率无极上调,当 温度传感检测到的冷冻水回水温越高,变频器的输出频 率越低。
3
KMS-HB
能源工业是国民经济的基础产业,也是技 术密集型产业。目前,我国能源生产量和消 费量己居世界前列,但在能源供给和利用方 式上存在一系列突出问题,如能源结构不合 理,能源利用效率低,可再生能源开发利用 率低等。 安全、高效、低碳是当今世界发展的主题, 我们每个人身上都有义务和责任。
4
KMS-HB
13
KMS-HB
冷冻水泵系统的闭环控制
〔1〕制冷模式下冷冻水泵系统的闭环控制 该方案在保证最末端设备冷冻水流量供给的情况下,确 定一个冷冻泵变频器工作的最小工作频率,将其设定为 下限频率并锁定,变频冷冻水泵的频率调节是通过安装 在冷冻水系统回水主管上的温度传感器检测冷冻水回水 温度,再经由温度控制器设定的温度来控制变频器的频 率增减,控制方式是:冷冻回水温度大于设定温度时频 率无极上调。
冷却水节能系统方案-精选文档

冷却、冷冻控制系统概述
因此,采用本节能控制系统,可使水泵的转速随室内温度的变化 而自动调整转速 (或自动停止、启动水泵)水泵全年平均节能率保 证达到40%以上。
水泵转速与节能率的关系
对于水泵来说,流量 Q与转速N成正比,温差Δ T与转速N成反比, 杨程H与转速N的二次方成正比,而轴功率P与转速N的三次方成 正比,下表告诉我们上述几量的变化关系:
的变化而变化。
冷冻水泵控制方案图
控制方案
B.对于冷却水系统,由于其高温冷却水 (出水)和低温冷却水(回水)的
温度变化较大,为保证工艺需求,我们只能采用温差控制方式,即采 用两个温度变送器、一个PID温差调节器和一台变频器组成闭环控制 系统,对冷却水进行温差控制,使冷却水泵的转速相应于热负载的变 化而变化。
冷却水泵控制方案图
系统主要特点
1.变频器闭环控制电机,按工艺要求设定时、出水温差,电机输 出功率随热负载的变化而变化,在满足使用要求的前提下达到最大限 度的节能。
2.由于降速运行和软启动,减少了振动、噪声和磨损,延长了设
备维修周期和使用寿命,并减少了对电网冲击。 3.先进的设置和监控及调节功能改善了系统运行特性使系统使用 方便。 4.系统具有各种保护措施,使系统的运转率和安全可靠性大大提 高。 5.系统具有故障报警及自动切换功能(即变频器故障时自动切换到
流量减小时,压差控制阀就会旁通掉多余的流量,多余的压头消耗
在阀门节流上。但是,泵的流量没有发生变化,能量没有节约。
循环水泵的前现状
2.旧有的系统,由于选型不合理,或系统实际供热、供冷面积发生变化,造成水 泵运行压力和流量远离额定工况,产生诸如水泵电机超电流,“大马拉小车”等 情况。 当水泵实际工作点由于选择不当或热网阻力减小时,水泵工作点向右移动,如下 图水泵与热网特性曲线分析图2所示: 由图可见,当循环水泵与管路特性曲线不相
某办公楼机房制冷机组冷冻水循环控制系统设计

腾达大厦制冷机组冷冻水循环控制系统设计1.1 设计目标及工程概况(1)设计题目腾达大厦制冷机组冷冻水循环控制系统设计(2)工程概况腾达大厦总建筑面积84260.95㎡。
本设计的制冷站设在底层地下四层冷冻机房内。
冷冻水出水温度7℃,回水温度12℃。
1.2北京室外气象参数1.3冷负荷本建筑物的总建筑面积为84260.95㎡,根据《空气调节技术》书中《国内部分建筑空调冷负荷指标的统计值》查的:办公楼的冷负荷指标(W /㎡):90-120 W /㎡。
冷负荷计算是空调设计及空调设备选型的主要依据;夏季冷负荷采用冷负荷系数法计算,求出每个房间的逐时值。
《国内部分建筑空调冷负荷指标的统计值》中注明:当建筑物的总建筑面积在小于5000㎡取上限值,大于10000㎡时,取下限值。
按建筑空调冷负荷指标确定的冷负荷即是制冷剂容量,不必再加系数。
由于本建筑物的总建筑面积为84260.95㎡,所以,在此我们选用90 W /㎡。
夏季室外气象参数 夏季空调室外计算 34.8℃ 夏季空调室外计算 27℃ 夏季空调室外平均风速 2.8m/s 夏季大气压力 997.3hPa则:本设计用户的空调冷负荷:Q=937W。
3 冷却水系统介绍冷却水系统的作用是将从制冷机吸取的热量散发出去,它主要有冷却塔、冷却水泵、水处理设备和冷水机组冷凝器等设备及管道组成。
冷却水系统:3.1冷却塔型号、台数的介绍冷却塔的作用是为从制冷机吸收出来的冷却水降温,使得冷却水可以循环使用,它有逆流式、横流式、喷射式和蒸发式等四种型,其型号主要依据工作温度条件和冷却水流量来选择。
冷却塔的设置位置应通风良好,远离高温或有害气体,避免气流短路以免建筑物高温高湿排气或非洁净气体对冷却塔的影响。
同时,也应避免所产生的飘逸水影响周围环境。
冷却塔内的填料多为易燃材料,应防止产生冷却塔失火事故。
冷却塔的设置位置可分为三种:(1)、制冷站设在建筑物的地下室,冷却塔设在通风良好的室外绿化地带或室外地面上。
三种水泵的变频控制

冷冻水泵变频:1、根据设定压差控制水泵变频,当测量压差小于设定压差时,根据PID算法,水泵频率渐渐增大,直到50HZ为止。
当测量压差大于设定压差时,根据PID算法,水泵频率渐渐降低,直到30HZ 为止,当水泵频率为30HZ,测量压差仍大于设定压差时,调节旁通阀的开启度,使压差满足要求。
冷却水泵变频控制:2、根据设定的回水温度与测量温度比较,当测量的回水温度小于设定温度,且主机处于启动状态时,水泵以低频30HZ运行,当高于设定温度,根据PID算法渐渐增大水泵的运行频率,当水泵运行频率达到50HZ或温度高于设定温度加带宽时,启动冷却塔地埋水泵变频控制3、根据主机地埋侧进出水温度,让水泵进行变频运行,让主机的COP处于最佳状态,当温度升高时,则增大水泵的运行频率,反之则减小水泵的运行频率。
调节水泵转速的节电原理采用交流变频技术控制水泵的运行,是目前中央空调系统节能改造的有效途经之一,下图绘出了阀门控制调节和变频调速控制两种状态的水泵功率消耗——流量关系曲线。
下图显示了变频器控制和阀门控制水泵所消耗的不同功率,从下图中我们可以清楚的看出在水泵流量为额定的60%时,变频器控制与阀门控制相比,功率下降了60%;所以水泵仅仅依靠阀门控制是远远不够的,进行变频器控制的节能改造是十分必要的。
对于水泵来说,流量Q与转速N成正比,扬程H与转速N的二次方成正比,而轴功率与P与转速N的三次方成正比,下表列出了它们之间的关系变化:水泵转速N% 运行频率F(Hz) 水泵扬程H% 轴功率P%节电率%100 50 100 100 090 45 81 72.9 27.180 40 64 51.2 48.870 35 49 34.3 65.760 30 36 21.6 78.4 从上表中可见用变频调速的方法来减少水泵流量进行节能改造的经济效益是十分显著的,当所需流量减少,水泵转速降低时,其电动机的所需功率按转速的三次方下降;当水泵转速下降到额定转速的10%即F=45Hz时,其电动机轴功率下降了27.1%,水泵节电率为27.1%;当水泵转速下降到额定转速的20%即F=40Hz时,其电动机轴功率下降了48.8%,水泵节电率为48.8%;当水泵转速下降到额定转速的30%即F=35Hz时,其电动机轴功率下降了65.7%,水泵节电率为65.7%;当水泵转速下降到额定转速的60%即F=30Hz时,其电动机轴功率下降了78.4%,水泵节电率为78.4% ;冷冻和冷却水泵节电率的计算:计算公式:冷冻和冷却水泵节电率=[1-(变频器运行频率÷50Hz)3]×100%例如:水泵转速降低30%,即变频器运行频率=35Hz水泵节电率=[1-(35Hz÷50Hz)3]×100%=65.7%水泵转速降低20%,即变频器运行频率=40Hz水泵节电率=[1-(40Hz÷50Hz)3]×100%=48.8%。
一次冷冻水泵变压差变频控制

设定压差值随负荷的变化而变化。给出一种具体做法:a.任何时候所有的阀门 开启度都小于 90%,此状态连续保持十分钟,把压差设定值减少 10%;b.任何时 候所有的阀门开启度都大于 95%, 此状态连续保持 8 分钟, 则压差设定值增加 10%。 用变压差控制能最大限度的降低压差设定值,从而减少阀门的节流损失,具有 更好的节能效果,但需复杂的控制系统和相应的控制算法。变压差控制方式需要设 置较多的传感器,且控制过程较为复杂,日后的维护保养工作较重,适合于各空调 支路上压差各不相同且需要精确控制的场合,也适用于传感器以及变频控制装置在 整个空调系统当中的初投资比例较小的场合。
常设置在供回水干管之问和最不利环路末端两侧,压差传感器设置在供回水干管之 间时, 压差设定值的下限为额定状况时压差传感器与最不利环路用户端之问的压降, 水泵的变频动作不会引起支路之间的相互影响;压差传感器设置在最不利环路末端 两侧时,压差设定值的下限为最不利环路末端压降,在这种方式下由于流量的变化 可能会引起最不利环路发生变化,此时就需要对各个时刻的管路进行水力计算,确 定不同时刻下的最不利环路, 如果最不利环路没有改变, 则不需要增设压差传感器, 如果发生了变化,则在变化后的最不利环路末端设置压差传感器,并且控制水泵的 变频。
数的控制策略限制很多,并且由于水泵和冷水机组之间为并联连接,为了不 使水倒流,必须所有水泵同时变频,并且在运行中必须保持一次泵运行台数 和冷机台数相同。 2.在一次泵变流量系统中, 变流量的关键在于冷水机组的变流量性能, 即 机组本身对负荷变化的响应速度决定了整个系统的节省潜力。在本次设计中 也必须考虑最小流量的限制,故我们采用变频控制控制,采用差压旁通作为 辅助控制,以保证冷水机组安全。 3、对于压差控制方法,存在定压差和变压差两种控制方法;对于温差控 制方法,同样存在变温差控制和定温差控制。 (1)定压差控制与变压差控制的比较 空调冷冻水泵变频调节的定压差控制点一般是位于分集水器之间的,如图 2 所示, 这将整个冷冻水系统分成了空调末端侧和空调主机侧两部分,在定压差控 制过程中这两部分的工作特性是截然不同的:对于空调末端侧,其压力损失 H, 是等于控制压力值 P 的, 阻力系数 S, 是随着流量的减少而增大的; 对于空调主 机侧, 其阻力系数 S,是保持不变的, 而压力损失 H: 是随着流量的减少而减小的。 因此,定压差控制的控制方程如公式 6 所示,调节过程如图 3 中的 AB 线所示。
螺杆式冷冻机冷冻水系统

螺杆式冷冻机冷冻水系统﹙一﹚冷冻水系统:蒸发器、冷冻泵,PLC控制系统﹙二﹚冷却水系统:冷凝器、冷却塔、冷却泵、风机、PLC控制系统蒸发器与冷凝器蒸发器工作过程:蒸发器实际就是冷热交换器,制冷剂经过蒸发器吸收热量,将从车间流回来的热水中的热量带走使之冷却。
冷凝器的作用正好与蒸发器的作用相反:即经过冷却塔的冷却水流过冷凝器对气化的制冷剂实行冷却,从而降低了制冷剂的温度。
而降温后的制冷剂重新经过压缩机压缩液化成液体进入下一循环。
冷水机工艺水箱内部分冷水箱和回水箱两个部分,经过冷冻降温到22℃的水流入冷水箱,有高压泵送到车间,而从车间返回的高温水进入回水箱,再由冷冻泵抽到冷水机蒸发器降温。
变频冷水机三:工作原理压缩机制冷过程: 制冷剂经在压缩机进行压缩后形成液态,然后在经过蒸发器蒸发,在蒸发的过程中吸收大量的热能,蒸发后形成气态,在经过冷凝器冷却释放掉热量。
螺杆式冷冻机设备启动初次启动冷水机组前应检查:风冷式冷水机1. 电源电压、相数、频率是否符合规定(请对照名牌),电源线接线是否牢固。
2. 机台摆置是否适当,配管连接部分是否锁紧。
冰水机3. 机台启动前应先确定水泵转向是否正确。
冷冻机4. 将电源送至控制箱,电源指示灯点亮将控制箱内的主电源开关和控制电源开关切到ON的位置,此时压缩机进入预热状态,正常情况下应预热30分钟;工业冷水机5. 启动冷水机前应先启动低压泵、高压泵及冷却泵,并确认水泵的转向是否正确;6. 再次确认水泵转向是否正确及水管阀门是否全部打开,检查冷却塔流量,布水器是否转动正常,检查冷却塔水位;7. 在上述检查正常的情况下按下面板上的ON/OFF开关的ON键,停机指示灯熄灭,运转指示灯亮,压缩机进入延时启动状态,延时到达后压缩机组启动工作;冷水机8. 压缩机运行达到平稳后冷媒低压表应指示在50-80Ps之间;冷媒高压指示应在120-220Ps之间,高于上述范围应检查冷凝器散热是否良好,冷却塔水温是否正常:回水温度低于32℃;9. 当冷水机工作使水箱内水温达到设定值下限后压缩机进入停止运转待机状态,当水温回到设定值上限且达到延时时间,冷水机组重新进入运行状态;10. 停止时按下面板上ON/OFF开关的OFF键关闭压缩机,停机指示灯亮;11. 将高压泵、低压泵及冷却水泵开关切换到关闭位置12. 将机台内电源开关及控制开关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冷冻水泵的控制系统方案一
--------通过频率和水泵启停自动控制水压1.引言
冷冻水泵的控制系统,一共分两套,一套4台水泵、1套3台水泵。
为了改善系统性能,在原来的设施基础上进行自动化改造,以使设备在无人干涉的情况下自动运行。
通过plc的决策控制,对系统进行自动检测、自动运行,使设备达到最佳的工作状态,从而达到有效地节约能源、降低运行成本和延长设备使用寿命等目的。
下面是在现有的基础上实现上述功能的具体方案。
2.方案背景说明
目前有两套控制系统,一共7个控制柜(2200*600*800)。
其中一套4台水泵,一套3台水泵,2个CPU模块(xlt102 horner),2个I\O扩展模块HE559DAC207 (8个AO),7个变频器55KW(A TV61HD55N4施耐德),2个压力传感器(QBE2002-P10西门子)。
电缆:YJV (3*70)+(2*35) 金山
控制要求:
自动控制:现场采集冷冻水泵的压力信号,传送给PLC,通过与给定的压力信号进行比较,超过给定的压力值时,PLC输出控制信号给变频器,由变频器停止冷冻水泵的运行;当信号低于给定压力值时,则开启冷冻水泵。
手动控制:若变频器损坏可以工频切换,改为手动控制。
3.技术方案说明
3.1 旧控制系统改造方案
旧控制系统由于稳定性、可靠性不高,现需要参照新控制方案进行改造,具体方案如下:
1.原仪表设备不变。
2.由电缆将变频控制柜与原系统控制箱相连,实现稳定、可靠地自动控制。
3.根据新的硬件方案,开发新的PLC程序,改造完成后对控制系统进行调试,保证正常运行,实现上述功能。