网络分析仪原理及使用
网络分析仪原理图

网络分析仪原理图
网络分析仪原理图如下:
[插入网络分析仪原理图]
网络分析仪是一种用于测试和分析电路中频率响应的仪器。
它通常用于测量电路的传输特性、校准设备和分析电路中的故障。
网络分析仪基本上由两部分组成:生成器和接收器。
生成器是网络分析仪中的一个重要组成部分,它产生被测电路所需要的激励信号。
这个激励信号可以是单一频率的正弦波,也可以是多频率的信号。
生成器的输出信号送入被测电路,并通过接收器进行测量。
接收器是网络分析仪中的另一个重要组成部分,它用于测量被测电路中的响应信号。
接收器可以测量电路中的电压、电流或功率等参数,以获取被测电路的频率响应。
通过对激励信号和响应信号进行测量和分析,网络分析仪可以确定电路的传输特性,例如增益、相位和频率响应等。
网络分析仪原理图中的其他部分包括:输入接口、输出接口、显示屏和控制模块等。
输入接口用于将被测电路连接到网络分析仪,输出接口用于将测试结果输出到其他设备。
显示屏用于显示测试结果和参数,以便用户进行分析和判断。
控制模块用于设置和调整网络分析仪的工作模式、参数和功能。
总之,网络分析仪通过生成激励信号,测量响应信号,并进行
分析和判断,能够准确评估电路的频率响应和特性,为电路的测试和故障分析提供了重要的工具。
wifi信号分析仪

wifi信号分析仪WiFi信号分析仪随着无线网络的普及,WiFi信号分析仪成为了一个越来越重要的工具。
它可以帮助我们更好地了解和优化WiFi网络的质量。
本文将介绍WiFi信号分析仪的原理、功能以及如何选择和使用它。
一、原理WiFi信号分析仪是一种通过无线接收和解码WiFi信号的设备。
它通过内置的天线接收WiFi信号,并将收到的信号转化为可视化的数据。
信号分析仪提供了一系列的参数,如信号强度、信噪比、信道利用率等,用于评估WiFi网络的性能。
二、功能1. 信号强度测量:WiFi信号分析仪可以测量WiFi信号的强度,帮助用户判断信号的覆盖范围和信号强弱。
2. 信号质量评估:信号分析仪可以通过分析信号的噪声水平和信噪比来评估信号的质量,从而帮助用户判断网络的稳定性和可靠性。
3. 信道利用率分析:WiFi信号分析仪可以分析不同信道上的利用率,帮助用户选择较少干扰的信道,提高网络的速度和稳定性。
4. 数据包分析:WiFi信号分析仪可以抓取和分析WiFi网络中的数据包,帮助用户定位网络故障和问题。
5. 频谱分析:一些高级的WiFi信号分析仪还提供频谱分析功能,用于检测和分析WiFi网络中的干扰源,并提供相应的优化建议。
三、选择和使用选择合适的WiFi信号分析仪非常重要。
首先,需要考虑要测试的频段和标准(如2.4GHz或5GHz,802.11b/g/n/ac等)。
其次,需要考虑信号分析仪的性能和功能需求,如信号强度测量范围、数据包捕获和分析能力等。
最后,还要考虑设备的价格和易用性。
在使用WiFi信号分析仪时,应注意以下几点:1. 在进行信号测量时,应尽可能避免遮挡物和干扰源,以减少测量误差。
2. 在使用信号分析仪进行信号优化时,可以通过调整路由器的位置、更改信道、增加信号增强器等方式来改善信号质量。
3. 在进行数据包分析时,可以使用信号分析仪提供的工具和功能,如过滤器、捕获和分析软件等。
4. 需要根据实际需求进行参数设置,如信号强度的单位、信道利用率的阈值等。
网络分析仪原理及操作培训

网络分析仪原理
深入探讨网络分析仪的基本原理,包括信号解析、频谱分析和波动分析。了解其在网络故障诊断中的关键作用。
网络分析仪操作说明
1
连接设备
学习如何正确连接网络分析仪与被测设备,并确保准确的信号采集。
2
设置测量参数
详细了解如何根据需求设置测量参数,包括频率范围、带宽和增益等。
网络分析仪操境因素 的影响,尽量在低干扰环境 下进行测量。
正确校准
定期校准仪器,确保测量结 果的准确性和可靠性。
数据解读
学会正确解读测量数据,结 合实际场景进行问题分析和 故障排查。
网络分析仪常见问题及解决方法
无法连接设备
检查网络连接、设备设置以及驱 动程序是否正确安装。
测量结果异常
测量精度问题
排查设备故障、信号干扰等因素, 并参考厂商文档进行适当的疑难 解答。
检查仪器校准情况,保证测量结 果的准确性。
网络分析仪的应用案例
1
无线网络排障
利用网络分析仪分析无线信号,定位并解决无线网络中的故障。
2
网络容量规划
通过测量网络流量和带宽利用率,优化网络规划和资源分配。
3
网络安全检测
通过监测网络流量和识别异常行为,发现并抵御潜在的网络安全威胁。
网络分析仪在电信行业中的重 要性和作用
介绍网络分析仪在电信行业中的广泛应用,包括网络故障排查、网络优化和 服务质量保障。
3
执行测量
掌握如何进行各种测量操作,比如频谱分析、时域分析和网络监测等。
网络分析仪使用的主要功能和特点
1 频谱分析
通过频率分析技术,准确 测量并显示信号的频谱分 布。
2 时域分析
矢量网络分析仪

矢量网络分析仪矢量网络分析仪是一种广泛应用于通信、无线电设备和电子电路实验的精密测试仪器。
它可以测量电路中各种参数,如反射系数、传输系数和阻抗等,并为分析电路的性能提供数学模型。
本文将对矢量网络分析仪的原理、结构和应用进行详尽介绍。
一、矢量网络分析仪的原理矢量网络分析仪的原理是基于麦克斯韦方程组和电磁场理论。
在基础电磁理论的基础上,矢量网络分析仪将电信号分为正弦波和相位两部分进行测量,通过计算这些部分的幅度和相位差异,可以确定电路中各种参数的值。
这里简单介绍一下矢量网络分析仪的基本工作原理。
1.1 反射系数的测量反射系数是指信号在电路中反射时与源信号之间的关系。
在矢量网络分析仪的测量中,反射系数的测量可以通过向电路输入一个特定频率的正弦信号,并在电路的接收端检测到其反射信号,然后测量两个信号之间的相位和振幅差异,来计算反射系数的值。
1.2 传输系数的测量传输系数是指信号从电路的输入端到输出端的传输效率。
在矢量网络分析仪的测量中,传输系数可以通过在电路的输入端和输出端分别加入正弦信号,并测量两个信号之间的相位和振幅差异,来计算传输系数的值。
1.3 阻抗的测量阻抗是指电路对电流和电势差的响应,其强度和方向受到电路的各种参数的影响。
在矢量网络分析仪的测量中,阻抗可以通过向电路输入一个特定频率的正弦信号,并通过测量电路中的电流和电势差,来计算阻抗的值。
二、矢量网络分析仪的结构矢量网络分析仪的结构主要分为三部分:源信号、接收器和计算机控制系统。
源信号负责向电路中输入正弦信号,接收器负责检测电路中的反射和传输信号,计算机控制系统则负责数据处理和分析。
下面将对这些部分的结构和功能进行详细介绍。
2.1 源信号源信号是矢量网络分析仪的核心部分之一。
它主要通过向电路中输入不同频率和振幅的信号来测量电路的性能。
源信号通常由射频信号发生器(RF signal generator)或特定的示波器(oscilloscope)提供,其输出功率和波形必须具有高度稳定性和可控制性。
网络分析仪基本原理

一般而言,网络分析仪在射频及微波组件方面的量测上,是最基本、应用层次也最广的仪器,它可以提供线性及非线性特性组件的量测参数,因此,举凡所有射频主被动组件的仿真、制程及测试上,几乎都会使用到。
在量测参数上,它不但可以提供反射系数,并从反射系数换算出阻抗的大小,且可以量测穿透系数,以及推演出重要的S参数及其它重要的参数,如相位、群速度延迟(Group Delay)、插入损失(Insertion Loss)、增益(Gain)甚至放大器的1dB 压缩点(Compression point)等。
基本原理电子电路组件在高频下工作时,许多特性与低频的行为有所不同,在高频时,其波长与实际电路组件的物理尺度相比会相对变小,举例来说,在真空下的电磁波其速度即为光速,则 c=XXf,其中c为光速3X108m/sec,若操作在2.4GHz的频率下,若不考虑空气的介电系数,则波长入=12.5cm,亦即在短短的数公分内,电压大小就会因相位的偏移而有极大的变化。
因此在高频下,我们会使用能量及阻抗的观念来取代低频的电压及电流的表示法,此时我们就会引入前述文章所提「波」的概念。
光波属于电磁波的一种,当我们用光分析一个组件时,会使用一个已知的入射光源测量未知的待测物,如图1所示,当光波由空气到达另一个介质时,会因折射率的不同产生部分反射及部分穿透的特性,例如化学成分分析上使用的穿透及反射光谱。
对于同样是属电磁波的射频来说,道理是相通的,光之于折射率就好比微波之于阻抗的概念,当一个电磁波到达另一个不连续的阻抗接口时,同样也会有穿透及反射的行为,从这些反射及穿透行为的大小及相位变化中,就可以分析出该组件的特性。
用来描述组件的参数有许多种,其中某些只包含振幅的讯息,如回返损耗(R.L. Return Loss)、驻波比(SWR Standing Wave Ratio)或插入损失(I.L. Insertion Loss)等,我们称为纯量,而能得到如反射系数(r Reflection coefficient)及穿透系数(T Transmission coefficient)等,我们称之为向量,其中向量可以推导出纯量行为,但纯量却因无相位信息而无法推导出向量特性。
网络分析仪原理

网络分析仪原理
网络分析仪主要通过发送探测信号并测量信号的特征来分析和评估网络的性能和状态。
其原理可以分为以下几个方面:
1. 频谱分析原理:网络分析仪能分析信号在频域上的特性,通过将信号转换成频谱图并对其进行解读。
频谱图展示了信号中不同频率成分的能量分布情况,可以帮助判断信号存在的频率偏移、干扰等问题。
2. 时域分析原理:网络分析仪能分析信号在时间域上的特性,通过观察信号的波形和脉冲响应来判断信号的传输质量和故障情况。
时域分析可以检测信号的时延、失真、抖动等问题,有助于确定网络中的传输问题。
3. 调制解调原理:网络分析仪可以对不同的调制方式进行解调和分析。
通过解调信号,可以还原出原始信号并进行分析,帮助判断调制方式选择是否正确和信号传输是否完整。
4. 数据采样原理:网络分析仪通过对信号进行快速高精度的数据采样,获取信号的采样值,并将采样数据传输给计算机进行分析和显示。
数据采样精度和速度对准确定位和分析信号的特征至关重要。
5. 数据处理原理:网络分析仪对采样数据进行处理和分析,可以计算出一系列指标和参数,如频谱功率、频谱带宽、时延、串扰等,用于评估网络的性能和问题。
6. 数据显示原理:网络分析仪将分析处理后的数据通过显示器进行展示,以图形、数字等形式呈现给用户。
用户可以直观地观察数据并进行判断和分析,从而对网络进行优化和故障排除。
通过以上原理,网络分析仪可以帮助用户对网络的性能进行全面评估和分析,提供有力的技术支持和帮助。
网络分析仪原理

网络分析仪原理网络分析仪是一种用于分析和监测网络流量的设备,它能够帮助用户了解网络的使用情况、识别网络中的问题和优化网络性能。
网络分析仪的原理主要包括数据捕获、数据分析和数据呈现三个方面。
首先,网络分析仪通过数据捕获功能获取网络中的数据流量。
它能够监测网络上的数据包,并将这些数据包进行存储和分析。
数据捕获是网络分析仪的核心功能之一,它能够捕获网络中的各种数据,包括传输层和应用层的数据。
通过数据捕获功能,用户可以获取网络中的实时数据,并对这些数据进行进一步的分析和处理。
其次,网络分析仪通过数据分析功能对捕获到的数据进行分析。
在数据分析过程中,网络分析仪会对数据包进行解析,并提取出其中的关键信息。
通过数据分析功能,用户可以了解网络中的流量模式、数据包的传输情况以及网络中存在的问题。
此外,网络分析仪还可以对数据进行过滤和分类,帮助用户快速定位和解决网络故障。
最后,网络分析仪通过数据呈现功能将分析后的数据以直观的方式呈现给用户。
数据呈现是网络分析仪的另一个重要功能,它能够将复杂的数据转化为图表、报表或者图形化界面,让用户能够直观地了解网络的使用情况和性能状况。
通过数据呈现功能,用户可以快速地发现网络中的异常情况,并及时采取措施进行调整和优化。
总的来说,网络分析仪通过数据捕获、数据分析和数据呈现三个方面的原理,帮助用户监测和分析网络流量,识别网络中的问题并优化网络性能。
它在网络管理和维护中发挥着重要作用,成为了网络运维人员的得力助手。
通过深入了解网络分析仪的原理,用户可以更好地利用这一设备,保障网络的稳定运行和高效使用。
网络分析仪培训资料

网络分析仪培训资料在当今的电子通信领域,网络分析仪作为一种重要的测试测量仪器,发挥着不可或缺的作用。
无论是研发新型电子设备,还是对现有网络进行维护和优化,都离不开网络分析仪的精准测量和分析。
为了帮助大家更好地掌握网络分析仪的使用方法和技术,本文将对其进行详细的介绍和培训。
一、网络分析仪的基本原理网络分析仪是一种用于测量网络参数的仪器,它可以测量诸如反射系数、传输系数、阻抗、增益、相位等参数。
其基本原理是通过向被测网络施加激励信号,并测量响应信号,然后通过计算和分析得到网络的各种参数。
网络分析仪通常由信号源、接收机、测试装置和数据分析处理单元组成。
信号源产生特定频率和功率的测试信号,接收机用于测量被测网络的响应信号。
测试装置则将测试信号和响应信号进行适当的处理和转换,以便于数据分析处理单元进行计算和分析。
二、网络分析仪的类型根据不同的应用需求和测量精度,网络分析仪可以分为多种类型。
常见的有标量网络分析仪和矢量网络分析仪。
标量网络分析仪主要测量信号的幅度特性,如衰减和增益等。
它相对简单,价格较低,但无法提供相位信息。
矢量网络分析仪则不仅可以测量信号的幅度,还可以测量相位信息,能够更全面地描述被测网络的特性。
但矢量网络分析仪通常价格较高,操作也相对复杂。
此外,还有手持式网络分析仪和台式网络分析仪之分。
手持式网络分析仪便于携带,适用于现场测试;台式网络分析仪则精度更高,功能更强大,适用于实验室和研发环境。
三、网络分析仪的主要技术指标在选择和使用网络分析仪时,需要了解一些重要的技术指标,以确保其能够满足测量需求。
1、频率范围:网络分析仪能够测量的频率范围,这是根据具体的应用需求来选择的。
2、测量精度:包括幅度精度和相位精度,精度越高,测量结果越准确。
3、动态范围:表示网络分析仪能够测量的最大信号和最小信号之间的比值。
4、分辨率:指能够分辨的最小频率间隔和幅度变化。
四、网络分析仪的操作步骤1、连接设备首先,将网络分析仪与被测网络正确连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网络分析仪原理及使用康飞---芬兰贝尔罗斯公司2007年10月一般而言,网络分析仪在射频及微波组件方面的量测上,是最基本、应用层次也最广的仪器,它可以提供线性及非线性特性组件的量测参数,因此,举凡所有射频主被动组件的仿真、制程及测试上,几乎都会使用到。
在量测参数上,它不但可以提供反射系数,并从反射系数换算出阻抗的大小,且可以量测穿透系数,以及推演出重要的S参数及其它重要的参数,如相位、群速度延迟(Group Delay)、插入损失(Insertion Loss)、增益(Gain)甚至放大器的1dB压缩点(Compression point)等。
基本原理电子电路组件在高频下工作时,许多特性与低频的行为有所不同,在高频时,其波长与实际电路组件的物理尺度相比会相对变小,举例来说,在真空下的电磁波其速度即为光速,则c=λ×f,其中c为光速3×108m/sec,若操作在2.4GHz的频率下,若不考虑空气的介电系数,则波长λ=12.5cm,亦即在短短的数公分内,电压大小就会因相位的偏移而有极大的变化。
因此在高频下,我们会使用能量及阻抗的观念来取代低频的电压及电流的表示法,此时我们就会引入前述文章所提「波」的概念。
光波属于电磁波的一种,当我们用光分析一个组件时,会使用一个已知的入射光源测量未知的待测物,当光波由空气到达另一个介质时,会因折射率的不同产生部分反射及部分穿透的特性,例如化学成分分析上使用的穿透及反射光谱。
对于同样是属电磁波的射频来说,道理是相通的,光之于折射率就好比微波之于阻抗的概念,当一个电磁波到达另一个不连续的阻抗接口时,同样也会有穿透及反射的行为,从这些反射及穿透行为的大小及相位变化中,就可以分析出该组件的特性。
用来描述组件的参数有许多种,其中某些只包含振幅的讯息,如回返损耗(R.L. Return Loss)、驻波比(SWR Standing Wave Ratio)或插入损失(I.L. Insertion Loss)等,我们称为纯量,而能得到如反射系数(Γ Reflection coefficient)及穿透系数(Τ Transmission coefficient)等,我们称之为向量,其中向量可以推导出纯量行为,但纯量却因无相位信息而无法推导出向量特性。
重要的向量系数反射特性在此,我们重点介绍几个重要的向量系数︰首先,我们从反射系数来定义,其中Vrefect为反射波、Vinc为入射波,两者皆为向量,亦即包含振幅及相位的信息,而反射系数代表入射与反射能量的比值,经过理论的演算,可以从传输线的特性阻抗ZO(Characteristic Impedance)得到待测组件的负载阻抗ZL,亦即,在网络分析中,一般使用史密斯图(Smith Chart)来标示不同频率下的阻抗值。
另外,反射系数也可以使用极坐标表示:,其中为反射系数的大小,φ则表示入射与反射波的相位差值。
接下来,介绍两个纯量的参数--驻波比及回返损耗,其中驻波的意义是入射波与被待测装置反射回来的反射波造成在传输线上的电压或电流驻波效应,而驻波比(SWR)的定义就是驻波中的最大与最小能量的比值,我们可以从纯量的反射系数中得到。
同样,我们也可以从ρ值定义出回返损耗(R.L.),其意义是反射能量与入射能量的比值,其值愈大,代表反射回来的能量愈小。
对于反射系数所衍生的相关纯量参数,我们将其整理成表1,基本上,它们之间是换算的过程,会因为产业及应用的不同而倾向于使用某一参数。
REMARK:驻波系数又叫做驻波比,如果电缆线路上有反射波,它与行波相互作用就会产生驻波,这时线上某些点的电压振幅为最大值Vmax,某些点的电压振幅为最小值Vmin,最大振幅与最小振幅之比称为驻波系数.驻波系数越大,表示线路上反射波成分愈大, 也表示线路不均匀或线路终端失配较大.为控制电缆的不均匀性,要求一定长度的终端匹配的电缆在使用频段上的输入驻波系数S不超过某一规定的数值.电缆中不均匀性的大小,也可用反射衰减来表示.反射系数的倒数的绝对值取对数,称为反射衰减.反射衰减愈大,即反射系数愈小,也就是驻波比愈小,即表示内部不均匀性越小.穿透特性对于穿透的特性,一样有分为纯量与向量两种,对于向量系数而言,最重要的就是穿透系数,其中Vtrans为经过待测物后的穿透波、Vinc为入射波,而τ即为穿透系数的纯量大小,θ则表示入射与穿透波的相位差值。
对于纯量的定义上,以被动组件而言,最常使用的就是插入损失(I.L. Insertion Loss),亦即与上述的τ值是相关的参数,定义为。
若为主动组件如放大器等,穿透的信号有放大的效应则为增益(Gain),此时定义为。
对于向量的行为,则计有插入相位(Insertion Phase),其表示入射与穿透信号的相位差,我们可以从相位的变化中,推导出另一个很重要的参数-群速延迟(G.D. Group Delay),它代表的意义就是不同频率的波在一段传输线中,因介电材料或其它边界效应(Boundary condition)的影响,使到达时间不同而产生的延迟现象,其中又有分为平均延迟时间(Average Group Delay)与波浪(Ripple)或称为平坦度(Flatness)的定义,前者表示不同频率到达的平均时间,并可以从中推算出电气长度(Electrical Length),后者则表示不同频率间的到达时间差,一般我们会希望平坦度愈小愈好,如此在通讯上不致造成信号失真的问题。
散射参数(Scattering parameter)在高频的量测上,S参数提供了相当有用的定性量测方法,以便分析双端口甚至是多端口组件的所有特性,如放大器、滤波器、天线以及缆线等,S参数与低频的Z、Y参数定义相当类似,但不同的是S参数是采用入射、反射及穿透波能量来描述待测装置的输入及输出端口特性,而不若Z、Y参数必须找到电压或电流的开路或短路的解,使得在高频领域下的应用更为广泛。
图2则是两端口组件S参数的表示方式,其中a表示发射源,b则为接收器,而a、b的下标则代表从第一埠(Port 1)或第二埠(Port 2)来量测,如a1则表示从第一端口的发射信号源,b2则表示在第二端口的信号接收器。
以一个双端口组件而言,会衍生出四个S参数,若为三埠或多端口以上的组件,就会有N2个相对应参数,基本上,在微波工程中常用以矩阵来表示。
而每一个S参数,都有其对应的边界条件,如,即表示第二端口时没有信号反射时,亦即待测物输出端有负载阻抗的匹配时,所得到待测物在输入端的反射系数。
基本上,网络分析仪的架构可以分成四大部分:一个是信号的发射源,另一种为用以分离入射、反射及穿透波的信号分离电路,第三是将射频或微波信号转换至中频信号的接收器,最后是负责将侦测信号作运算处理的处理器及显示屏。
信号源担任激励(Stimulus)的角色信号源在网络分析仪中是担任一个激励(Stimulus)的角色,主要是提供一个扫频或功率扫描的信号送到待测物上,当信号打到待测物之后,就会反应出穿透或反射的行为,据此,我们就可以得到某个频率或功率范围下的响应,而信号源的频率范围、频率稳定度、信号纯度以至于功率位准即位准控制能力都会影响量测的结果,一般用于网络分析仪中大致有两类,其一是振荡器(Oscillator),另一个是合成器(Synthesizer),前者好处是价格低廉,但频率稳定度及精确度远不及后者,若我们量测的组件其响应变化优于振荡器时,如量测晶体滤波器的残存FM(residual FM)频宽时,就应该采用更稳定的合成器信号源。
信号分离电路将入射、反射及穿透信号分离处理当信号源产生入射的信号行为后,接下来就是要将入射、反射及穿透信号予以分离处理,进而侦测每一分量的振幅及相位特性。
担任信号分离工作的是一些被动组件,主要有单向耦合器(Directional Coupler)、电桥(Bridge)、功率分离器(Power Splitter)等,图4中即为单向耦合器的示意图,其中主路径只有单一方向的功率行进情况下,才会有能量被耦合到耦合路径上,而被耦合的路径的信号位准通常较低,而下降位准的总量称为耦合因子(Coupling Factor),例如耦合因子为20dB的单向性耦合器,代表入射信号的1%能量会耦合到耦合路径上,而99%的功率则仍在主路径上行进。
另一个单向耦合器的重要参数为方向性(Directivity),其定义为:Directivity(dB)=Isolation(dB) - Coupling Factor(dB) - Loss(dB)代表信号在顺向及逆向所检测到的信号差,造成方向性误差的来源有信号的泄漏(Leakage)或称为隔绝性(Isolation)、耦合器内部及接头阻抗不匹配的反射(亦即耦合因子)等。
在仪器内部中,方向性应尽可能的好,一般至少要在30dB以上,如此才不致受到信号泄漏的误差而影响量测。
而功率分离电路的特性是将入射信号分离成两个路径,一般而言,两个分离信号的功率位准比原入射信号低6dB,分离器的主要目的是产生一个具有与信号源完全匹配的量测环境,一般连接的方式是将其中一个输出路径连接到参考接收器(Reference Detector),而另一个输出路径则连接到待测物上,若在待测物的输出端后接上一个传输接收器(Transmission Detector),就可以从两个功率比值中得到穿透系数,综而言之,功率分离器是一个宽频且良好频率响应的组件,并能与信号源及接收器间有良好的匹配。
第三种是电桥,其工作原理类似于惠斯同电桥(Wheatstone Bridge),其等效于单向性耦合器的方向性定义为最大的平衡值(Maximum Balance,即接上完美的负载)与最小的平衡值(Minimum Balance,即接上开路或短路)所得的比率(dB),是单向耦合器的替代方案。
在量测上,与单向耦合器不同的地方是它可以工作在直流下,因此仪器可以有较大的频率量测范围,一般单向耦合器有高通(High Pass)的反应现象,因此在低于40MHz以下就必须用电桥来取代。
但电桥也有其缺点,因为它的信号位准从待测物传回值较小,因此会有较大的损耗,相较于单向耦合器则具有低损耗(Low Loss)的优点,电桥则减少了量测的动态范围。
上述的各个组件一般工作在50或75欧姆下的环境,实际上量测反射系数时,我们会搭配一对或一个单向性耦合器及一个功率分离器,如图5下方所示,才能将入射与反射信号分离,而对于穿透系数量测上,基本上使用一个功率分离器或单向性耦合器就可完成入射与穿透信号的分离动作,在穿透量测上使用单向性耦合器的好处是可以将大部分的能量送到待测物上,而可以得到较佳的动态范围,而电桥的接法与单向性耦合器类似,在此不再赘述。