2011高考数学复习资料汇编:第3单元 三角函数(真题解析+最新模拟)
《2011年高考数学试题分类汇编三角函数》

a3 ,求函数 f ( x) 的解析式. 13 1 解: (Ⅰ )由 q = 3, S 3 = 得 a1 = ,所以 an = 3n− 2 ; 3 3 (Ⅱ)由(Ⅰ)得 a3 = 3 ,因为函数 f ( x) 最大值为 3,所以 A = 3 , π π π 又当 x = 时函数 f ( x) 取得最大值,所以 sin( + ϕ ) = 1 ,因为 0 < ϕ < π ,故 ϕ = , 6 3 6 π 所以函数 f ( x) 的解析式为 f ( x) = 3sin(2 x + ) 。 6
(a + 4) 2 = a 2 + (a − 4)2 − 2a (a − 4) cos120� ,则 a = 10 ,所以三边长为 6,10,14.△ABC 的面 1 积为 S = × 6 × 10 × sin120� = 15 3 . 2 π 安徽文(15)设 f ( x) = a sin 2 x + b cos 2 x ,其中 a,b ∈ R,ab ≠ 0,若 f ( x ) ≤ f ( ) 对一切则 6 7π π 11π x ∈ R 恒成立,则① f ( ② f( ) < f ( ) ③ f ( x) 既不是奇函数也不是偶函数 )=0 10 5 12 π 2π ⎤ ⎡ ④ f ( x) 的单调递增区间是 kπ + , kπ + (k ∈ Z ) ⎢ 6 3 ⎥ ⎣ ⎦ ⑤存在经过点(a ,b)的直线与函数的图 f ( x) 像不相交
2011年高考文科数学试题分类汇编 三角函数教师版

2011年高考文科数学试题分类汇编—解三角形一、填空题1.(全国新课标文)(15) ABC ∆中,120,7,5B A C A B =︒==,则ABC ∆的面积为______4315___. 2.(全国大纲文)14.已知a ∈(3,2ππ),t a n 2,c o s αα=则=3.(上海文)8.在相距2千米的A .B 两点处测量目标C ,若0075,60CAB CBA ∠=∠=,则A .C千米。
4.(福建文)14.若△ABC 的面积为3,BC=2,C=︒60,则边AB 的长度等于____2___.5.(北京文)(9)在ABC 中,若15,,sin 43b B A π=∠==,则a = . 【答案】325 【解析】:由正弦定理得sin sin a b A B =又15,,sin 43b B A π=∠==所以5,1sin 34a a π==二、解答题1.(安徽文)(16)(本小题满分13分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a=b=12cos()0B C ++=,求边BC 上的高.(16)(本小题满分13分)本题考查两角和的正弦公式,同角三角函数的基本关系,利用正弦定理或余弦定理解三角形,以及三角形的边与角之间的对应大小关系,考查综合运算求和能力.解:由A C B C B -=+=++π和0)cos(21,得 .23sin ,21cos ,0cos 21===-A A A 再由正弦定理,得.22sin sin ==a Ab B .22sin 1cos ,2,,=-=<<<B B B B A B a b 从而不是最大角所以知由π由上述结果知).2123(22)sin(sin +=+=B A C 设边BC 上的高为h ,则有.213sin +==C b h 2.(天津文)16.(本小题满分13分)在△ABC 中,内角,,A B C 的对边分别为,,a b c,已知,2.B C b ==(Ⅰ)求cos A 的值; (Ⅱ)cos(2)4A π+的值. (16)本小题主要考查余弦定理、两角和的余弦公式、同角三角函数的基本关系、二倍角的正弦、余弦公式等基础知识,考查基本运算能力,满分13分。
2011年高考文科数学试题分类汇编 三、三角函数

三、三角函数(一)选择题(DBABDCAB)(重庆文)8.若△ABC 的内角,,,A B C 满足6sin 4sin 3sin A B C ==,则cos B =A B .34C D .1116(辽宁文)(12)已知函数)(x f =A tan (ωx +ϕ)(2||,0πϕω<>),y =)(x f 的部分图像如下图,则=)24(πf(A ) (B(C ) (D )2(上海文)17.若三角方程sin 0x =与sin 20x =的解集分别为E 和F ,则〖答〗 ( )A .E F ØB .E F ÙC .E F =D .EF =∅(全国新课标文)(7)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A ) 45-(B )35- (C ) 35 (D )45(全国新课标文)(11)设函数()sin(2)cos(2)44f x x x ππ=+++,则(A )()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称(B )()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称(C )()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称(D )()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称(全国大纲文)7.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .9(湖北文)6.已知函数()i n c o s,f x x x x R-∈,若()1f x ≥,则x 的取值范围为A .|22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B .|,3xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭C .5|22,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭D .5|,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭(山东文)6.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A)23 (B)32(C) 2 (D)3 【解析】由题意知,函数在3x π=处取得最大值1,所以1=sin3ωπ,故选B.(四川文)8.在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是(A )(0,]6π(B )[,)6ππ(C )(0,]3π(D )[,)3ππ答案:C解析:由222sin sin sin sin sin A B C B C ≤+-得222a b c bc ≤+-,即222122b c a bc +-≥,∴1cos 2A ≥,∵0A π<<,故03A π<≤,选C .(浙江文)(5)在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=(A)-12 (B) 12(C) -1 (D) 1 【答案】D【解析】∵B b A a sin cos =,∴B A A 2sin cos sin =,∴1cos sin cos cos sin 222=+=+B B B A A . (福建文)9.若a ∈(0,2π),且sin 2a+cos2a=14,则tana 的值等于A .B .C .D .答案:D(天津文)7.已知函数()2sin(),f x x x R ωϕ=+∈,其中0,,()f x ωπϕπ>-<≤若的最小正周期为6π,且当2x π=时,()f x 取得最大值,则( )A .()f x 在区间[2,0]π-上是增函数B .()f x 在区间[3,]ππ--上是增函数C .()f x 在区间[3,5]ππ上是减函数D .()f x 在区间[4,6]ππ上是减函数【答案】A【解析】∵πωπ62=,∴31=ω.又∵12,322k k z πππ⨯+=+∈且4ππ-<<,∴当0k =时,1,()2s i n ()333f x x ππϕ==+,要使()f x 递增,须有122,2332k x k k z πππππ-≤+≤+∈,解之得566,22k x k k z ππππ-≤≤+∈,当0k =时,522x ππ-≤≤,∴()f x 在5[,]22ππ-上递增.(湖南文)7.曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( ) A .12-B .12 C.2- D.2答案:B 解析:22cos (sin cos )sin (cos sin )1'(sin cos )(sin cos )x x x x x x y x x x x +--==++,所以 2411'|2(sin cos )44x y πππ===+。
2011年高考三角函数题汇编(老师)

2011年高考三角函数题汇编一、选择、填空题1、 [2011·江西卷] 已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =-8、 r =16+y 2,∵sin θ=-255=y 16+y 2=-255, 2. [2011·课标全国卷] 已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45B .-35 C.35 D.45【解析】在角θ终边上任取一点P (a,2a )(a ≠0),则r 2=||OP 2=a 2+(2a )2=5a 2,∴cos 2θ=a 25a 2=15,∴cos2θ=2cos 2θ-1=25-1=-35. B 3、[2011·全国卷] 已知α∈⎝⎛⎭⎫π,3π2,tan α=2,则cos α=________.-55. 4、[2011·福建卷] 若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos2α=14,则tan α的值等于( ) A.22 B.33 C. 2 D. 3 【解析】 因为sin 2α+cos2α=sin 2α+1-2sin 2α=1-sin 2α=cos 2α, ∴cos 2α=14, sin 2α=1-cos 2α=34, ∵α∈⎝⎛⎭⎫0,π2,∴cos α=12,sin α=32,tan α=sin αcos α=3,故选D. 5、 [2011·重庆卷] 若cos α=-35,且α∈⎝⎛⎭⎫π,3π2,则tan α=________. ∴tan α=sin αcos α=43. 6、[2011·福建卷] 若tan α=3,则sin2αcos 2α的值等于( ) A .2 B .3 C .4 D .6 sin2αcos 2α=2sin αcos αcos 2α=2sin αcos α=2tan α=6,故选D. 7、 [2011·辽宁卷] 设sin ⎝⎛⎭⎫π4+θ=13,则sin2θ=( )A .-79B .-19 C.19 D.79故选A. 解sin2θ=-cos ⎝⎛⎭⎫π2+2θ=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π4+θ.由于sin ⎝⎛⎭⎫π4+θ=13,代入得sin2θ=-79, 8、[2011·江苏卷] 已知tan ⎝⎛⎭⎫x +π4=2, 则tan x tan2x的值为________. 【解析】 因为tan ⎝⎛⎭⎫x +π4=2,所以tan x =13,tan2x =2×131-19=2389=34,即tan x tan2x =49.9、[2011·课标全国卷] 设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎝⎛⎭⎫0,π2单调递减B .f (x )在⎝⎛⎭⎫π4,3π4单调递减 C .f (x )在⎝⎛⎭⎫0,π2单调递增 D .f (x )在⎝⎛⎭⎫π4,3π4单调递增 A 【解析】 原式可化简为f (x )=2sin ⎝⎛⎭⎫ωx +φ+π4,因为f (x )的最小正周期T =2πω=π, 所以ω=2. 所以f (x )=2sin ⎝⎛⎭⎫2x +φ+π4,又因为f (-x )=f (x ),所以函数f (x )为偶函数, 所以f (x )=2sin ⎝⎛⎭⎫2x +φ+π4=±2cos2x , 所以φ+π4=π2+k π,k ∈Z , 所以φ=π4+k π,k ∈Z , 又因为||φ<π2,所以φ=π4. 所以f (x )=2sin ⎝⎛⎭⎫2x +π2=2cos2x , 所以f (x )=2cos2x 在区间⎝⎛⎫0,π2上单调递减. 10、[2011·辽宁卷] 已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,y =f (x )的部分图象如图1-7,则f ⎝⎛⎭⎫π24=( )图1-7A .2+ 3 B.3 C.33 D .2- 3 【解析】 由图象知πω=2×⎝⎛⎭⎫3π8-π8=π2,ω=2.又由于2×π8+φ=k π+π2(k ∈Z ),φ=k π+π4(k ∈Z ),又|φ|<π2,所以φ=π4.这时f (x )=A tan ⎝⎛⎭⎫2x +π4.又图象过(0,1),代入得A =1,故f (x )= tan ⎝⎛⎭⎫2x +π4.所以f ⎝⎛⎭⎫π24=tan ⎝⎛⎭⎫2×π24+π4=3,故选B. 11、 [2011·全国卷] 设函数f (x )=cos ωx (ω>0),将y =f (x )的图像向右平移π3个单位长度后,所得的图像与原图像重合,则ω的最小值等于( ) A.13B .3C .6D .9 【解析】 将y =f (x )的图像向右平移π3个单位长度后得到的图像与原图像重合,则π3=2πωk ∈Z ,得ω=6k ,k ∈Z ,又ω>0,则ω的最小值等于6,故选C.12、[2011·湖北卷] 已知函数f (x )=3sin x -cos x ,x ∈R ,若f (x )≥1,则x 的取值范围为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π3≤x ≤k π+π,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π3≤x ≤2k π+π,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π6≤x ≤k π+5π6,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ 2k π+π6≤x ≤2k π+5π6,k ∈Z 【解析】 因为f (x )=3sin x -cos x =2sin x -π6,由f (x )≥1,得2sin x -π6≥1,即sin x -π6≥12,所以π6+2k π≤x -π6≤5π6+2k π,k ∈Z ,解得π3+2k π≤x ≤π+2k π,k ∈Z . B 13、[2011·课标全国卷] 设函数f (x )=sin ⎝⎛⎭⎫2x +π4+cos ⎝⎛⎭⎫2x +π4,则 ( ) A .y =f (x )在⎝⎛⎭⎫0,π2单调递增,其图像关于直线x =π4对称 B .y =f (x )在⎝⎛⎭⎫0,π2单调递增,其图像关于直线x =π2对称 C .y =f (x )在⎝⎛⎭⎫0,π2单调递减,其图像关于直线x =π4对称 D .y =f (x )在⎝⎛⎭⎫0,π2单调递减,其图像关于直线x =π2对称 【解析】 f (x )=2sin ⎝⎛⎭⎫2x +π4+π4=2sin ⎝⎛⎭⎫2x +π2=2cos2x ,所以y =f (x )在⎝⎛⎭⎫0,π2内单调递减 又f ⎝⎛⎭⎫π2=2cosπ=-2,是最小值.所以函数y =f (x )的图像关于直线x =π2对称.D 14、[2011·山东卷] 若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=( )A .3B .2 C.32 D.23当0≤ωx ≤π2时,函数f (x )是增函数,当π2≤ωx ≤π时,函数f (x )为减函数,即当0≤x ≤π2ω时函数f (x )为增函数,当π2ω≤x ≤πω时,函数f (x )为减函数,所以π2ω=π3,所以ω=32. C 15、[2011·江苏卷] 函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图1-1所示,则f (0)的值是________ 62.【解析】 由图象可得A =2,周期为4×⎝⎛⎭⎫7π12-π3=π,所以ω=2,将⎝⎛⎭⎫7π12,-2代入得2×7π12+φ=2k π+32π,即φ=2k π+π3,所以f (0)=2sin φ=2sin π3=62. 16、[2011·天津卷] 已知函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则( ) A .f (x )在区间[-2π,0]上是增函数 B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数A 【解析】 ∵2πω=6π,∴ω=13.又∵13×π2+φ=2k π+π2,k ∈Z 且-π<φ≤π, ∴当k =0时,φ=π3,f (x )=2sin ⎝⎛⎭⎫13x +π3,要使f (x )递增,须有2k π-π2≤13x +π3≤2k π+π2,k ∈Z ,解之得6k π-5π2≤x ≤6k π+π2,k ∈Z ,当k =0时,-52π≤x ≤π2,∴f (x )在⎣⎡⎦⎤-52π,π2上递增 17、[2011·课标全国卷] 在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为____27.____. 【解析】 因为B =60°,A +B +C =180°,所以A +C =120°,由正弦定理,有 AB sin C =BC sin A =AC sin B =3sin60°=2, 所以AB =2sin C ,BC =2sin A . 所以AB +2BC =2sin C +4sin A =2sin(120°-A )+4sin A=2(sin120°cos A -cos120°sin A )+4sin A=3cos A +5sin A =27sin(A +φ),(其中sin φ=327,cos φ=527) 所以AB +2BC 的最大值为27.18、若0<α<π2,-π2<β<0,cos π4+α=13,cos π4-β2=33,则cos α+β2=( ) A.33 B .-33 C.539 D .-69【解析】 ∵cos ⎝⎛⎭⎫π4+α=13,0<α<π2,∴sin ⎝⎛⎭⎫π4+α=233.又∵cos ⎝⎛⎭⎫π4-β2=33,-π2<β<0, ∴sin ⎝⎛⎭⎫π4-β2=63,∴cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2 =cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2=13×33+223×63=539. C 19、已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为____153____.【解析】 不妨设∠A =120°,c <b ,则a =b +4,c =b -4,于是cos120°=b 2+(b -4)2-(b +4)22b (b -4)=-12,解得b =10,所以c =6.所以S =12bc sin120°=15 3.20、[2011·北京卷] 在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________. 【解析】 因为tan A =2,所以sin A =255;再由:a sin A =b sin B ,即a 255=522,可得a =210 21、[2011·北京卷] 在△ABC 中,若b =5,∠B =π4,sin A =13,则a =________. a =52322、[2011·福建卷] 如图1-5,△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC=45°,则AD 的长度等于________. 图1-5【解析】 在△ABC 中,cos C =AC 2+BC 2-AB 22AC ·BC =(23)22×2×23=32,则∠ACB =30°. 在△ACD 中,由AD sin C =AC sin ∠ADC ,∴AD =AC ·sin30°sin45°=2×1222=2,即AD 的长度等于 2. 23、[2011·福建卷] 若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________. 【解析】 方法一:由S △ABC =12AC ·BC sin C ,得 12AC ·2sin60°=3,解得AC =2. 由AB 2=AC 2+BC 2-2AC ·BC cos60°=22+22-2×2×2×12=4, ∴ AB =2,即边AB 的长度等于2. 方法二:由S △AB C =12AC ·BC sin C ,得 12AC ·2sin60°=3,解得AC =2. ∴AC =BC =2, 又∠ACB =60°, ∴△ABC 是等边三角形,AB =2,即边AB 的长度等于2.24、 [2011·辽宁卷] △ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则b a=( ) A .2 3 B .2 2 C. 3 D. 2【解析】 由正弦定理a sin A =b sin B得a sin B =b sin A ,所以a sin A sin B +b cos 2A =2a 化为b sin 2A +b cos 2A =2a ,即b =2a ,故选D.25、[2011·四川卷] 在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A.⎝⎛⎦⎤0,π6B.⎣⎡⎭⎫π6,πC.⎝⎛⎦⎤0,π3D.⎣⎡⎭⎫π3,π 【解析】 根据正弦定理有a 2≤b 2+c 2-bc ,由余弦定理可知a 2=b 2+c 2-2bc cos A ,所以b 2+c 2-2bc cos A ≤b 2+c 2-bc ,即有cos A ≥12,所以角A 的取值范围为⎝⎛⎦⎤0,π3,选择C. 26、[2011·天津卷]在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为( )A.33B.36C.63D.66【解析】 设BD =2,则AB =AD =3,BC =4.在△ABD 中,由余弦定理得cos ∠ADB =AD 2+BD 2-AB 22×AD ×BD =3+4-32×3×2=33, ∴sin ∠BDC =1-cos 2∠BDC =1-13=63. 在△BDC 中,由正弦定理得4sin ∠BDC =2sin C ,即sin C =12sin ∠BDC =12×63=66. 27、[2011·浙江卷] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B =( ) A .-12 B.12C .-1D .1 【解析】 ∵a cos A =b sin B ,∴sin A cos A =sin 2B ,∴sin A cos A +cos 2B =sin 2B +cos 2B =1. D28、[2011·课标全国卷] △ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________.1534【解析】 解法1:由AC sin B =AB sin C ,即7sin120°=5sin C , 所以sin C =5sin120°7=5314, 所以cos C =1-sin 2C =1-⎝⎛⎭⎫53142=1114, 又因为A +B +C =180°,所以A +C =60°,所以sin A =sin(60°-C )=sin60°cos C -cos60°sin C =32×1114-12×5314=3314, 所以S △ABC =12AB ·AC sin A =12×5×7×3314=1534. 29、[2011·重庆卷] 若△ABC 的内角A 、B 、C 满足6sin A =4sin B =3sin C ,则cos B =( ) A.154 B.34 C.31516 D.1116【解析】 由正弦定理得sin A =a 2R ,sin B =b 2R ,sin C =c 2R ,代入6sin A =4sin B =3sin C , 得6a =4b =3c , ∴b =32a ,c =2a ,由余弦定理得b 2=a 2+c 2-2ac cos B ,①将b =32a ,c =2a 代入①式,解得cos B =1116.故选D. 30、 [2011·泰安期末] 已知tan α=2,则2sin 2α+1sin2α=( ) A.53 B. -134 C. 135 D. 13431、[2011·抚州模拟] 把函数y =sin x (x ∈R )的图象上所有的点向左平移π6个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数为 ________.32、[2011·济南三模] 函数f (x )=2cos 2x -3sin2x (x ∈R )的最小正周期和最大值分别为( )A .2π,3B .2π,1C .π,3D .π,133、[2011·重庆卷] 已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2,则cos2αsin ⎝⎛⎭⎫α-π4的值为________. 【解析】 cos2αsin ⎝⎛⎭⎫α-π4=cos 2α-sin 2α22(sin α-cos α)=(cos α+sin α)(cos α-sin α)22(sin α-cos α)=-2(cos α+sin α), ∵sin α=12+cos α,∴cos α-sin α=-12, 两边平方得1-2sin αcos α=14, 所以2sin αcos α=34. ∵α∈⎝⎛⎭⎫0,π2,∴cos α+sin α=(cos α+sin α)2=1+34=72, ∴cos2αsin ⎝⎛⎭⎫α-π4=-142.二、解答题1、 [2011·北京卷] 已知函数f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 【解答】 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1=4cos x ⎝⎛⎭⎫32sin x +12cos x -1 =3sin2x +2cos 2x -1=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6, 所以f (x )的最小正周期为π. 2、[2011·湖南卷] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足c sin A =a cos C . (1)求角C 的大小;(2)求3sin A -cos ⎝⎛⎭⎫B +π4的最大值,并求取得最大值时角A ,B 的大小. 【解答】 (1)由正弦定理得sin C sin A =sin A cos C . 因为0<A <π,所以sin A >0.从而sin C =cos C . 又cos C ≠0,所以tan C =1,则C =π4. (2)由(1)知,B =3π4-A ,于是 3sin A -cos ⎝⎛⎭⎫B +π4=3sin A -cos(π-A ) =3sin A +cos A =2sin ⎝⎛⎭⎫A +π6. 因为0<A <3π4,所以π6<A +π6<11π12.从而当A +π6=π2,即A =π3时,2sin ⎝⎛⎭⎫A +π6取最大值2. 综上所述,3sin A -cos ⎝⎛⎭⎫B +π4的最大值为2,此时A =π3,B =5π12. 3、[2011·江苏卷] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若sin ⎝⎛⎭⎫A +π6=2cos A, 求A 的值; (2)若cos A =13,b =3c ,求sin C 的值. 【解答】 (1)由题设知sin A cos π6+cos A sin π6=2cos A .从而sin A =3cos A ,所以cos A ≠0,tan A =3,因为0<A <π,所以A =π3. (2)由cos A =13,b =3c 及a 2=b 2+c 2-2bc cos A , 得a 2=b 2-c 2. 故△ABC 是直角三角形,且B =π2, 所以sin C =cos A =13.4、 [2011·广东卷] 已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R .(1)求f (0)的值; (2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65,求sin(α+β)的值. 【解答】 (1)f (0)=2sin ⎝⎛⎭⎫-π6=-2sin π6=-1. (2)∵1013=f 3α+π2=2sin 13×3α+π2-π6=2sin α, 65=f (3β+2π)=2sin 13×(3β+2π)-π6= 2sin β+π2=2cos β, ∴sin α=513,cos β=35,又α,β∈⎣⎡⎦⎤0,π2, ∴cos α=1-sin 2α=1-⎝⎛⎭⎫5132=1213, sin β=1-cos 2β=1-⎝⎛⎭⎫352=45,故sin(α+β)=sin αcos β+cos αsin β=513×35+1213×45=6365. 5、[2011·天津卷] 已知函数f (x )=tan ⎝⎛⎭⎫2x +π4. (1)求f (x )的定义域与最小正周期; (2)设α∈⎝⎛⎭⎫0,π4,若f ⎝⎛⎭⎫α2=2cos2α,求α的大小. 【解答】 (1)由2x +π4≠π2+k π,k ∈Z ,得x ≠π8+k π2,k ∈Z . 所以f (x )的定义域为⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪ x ≠π8+k π2,k ∈Z . f (x )的最小正周期为π2. (2)由f ⎝⎛⎭⎫α2=2cos2α,得tan ⎝⎛⎭⎫α+π4=2cos2α,sin ⎝⎛⎭⎫a +π4cos ⎝⎛⎭⎫α+π4=2(cos 2α-sin 2α),整理得sin α+cos αcos α-sin α=2(cos α+sin α)(cos α-sin α). 因为α∈⎝⎛⎭⎫0,π4,所以sin α+cos α≠0, 因此(cos α-sin α)2=12,即sin2α=12. 由α∈⎝⎛⎭⎫0,π4,得2α∈⎝⎛⎭⎫0,π2,所以2α=π6,即α=π12. 6、[2011·安徽卷] 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.【解答】 由1+2cos(B +C )=0和B +C =π-A ,得1-2cos A =0,cos A =12,sin A =32. 再由正弦定理,得 sin B =b sin A a =22. 由b <a 知B <A , 所以B 不是最大角,B <π2, 从而 cos B =1-sin 2B =22.知 sin C =sin(A +B )=22⎝⎛⎭⎫32+12 .设边BC 上的高为h ,则有h =b sin C =3+12. 7、[2011·全国卷] △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知A -C =90°,a +c =2b ,求C . 【解答】 由a +c =2b 及正弦定理可得 sin A +sin C =2sin B .又由于A -C =90°,B =180°-(A +C ),故 cos C +sin C =2sin(A +C ) =2sin(90°+2C ) =2cos2C . 故22cos C +22sin C =cos2C , cos(45°-C )=cos2C . 因为0°<C <90°, 所以2C =45°-C ,C =15°.8、[2011·全国卷] △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a sin A +c sin C -2a sin C=b sin B .(1)求B ; (2)若A =75°,b =2,求a ,c .【解答】 由正弦定理得a 2+c 2-2ac =b 2. 由余弦定理得b 2=a 2+c 2-2ac cos B . 故cos B =22,因此B =45°. (2)sin A =sin(30°+45°)=sin30°cos45°+cos30°sin45° =2+64. 故a =b ×sin A sin B =2+62=1+3, c =b ×sin C sin B =2×sin60°sin45°= 6. 9、[2011·湖北卷] 设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知a =1,b =2,cos C =14. (1)求△ABC 的周长; (2)求cos(A -C )的值.【解答】 (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4, ∴c =2,∴△ABC 的周长为a +b +c =1+2+2=5.(2)∵cos C =14,∴sin C =1-cos 2C =1-⎝⎛⎭⎫142=154, ∴sin A =a sin C c =1542=158. ∵a <c ,∴A <C ,故A 为锐角, ∴cos A =1-sin 2A =1-⎝⎛⎭⎫1582=78. ∴cos(A -C )=cos A cos C +sin A sin C =78×14+158×154=1116.已知sin C +cos C =1-sin C2.(1)求sin C 的值; (2)若a 2+b 2=4(a +b )-8,求边c 的值.【解答】 (1)由已知得sin C +sin C 2=1-cos C ,即sin C 2⎝⎛⎭⎫2cos C 2+1=2sin 2C 2, 由sin C 2≠0得2cos C 2+1=2sin C 2,即sin C 2-cos C 2=12, 两边平方得:sin C =34.(2)由sin C 2-cos C 2=12>0得π4<C 2<π2,即π2<C <π,则由sin C =34得cos C =-74,由a 2+b 2=4(a +b )-8得:(a -2)2+(b -2)2=0,则a =2,b =2. 由余弦定理得c 2=a 2+b 2-2ab cos C =8+27,所以c =7+1. 11、 [2011·辽宁卷] △ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(1)求ba; (2)若c 2=b 2+3a 2,求B .【解答】 (1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A , 即sin B (sin 2A +cos 2A )=2sin A . 故sin B =2sin A ,所以ba = 2.(2)由余弦定理和c 2=b 2+3a 2,得cos B =(1+3)a2c.(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.12、[2011·山东卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab.(1)求sin C sin A 的值; (2)若cos B =14,△ABC 的周长为5,求b 的长. 【解答】 (1)由正弦定理,设a sin A =b sin B =c sin C=k ..所以原式化为cos A -2cos C cos B =2sin C -sin Asin B . 即(cos A -2cos C )sin B =(2sin C -sin A )cos B ,化简可得sin(A +B )=2sin(B +C ), 又因为A +B +C =π, 所以原等式可化为sin C =2sin A , 因此sin Csin A =2.(2)由正弦定理及sin Csin A=2得c =2a ,由余弦定理及cos B =14得 b 2=a 2+c 2-2ac cos B =a 2+4a 2-4a 2×14=4a 2.所以b =2a .又a +b +c =5. 从而a =1, 因此b =2.已知sin A +sin C =p sin B (p ∈R ),且ac =14b 2.(1)当p =54,b =1时,求a ,c 的值;(2)若角B 为锐角,求p 的取值范围.【解答】 (1)由题设并利用正弦定理,得⎩⎨⎧a +c =54,ac =14,解得⎩⎪⎨⎪⎧ a =1,c =14,或⎩⎪⎨⎪⎧a =14,c =1.(2)由余弦定理,b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B=p 2b 2-12b 2-12b 2cos B ,即p 2=32+12cos B ,因为0<cos B <1,得p 2∈⎝⎛⎭⎫32,2,由题设知p >0,所以62<p < 2. 14、[2011·江西卷] 在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知3a cos A =c cos B +b cos C .(1)求cos A 的值; (2)若a =1,cos B +cos C =233,求边c 的值.【解答】 (1)由余弦定理b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C , 有c cos B +b cos C =a ,代入已知条件得3a cos A =a ,即cos A =13.(2)由cos A =13得sin A =223,则cos B =-cos(A +C )=-13cos C +223sin C ,代入cos B +cos C =233,得cos C +2sin C =3,从而得sin(C +φ)=1,其中sin φ=33,cos φ=63,0<φ<π2. 则C +φ=π2,于是sin C =63, 由正弦定理得c =a sin C sin A =32.15、 [2011·天津卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知B =C,2b =3a .(1)求cos A 的值; (2)求cos ⎝⎛⎭⎫2A +π4的值. 【解】 (1)由B =C ,2b =3a ,可得c =b =32a .所以cos A =b 2+c 2-a 22bc =34a 2+34a 2-a 22×32a ×32a=13.(2)因为cos A =13,A ∈(0,π),所以sin A =1-cos 2A =223,故cos2A =2cos 2A -1=-79.sin2A =2sin A cos A =429.所以cos ⎝⎛⎭⎫2A +π4=cos2A cos π4-sin2A sin π4=⎝⎛⎭⎫-79×22-429×22=-8+7218. 16、[2011·重庆卷] 设a ∈R ,f (x )=cos x (a sin x -cos x )+cos 2⎝⎛⎭⎫π2-x 满足f ⎝⎛⎭⎫-π3=f (0).求函数 f (x )在⎣⎡⎦⎤π4,11π24上的最大值和最小值.【解答】 f (x )=a sin x cos x -cos 2x +sin 2x =a2sin2x -cos2x .由f ⎝⎛⎭⎫-π3=f (0)得-32·a 2+12=-1, 解得a =2 3. 因此f (x )=3sin2x -cos2x =2sin ⎝⎛⎭⎫2x -π6. 当x ∈⎣⎡⎦⎤π4,π3时,2x -π6∈⎣⎡⎦⎤π3,π2,f (x )为增函数,当x ∈⎣⎡⎦⎤π3,11π24时 ,2x -π6∈⎣⎡⎦⎤π2,3π4,f (x )为减函数.所以f (x )在⎣⎡⎦⎤π4,11π24上的最大值为f ⎝⎛⎭⎫π3=2. 又因f ⎝⎛⎭⎫π4=3,f ⎝⎛⎭⎫11π24=2, 故f (x )在⎣⎡⎦⎤π4,11π24上的最小值为f ⎝⎛⎭⎫11π24= 2. 17、[2011·重庆卷] 设函数f (x )=sin x cos x -3cos(x +π)c os x (x ∈R ).(1)求f (x )的最小正周期;(2)若函数y =f (x )的图象按b =⎝⎛⎭⎫π4,32平移后得到函数y =g (x )的图象,求y =g (x )在⎣⎡⎦⎤0,π4上的最大值. 【解答】 (1)f (x )=12sin2x +3cos 2x =12sin2x +32(1+cos2x )=12sin2x +32cos2x +32 =sin ⎝⎛⎭⎫2x +π3+32. 故f (x )的最小正周期为T =2π2=π. (2)依题意g (x )=f ⎝⎛⎭⎫x -π4+32 =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π3+32+32=sin ⎝⎛⎭⎫2x -π6+ 3. 当x ∈⎣⎡⎦⎤0,π4时,2x -π6∈⎣⎡⎦⎤-π6,π3,g (x )为增函数, 所以g (x )在⎣⎡⎦⎤0,π4上的最大值为g ⎝⎛⎭⎫π4=332.。
高考数学一轮复习 第三章三角函数 解三角形第四节函数y=Asin(ωx+φ)的图象及三角函数模型

_
_______.
π 解析:函数 y=sin2x 的图象向右平移 个单位后得到 y=sin2(x 4 π π - )=sin(2x- )=-cos2x 的图象,再向上平移 1 个单位可以 4 2 得到 y=-cos2x+1 的图象,由二倍角公式知 y=2sin2x.
1 法二:将 y=sinx 的图象上每一点的横坐标 x 缩短为原来的 倍, 2 纵坐标不变,得到 y=sin2x 的图象; π π 再将 y= sin2x 的图象向左平移 个单位,得到 y= sin2(x+ )= 6 6 π π sin(2x+ )的图象;再将 y=sin(2x+ )的图象上每一点的横坐标保 3 3 π 持不变,纵坐标伸长为原来的 2 倍,得到 y=2sin(2x+ )的图象. 3
1 π 解:(1)y=3sin( x- )的周期 T=4π. 2 4 π 振幅为 3,初相为- . 4
(2)在x∈[0,4π]上确定关键点列表:
x 1 π x- 2 4 1 π 3sin( x- ) 2 4 0 - - π 4 π 2 0 0 3π 2 π 2 3 5π 2 π 0 7π 2 3π 2 4π
π (3)法一:把 y=sinx 的图象上所有的点向左平移 个单位,得到 y= 3 π π sin(x+ )的图象, 再把 y=sin(x+ )的图象上的点的横坐标缩短到原 3 3 1 π 来的 倍(纵坐标不变), 得到 y=sin(2x+ )的图象,最后把 y=sin(2x 2 3 π + )上所有点的纵坐标伸长到原来的 2 倍(横坐标不变),即可得到 y 3 π =2sin(2x+ )的图象. 3
答案:0
1. y=Asin(ωx+φ)的有关概念 y=Asin(ωx 振幅 +φ)(A>0, ω>0),
2011-2013年高考试题汇编——理科数学:三角函数

2011-2013高考真题分类汇编三角函数一、选择题1. (2011年高考山东卷理科3)若点(a,9)在函数3xy =的图象上,则tan=6a π的值为(A )0 (B)(C) 1 (D)2. (2011年高考山东卷理科6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=(A )3 (B )2 (C )32 (D )233.(2011年高考安徽卷理科9)已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (B ),()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ (C )2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(D ),()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦ 4.(2011年高考辽宁卷理科4)ABC ∆的三个内角C B A 、、所对的边分别为a Ab A ac b a 2cos sin ,,,2=+,则=ab(A) (B) (C)5.(2011年高考辽宁卷理科7)设sin 1+=43πθ(),则sin 2θ=( ) (A) 79- (B) 19- (C) 19 (D)796.(2011年高考浙江卷理科6)若02πα<<,02πβ-<<,1cos()43πα+=,cos()42πβ-=,则cos()2βα+=(A )33 (B )33- (C )539 (D )69-7. (2011年高考全国新课标卷理科5)已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线x y 2=上,则,=θ2cos ( ) A 54-B 53-C 32D 43 8.(2011年高考全国新课标理11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 9. (2011年高考天津卷理科6)如图,在△ABC 中,D 是边AC 上的点,且,23,2AB AD AB BD BC BD ===,则sin C 的值为( )A .33 B .36C .63D .6610.(2011年高考湖北卷理科3)已知函数()3sin cos ,f x x x x R =-∈,若()1f x ≥,则x 的取值范围为A.{|,}3x k x k k z ππππ+≤≤+∈ B.{|22,}3x k k k z ππππ+≤+∈C.5{|,}66x k x k k z ππππ+≤≤+∈ D. 5{|22,}66x k x k k z ππππ+≤≤+∈ 11.(2011年高考陕西卷理科6)函数()cos f x x x =-在[0,)+∞内(A )没有零点 (B )有且仅有一个零点 (C )有且仅有两一个零点(D )有无穷个零点12.(2011年高考重庆卷理科6)若ABC ∆的内角,,A B C 所对的边,,a b c 满足22()4a b c +-=,且060C =,则ab 的值为(A )43(B) 8- (C)1 (D) 2313. (2011年高考四川卷理科6)在∆ABC 中.222sin sin sin sin sin B C B C ≤+-.则A 的取值范围是( ) (A)(0,6π] (B)[ 6π,π) (c)(0,3π] (D) [ 3π,π) 14.(2011年高考全国卷理科5)(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13(B )3 (C )6 (D )9 15.(2011年高考福建卷理科3)若tan α=3,则2sin 2cos aα的值等于A .2B .3C .4D .616.(2011年高考福建卷理科10)已知函数f (x )=e+x ,对于曲线y=f (x )上横坐标成等差数列的三个点A,B,C ,给出以下判断: ①△ABC 一定是钝角三角形②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是A .①③B .①④C . ②③D .②④17. 【2012高考真题重庆理5】设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为(A )-3 (B )-1 (C )1 (D )318. 【2012高考真题浙江理4】把函数12cos +=x y 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是19. 【2012高考真题新课标理9】已知0ω>,函数()sin()4f x x πω=+在(,)2ππω的取值范围是( )()A 15[,]24 ()B 13[,]24 ()C 1(0,]2()D (0,2]20. 【2012高考真题四川理4】如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A 、31010 B 、1010 C 、510 D 、51521. 【2012高考真题陕西理9】在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( ) A.32B. 22C. 12D. 12-22. 【2012高考真题山东理7】若42ππθ⎡⎤∈⎢⎥⎣⎦,,37sin 2=8θ,则sin θ=(A )35 (B )45 (C 7 (D )3423. 【2012高考真题辽宁理7】已知sin cos 2αα-=,α∈(0,π),则tan α=(A) -1 (B) 2 (C) 2(D) 1 24. 【2012高考真题江西理4】若tan θ+1tan θ=4,则sin2θ=A .15 B. 14 C. 13 D. 1225. 【2012高考真题湖南理6】函数()⎪⎭⎫⎝⎛+-=6cos sin πx x x f 的值域为 A . [ -2 ,2]C.[-1,1 ], ] 26. 【2012高考真题上海理16】在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 27. 【2012高考真题天津理2】设,R ∈ϕ则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分与不必要条件28. 【2012高考真题天津理6】在ABC ∆中,内角A ,B ,C 所对的边分别是c b a ,,,已知8b=5c ,C=2B ,则cosC=(A )257 (B )257- (C )257± (D )252429. 【2012高考真题全国卷理7】已知α为第二象限角,33cos sin =+αα,则=α2cos(A) (B)(C)30. (2013年浙江数学理)已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43 C.43- D.34-31.(2013年高考陕西卷理)设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定32 .(2013年山东数学理)将函数sin(2)y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为(A) 34π (B) 4π(C)0 (D) 4π-33.(2013年辽宁数学理)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠=633634.(2013年大纲版数学理)已知函数()=cos sin 2f x x x ,下列结论中错误的是(A)()y f x =的图像关于(),0π中心对称 (B)()y f x =的图像关于直线2x π=对称(C)()f x 的最大值为32(D)()f x 既奇函数,又是周期函数 35.(2013年山东数学理)函数cos sin y x x x =+的图象大致为36.(2013年高考四川卷理)函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A)2,3π-(B)2,6π-(C)4,6π-(D)4,3π37.(2013年上海市)既是偶函数又在区间(0 )π,上单调递减的函数是( )(A)sin y x = (B)cos y x = (C)sin 2y x = (D)cos 2y x =38.(2013年重庆数学理)04cos50tan 40-= ( )2 23+ 3 D.221 39.(2013年高考湖南卷理)在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin 3,a B b A =则角等于1264340.(2013年高考湖北卷理)将函数()3cos sin yx x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( ) A.12πB.6πC.3π D. 56π二、填空题1.(2011年高考辽宁卷理科16)已知函数()()ϕω+=x A x f tan (ω>0,2π<ω),()x f y =的部分图像如下图,则=⎪⎭⎫⎝⎛24πf ____________.2.(2011年高考安徽卷理科14)已知ABC ∆ 的一个内角为120o,并且三边长构成公差为4的等差数列,则ABC ∆的面积为_______________3. (2011年高考全国新课标卷理科16)在ABC ∆中,60,3B AC ==则2AB BC +的最大值为 。
2011年高考数学试题分类汇编 专题三角函数 理

2011年高考试题数学(理科)三角函数一、选择题:1. (2011年高考山东卷理科3)若点(a,9)在函数3x y =的图象上,则tan=6a π的值为(A )【答案】D【解析】由题意知:9=3a,解得a =2,所以2tantan tan 663a πππ===故选D. 2. (2011年高考山东卷理科6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A )3 (B )2 (C )32 (D )23【答案】C【解析】由题意知,函数在3x π=处取得最大值1,所以1=sin3ωπ,故选C.3.(2011年高考安徽卷理科9)已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (B ),()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ (C )2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(D ),()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦ 【答案】C.【命题意图】本题考查正弦函数的有界性,考查正弦函数的单调性.属中等偏难题. 【解析】若()()6f x f π≤对x R ∈恒成立,则()sin()163f ππϕ=+=,所以,32k k Z ππϕπ+=+∈,,6k k Z πϕπ=+∈.由()()2f f ππ>,(k Z ∈),可知(A) 答案: D解析:由正弦定理得,sin 2AsinB+sinBcos 2,即sinB (sin 2A+cos 2A ),故,所以ba= 5.(2011年高考辽宁卷理科7)设sin1+=43πθ(),则sin 2θ=( ) (A) 79- (B) 19- (C) 19 (D)79答案: A解析:217sin 2cos 22sin 121.2499ππθθθ⎛⎫⎛⎫=-+=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭ 6.(2011年高考浙江卷理科6)若02πα<<,02πβ-<<,1cos()43πα+=,cos()42πβ-=cos()2βα+=(A )3 (B )3- (C )9 (D )9-【答案】 C 【解析】:()()2442βππβαα+=+-- cos()cos[()()]2442βππβαα∴+=+--cos()cos()442ππβα=+-sin()sin()442ππβα+++1333399=⨯+== 故选C 7. (2011年高考全国新课标卷理科5)已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线x y 2=上,则,=θ2cos ( )A 54-B 53-C 32D 43 解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++选B8.(2011年高考全国新课标理11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 解析:()2s i n ()4f x x πωϕ=++,所以2ω=,又f(x)为偶函数,,424k k k z πππϕπϕπ∴+=+⇒=+∈,())2f x x x π∴=+=,选A9. (2011年高考天津卷理科6)如图,在△ABC 中,D 是边AC上的点,且,2,2AB AD AB BC BD ==,则sin C 的值为( )ABCD【答案】D【解析】设BD a =,则由题意可得:2,BC a =AB AD ==,在ABD ∆中,由余弦定理得:222cos 2AB AD BD A AB AD +-==⋅2232a a ⨯-13,所以sin A=3,在△ABC 中,由正弦定理得,sin sin AB BC C A =,所以2sin C =,解得sin CD.10.(2011年高考湖北卷理科3)已知函数()cos ,f x x x x R -∈,若()1f x ≥,则x 的取值范围为A.{|,}3x k x k k z ππππ+≤≤+∈ B.{|22,}3x k k k z ππππ+≤+∈C.5{|,}66x k x k k z ππππ+≤≤+∈ D. 5{|22,}66x k x k k z ππππ+≤≤+∈ 答案:Bcos 1x x -≥,即1sin()62x π-≥,解得522,666πππππ+≤-≤+∈k x k k z ,即22,3k x k k z ππππ+≤≤+∈,所以选B.11.(2011年高考陕西卷理科6)函数()cos f x x =在[0,)+∞内(A )没有零点 (B )有且仅有一个零点 (C )有且仅有两一个零点(D )有无穷个零点 【答案】B 【解析】:令1y =2cos y x =,则它们的图像如图故选B12.(2011年高考重庆卷理科6)若ABC ∆的内角,,A B C 所对的边,,a b c 满足22()4a b c +-=,且060C =,则ab 的值为(A )43(B) 8-(C)1 (D) 23解析:选A 。
2011年高考题(三角函数)

2011年高考题汇总(三角函数部分)第一部分 选择题1(2011安徽理数)已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()6f x f π⎛⎫≤⎪⎝⎭对x R ∈ 恒成立,且()2f f ππ⎛⎫>⎪⎝⎭,则()f x 的单调递增区间是 ( ) A ,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B ,()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C 2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D ,()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦2(2011福建理数)若tan 3α=,则2sin 2cos αα的值等于 ( )A 2B 3C 4D 6 3(2011福建文数)若0,2πα⎛⎫∈ ⎪⎝⎭,且21sin cos 24αα+=,则tan α= ( )A2B3C D4(2011湖北理数)已知函数()cos f x x x =-,x R ∈,若()1f x ≥,则x 的取值范围为 ( ) A ,3x k x k k Zππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B 22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭C 5,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ D 522,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ 5(2011湖南理数)由直线3x π=-,3x π=,0y =与曲线cos y x =所围成的封闭图形的面积为 ( )A12B 1 C2D6(2011湖南文数)曲线sin 1sin cos 2x y x x=-+在点(,0)4M π处的切线的斜率为 ( )A 12- B 12C 2-D27(2011辽宁理数)△ABC 的三个内角,,A B C 所对的边分别为,,a b c ,2sin sin cos a A B b A +=,则b a= ( )A B C D 8(2011辽宁文数)已知函数()tan()(0,)2f x A x πωϕωϕ=+><,()y f x =的部分图像如图,则()24f π= ( )A 2+B C2D 2-9(2011全国卷I 理数)已知角θ的顶点与原点重合,始边与x 轴重合,终边在直线2y x =上,则cos 2θ= ( ) A 45-B 35-C35D4510(2011全国卷I 理数)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -= ( )A ()f x 在0,2π⎛⎫⎪⎝⎭单调递减 B ()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减C ()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D ()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 11(2011全国卷I 文数)如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p ,角速度为1,那么点p 到x 轴距离d 关于时间t 的函数图像大致为 ( )A BC D12(2011全国卷I 文数)若4sin 5a =-,a 是第三象限角,则sin 4a π⎛⎫+= ⎪⎝⎭( )A 10-B10C 10-D1013(2011全国卷II 理数)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 ( ) A13B 3C 6D 914(2011山东理数)若点(,9)a 在函数3x y =的图像上,则tan6a π的值为 ( )A 0B 3C 1D 15(2011山东理数)若函数()sin (0)f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= ( ) A 3 B 2 C32D2316(2011陕西理数)函数()cos f x x =在[)0,+∞内 ( )A 没有零点B 有且仅有一个零点C 有且仅有两个零点D 有无穷多个零点 17(2011陕西理数)设集合{}22cos sin ,M y y x x x R==-∈,1N x x x R i ⎧⎫=-<∈⎨⎬⎩⎭i 为虚数单位,则M N 为 ( )A ()0,1B (]0,1C [)0,1D []0,1 18(2011陕西文数)方程cos x x =在(),-∞+∞内 ( )A 没有根B 有且仅有一个根C 有且仅有两个根D 有无穷多个根 19(2011上海文数)若三角方程sin 0x =与sin 20x =的解集分别为,EF ,则 ( ) A E F ∅ B E ÙF C E F = D E F =∅20(2011四川理数)在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是 ( ) A 0,6π⎛⎤⎥⎝⎦ B ,6ππ⎡⎫⎪⎢⎣⎭ C 0,3π⎛⎤ ⎥⎝⎦ D ,3ππ⎡⎫⎪⎢⎣⎭21(2011天津理数)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,若22a b -=,sin C B =,则A = ( )A 30︒B 60︒C 120︒D 150︒22(2011天津文数)如图是函数sin()()y A x x R ωϕ=+∈在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图像,为了得到这个函数的图像,只要将sin ()y x x R =∈的图像上的所有的点 ( )A 向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 C 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变23(2011浙江理数)设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不存在零点的是 ( )A []4,2--B []2,0-C []0,2D []2,4 24(2011浙江文数)在△ABC 中,角,,A B C 所对的边分别为,,a b c ,若c o s s i n a A b B =,则2sin cos cos A A B += ( ) A 12-B12C 1-D 125(2011重庆理数)若△ABC 的内角,,A B C 所对的边,,a b c 满足22()4a b c +-=,且60C =︒,则a b 的值为 ( )A 43B 8-C 1D 2326(2011重庆文数)若△ABC 的内角,,A B C 满足6sin 4sin 3sin A B C ==,则cos B = ( )A4B34C16D1116第二部分 填空题27(2011安徽理数)已知△ABC 的一个内角为120︒,并且三边长构成公差为4的等差数列,则△ABC 的面积为_____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数函数检测试题命题人赵洪福 审核人李玉斌一 选择题1. 【2010•上海文数】若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC( )A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形2. 【2010•湖南文数】在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C= 120°,a ,则( )A.a >bB.a <bC. a =bD.a 与b 的大小关系不能确定3. 【2010•浙江理数】设02x π<<,则“2sin 1x x <”是“sin 1x x <”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 4. 【2010•四川理数】将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( ) A.sin(2)10y x π=-B.sin(2)5y x π=-C.1sin()210y x π=-D.1sin()220y x π=-5. 【2010•陕西文数】函数f (x )=2sin x cos x 是 ( )A.最小正周期为2π的奇函数B.最小正周期为2π的偶函数C.最小正周期为π的奇函数D.最小正周期为π的偶函数 6. 【2010•辽宁文数】设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是( )A.23 B. 43 C. 32D. 3 7. 【2010•全国卷2文数】已知2sin 3α=,则cos(2)x α-=A. B.19- C.198. 【2010•江西理数】E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ECF ∠=( )A. 1627B. 23C. 3D. 349. 【2010•重庆文数】下列函数中,周期为π,且在[,]42ππ上为减函数的是( ) A.sin(2)2y x π=+ B.cos(2)2y x π=+ C.sin()2y x π=+ D.cos()2y x π=+ 10.【2010•重庆理数】已知函数()sin (0,)2y x πωϕωϕ=+><的部分图象如题(6)图所示,则( )A.ω=1 ϕ=6π B. ω=1 ϕ=- 6π C. ω=2 ϕ= 6π D. ω=2 ϕ= -6π11【2010•山东文数】观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=( )A.()f xB.()f x - C .()g x D.()g x -12. 【2010•北京文数】某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A.2sin 2cos 2αα-+;B.sin 3αα+C.3sin 1αα+;D.2sin cos 1αα-+二 填空题13 【2010•重庆文数】如题(15)图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等. 设第i 段弧所对的圆心角为(1,2,3)i i α=,则232311coscossinsin3333αααααα++-=____________ .14 【2010•山东文数】在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,2b =,sin cos B B +则角A 的大小为 .15【2010•福建文数】观察下列等式: ① cos2a=22cos a -1;② cos4a=84cos a - 82cos a + 1;③ cos6a=326cos a - 484cos a + 182cos a - 1;④ cos8a=1288cos a - 2566cos a + 1604cos a - 322cos a + 1;⑤ cos10a= m 10cos a - 12808cos a + 11206cos a + n 4cos a + p 2cos a - 1. 可以推测,m – n + p = . 16. 【2010•江苏卷】定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为____________。
三 解答题17.【2010•浙江理数】在△ABC 中,角A 、B 、C 所对的边分别为a,b,c ,已知1cos 24C =- (I)求sinC 的值;(Ⅱ)当a=2, 2sinA=sinC 时,求b 及c 的长.18. 【2010辽宁理数】 在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且2sin (2)sin (2)sin .a A a c B c b C =+++(Ⅰ)求A 的大小;(Ⅱ)求sin sin B C +的最大值.19. 【2010 •江西理数】已知函数()()21cot sin sin sin 44f x x x m x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭。
(1) 当m=0时,求()f x 在区间384ππ⎡⎤⎢⎥⎣⎦,上的取值范围; (2) 当tan 2a =时,()35f a =,求m 的值。
20.【2010•天津理数】已知函数2()cos 2cos 1()f x x x x x R =+-∈ (Ⅰ)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值;(Ⅱ)若006(),,542f x x ππ⎡⎤=∈⎢⎥⎣⎦,求0cos 2x 的值。
21.【2010·天门中学五月模拟】如图,设A 是单位圆和x 轴正半轴的交点,P ,Q 是单位圆上两点,O 是坐标原点,且6π=∠AOP ,[)παα,0,∈=∠AOQ .(Ⅰ)若点Q 的坐标是34(,)55,求)6cos(πα-的值;(Ⅱ)设函数()f OP OQ α=⋅,求()αf 的值域.22.【2010 •福建理数】O 某港口要将一件重要物品用小艇送到一艘正在航行的轮船上。
在小艇出发时,轮船位于港口O 北偏西30且与该港口相距20海里的A 处,并以30海里/小时的航行速度沿正东方向匀速行驶。
假设该小船沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇。
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由。
三角函数函数检测试题答案1【答案】C【解析】由sin :sin :sin 5:11:13A B C =及正弦定理得a:b:c=5:11:13由余弦定理得0115213115cos 222<⨯⨯-+=c ,所以角C 为钝角23【答案】B【解析】因为0<x <2π,所以sinx <1,故xsin 2x <xsinx ,结合xsin 2x 与xsinx 的取值范围相同,可知答案选B ,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题 4【答案】C【解析将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,所得函数图象的解析式为y =sin (x -10π) 再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是1sin()210y x π=-.5【答案】C【解析】本题考查三角函数的性质f (x)=2sinxcosx=sin2x ,周期为π的奇函数6【答案】C【解析】选C.由已知,周期243,.32T ππωω==∴= 7.【答案】....B .【解析】本题考查了二倍角公式及诱导公式,∵..................... sina=2/3........,.∴.21cos(2)cos 2(12sin )9πααα-=-=--=-8【答案】D【解析】考查三角函数的计算、解析化应用意识。
解法1:约定AB=6,AC=BC=由余弦定理再由余弦定理得4cos 5ECF ∠=, 解得3tan 4ECF ∠=解法2:坐标化。
约定AB=6,AC=BC=(0,3)利用向量的夹角公式得4cos 5ECF ∠=,解得3tan 4ECF ∠=。
9【答案】A【解析】C 、D 中函数周期为2π,所以错误当[,]42x ππ∈时,32,22x πππ⎡⎤+∈⎢⎥⎣⎦,函数sin(2)2y x π=+为减函数 而函数cos(2)2y x π=+为增函数,所以选A10【答案】C【解析】2=∴=ϖπT 由五点作图法知232πϕπ=+⨯,ϕ= -6π 11【答案】D 12【答案】A 13【答案】﹣½【解析】232312311coscossinsincos33333ααααααααα++++-=又1232αααπ++=,所以1231cos32ααα++=-14答案:15【答案】962【解析】因为122,=382,=5322,=71282,=所以92512m ==;观察可得400n =-,50p =,所以m – n + p =962。
【命题意图】本小题考查三角变换、类比推理等基础知识,考查同学们的推理能力等。
16【答案】23【解析 】考查三角函数的图象、数形结合思想。
线段P 1P 2的长即为sinx 的值, 且其中的x 满足6cosx=5tanx ,解得sinx=23。
线段P 1P 2的长为2317【解析】本题主要考察三角变换、正弦定理、余弦定理等基础知识,同事考查运算求解能力。
解:(Ⅰ)因为cos2C=1-2sin 2C=14-,及0<C <π所以(Ⅱ)当a=2,2sinA=sinC 时,由正弦定理a csin A sin C=,得 c=4由cos2C=2cos 2C-1=14-,J 及0<C <π得cosC=±4由余弦定理c 2=a 2+b 2-2abcosC ,得b 2±b-12=0解得 或所以 b= c=4 或 c=418解:(Ⅰ)由已知,根据正弦定理得22(2)(2)a b c b c b c =+++即 222a b c b c=++ 由余弦定理得 2222cos a b c bc A =+- 故 1c o s 2A =-,A=120° (Ⅱ)由(Ⅰ)得:s i n s i n s i n s i n (60B C B B +=+︒-1sin 2sin(60)B BB =+=︒+ 故当B=30°时,sinB+sinC 取得最大值1。