分类讨论在导数中的应用

合集下载

导数大题20 种主要题型讲解

导数大题20 种主要题型讲解

答案详解:本题主要考查导数在研究函数中的应用。

(1)求出比较其与的大小,得到的单调性表,于是得到的极值。

(2)将代入到中,并求得当时,此时恒成立,即在单调递增,同理可以得到在上为增函数,则原不等式可化为在上恒成立,令,对其求导得知若为减函数时其导数恒小于,便可得到的取值范围。

(3)若存在,使得假设成立,也即在上不是单调增或单调减,故,对求导得到其极小值点为,由于解得此时,此时需证明当,使得即可,此时可取,发现成立,故的取值范围为。

答案详解(Ⅰ),由是的极值点得,所以。

于是,定义域为,,函数在上单调递增,且。

因此,当时,;当时,。

所以,在上单调递减,在上单调递增。

(Ⅱ)当,时,,故只需要证明当时,。

当时,函数在单调递增,又,,故在有唯一实根,且。

当时,;当时,;从而当时,取得最小值。

由得:,,故。

综上:当时,。

解析:本题主要考查函数的求导和函数的单调性的判断。

(Ⅰ)先对函数求导,得导函数,由题,则可得的值,当时,单调递增,求得的的取值范围即为单调增区间;当时,单调递减,求得的的取值范围即为单调减区间。

(Ⅱ)由分析知,只需证明当时,,此时通过分析函数单调性,求得即可得证。

例题5:函数。

(Ⅰ)讨论的导函数零点的个数;(Ⅱ)证明:当时,。

答案详解(Ⅰ)的定义域为,()。

当时,,没有零点;当时,因为单调递增,单调递增,所以在单调递增。

又,当满足且时,,故当时,存在唯一零点。

(Ⅱ)由(Ⅰ),可设在的唯一零点为,当时,;当时,。

故在单调递减,在单调递增,所以当时,取得最小值,最小值为。

由于,所以。

故当时,。

解析:本题主要考查导数的概念及其几何意义以及导数在函数研究中的应用。

(Ⅰ)求导得出的表达式,根据其表达式,对进行分类讨论。

当时,可知没有零点;当时,可知单调递增,且存在使得而,因此存在唯一零点。

(Ⅱ)由(Ⅰ),可设的最小值在时取到,最小值为。

写出的表达式,再运用均值不等式即可得出。

题型3:先构造,再赋值,证明和式或积式不等式例题:已知函数。

219457521_分类讨论思想在高中数学解题中的应用

219457521_分类讨论思想在高中数学解题中的应用

分类讨论思想在高中数学解题中的应用陈燕飞(昆山陆家高级中学ꎬ江苏苏州215000)摘㊀要:分类讨论是数学学科的重要思想之一ꎬ每年高考题都会涉及到分类讨论思想的考查ꎬ是高中数学教学的重点.为提高学生的分类讨论思想能力ꎬ促进其解题能力及数学学习成绩的提升ꎬ教学实践中应采用理论讲解和习题巩固相结合的教学方法ꎬ指导学生在不同题型中的应用分类讨论思想.关键词:分类讨论思想ꎻ高中数学ꎻ解题中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)18-0011-03收稿日期:2023-03-25作者简介:陈燕飞(1977.9-)ꎬ男ꎬ江苏省如皋人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀分类讨论思想在高中数学解题中有着广泛的应用ꎬ不同习题分类讨论的切入点及讨论标准存在差异ꎬ因此ꎬ教学实践中应为学生做好解题示范ꎬ注意预留 空白 ꎬ要求学生认真揣摩分类讨论的标准与过程ꎬ做好方法的归纳㊁整理ꎬ以便理解与掌握分类讨论法.1解答三角函数习题三角函数题中产生分类讨论的情况主要有周期㊁相位㊁图象的不确定等ꎬ解题时应从这些不确定的对象入手ꎬ运用已知条件尽可能的将不确定对象的范围进一步精确ꎬ通过分类讨论尝试推导出矛盾ꎬ从而解决问题.例1㊀已知函数f(x)=cos(ωx+φ)(ω>0ꎬωɪN∗ꎬ0<φ<π)图象上A的坐标为(π24ꎬ0)ꎬ一条对称轴为直线x=π6.当f(x)在区间(π6ꎬπ3)上单调ꎬ则φ的值为(㊀㊀).A.π6㊀㊀㊀B.π4㊀㊀㊀C.π3㊀㊀㊀D.2π3解析㊀由f(x)在区间(π6ꎬπ3)上单调ꎬ可得π3-π6=π6ɤT2ꎬ即ꎬ12ˑ2πωȡπ6ꎬ解得0<ωɤ6.因点A在函数f(x)图象上ꎬ且直线x=π6为函数f(x)图象的一条对称轴ꎬ则π6-π24=π8.当π8=T4ꎬ此时T=2πω=π2ꎬ解得ω=4满足题意ꎻ当π8=3T4ꎬ此时T=2πω=π6ꎬ解得ω=12不满足题意ꎻ综上可得f(x)=cos(4x+φ)ꎬ因直线x=π6为其一条对称轴ꎬ则4ˑπ6+φ=kπꎬkɪZꎬφ=kπ-2π3ꎬkɪZꎬ又由0<φ<πꎬ则φ=π3ꎬ选择C.11点评㊀根据函数f(x)在给定区间的单调性ꎬ确定其周期范围ꎬ再运用周期公式得出ω的范围.结合图象中的已知点㊁对称轴进行分类讨论ꎬ看计算出的ω是否在解得的范围内ꎬ得出最终结果.2解答解三角形习题解三角形常用的知识点有正弦㊁余弦定理ꎬ但在运算的过程中可能会出现多种情况ꎬ此时需进行分类讨论.分类讨论的依据有三角形的内角的分类ꎬ边的分类等.分类讨论中ꎬ若某种情况能推出矛盾ꎬ则应舍去该种情况ꎻ如不能推出矛盾ꎬ则该种情况成立.例2㊀在钝角әABC中AꎬBꎬC对应边aꎬbꎬcꎬ其中a>bꎬa=6ꎬ且满足3sinB-3sinC=cosAꎬcos2A=-79ꎬ则әABC的面积为(㊀㊀).A.4㊀㊀㊀B.8㊀㊀㊀C.42㊀㊀㊀D.82解析㊀由a=6ꎬ3cosB-3cosC=cosA以及正弦定理得到:3b-3c=a=6ꎬ则b-c=2①ꎻ又由cos2A=2cos2A-1ꎬcos2A=-79ꎬ得到cosA=ʃ13.当cosA=13时ꎬ由余弦定理得到:a2=b2+c2-2bccosAꎬ即ꎬ36=b2+c2-23bc=(b-c)2+43bc=4+43bcꎬ即ꎬbc=24②ꎻ由①②得到b=6ꎬc=4ꎬ不符合题意ꎬ舍去ꎻ当cosA=-13时ꎬcosA=1-cos2A=223ꎬ由余弦定理得到:4+83bc=36ꎬ此时bc=12ꎬ由①得到ꎬb=1+13ꎬc=-1+13ꎬ满足a>bꎬ则SәABC=12bccosA=12ˑ12ˑ223=42ꎬ选择C项.点评㊀根据题干中给出的等式ꎬ运用正弦定理进行转化得出cosA的值有两个ꎻ分别对两个值讨论ꎬ发现cosA=13不符合题意ꎬ而cosA=-13符合题意ꎬ在cosA=-13的条件下计算出әABC的面积即可.3解答导数习题导数是高中数学中最易考查分类讨论思想的知识[1].分类讨论常出现对函数求导后ꎬ因参数值的不确定性ꎬ导致函数在不同区间的单调性不同.对参数分类讨论过程中ꎬ判断得出的参数值或范围是否符合题意.例3㊀已知函数f(x)=xex+1ꎬg(x)=a(ex-1)ꎬ当x>0时ꎬ有f(x)ȡg(x)ꎬ则实数a能取到的最大整数为(㊀㊀).A.1㊀㊀㊀㊀B.2㊀㊀㊀㊀C.3㊀㊀㊀㊀D.4解析㊀令h(x)=f(x)-g(x)=xex+1-a(ex-1)=(x-a)ex+a+1ꎬ则hᶄ(x)=(x-a+1)ex.当aɤ1时ꎬhᶄ(x)>0在(0ꎬ+ɕ)上恒成立ꎬ此时ꎬh(x)单调递增ꎬ要想满足题意只需h(0)ȡ0ꎬ此时h(0)=1满足题意.当a>1时ꎬ令hᶄ(x)=0ꎬ解得x=a-1ꎬ则当0<x<a-1时hᶄ(x)<0ꎬh(x)单调递减ꎻ当x>a-1时ꎬhᶄ(x)>0ꎬh(x)单调递增ꎻh(x)min=h(a-1)=-ea-1+1+aꎬ要想满足题意只需-ea-1+1+aȡ0ꎬ即1+aȡea-1.当a=2时.3>e成立ꎻ当a=3时4>e2不成立.综上分析ꎬ实数a能取到的最大整数为2ꎬ故选择B项.点评㊀求参数a能取到的最大整数ꎬ需将问题转化为恒成立问题ꎬ而恒成立对应求函数的最值ꎬ因此ꎬ分类讨论主要围绕求函数的最值展开ꎬ期间需灵活应用导数知识.4解答数列习题数列习题中分类讨论常出现的情况有公差和公比的不确定性㊁通项公式的不确定性等ꎬ尤其对于部 21分数列需将偶数项与奇数项的通项公式分开考虑ꎬ运算时应搞清楚奇㊁偶项的内在联系ꎬ保证推理的严谨性与正确性.例4㊀已知数列{an}中a1ɪZꎬan+1+an=2n+3ꎬ前n项的和为Snꎬ若S13=amꎬ则正整数m=(㊀㊀).A.99㊀㊀㊀B.103㊀㊀㊀C.107㊀㊀㊀D.198解析㊀由an+1+an=2n+3得到an+1-(n+1)-1=-(an-n-1)ꎬ则数列{an-n-1}为公比1的等比数列ꎬ则an-n-1=(-1)n-1(a1-2)ꎬ由数列{an}前n项的和为Sn得到:S13=a1+(a2+a3)+ +(a12+a13)=a1+2(2+4+ +12)+3ˑ6=a1+102.当n为奇数时a1-2+n+1=a1+102ꎬ解得m=103ꎻ当n为偶数时ꎬ-(a1-2)+n+1=a1+102ꎬm=2a1+99由a1ɪZꎬ则m=2a1+99只能为奇数ꎬ此时无解.综上分析m=103ꎬ选择B项.点评㊀数列的的通项公式中含有(-1)n-1ꎬ导致数列的偶数项与奇数项的值不同ꎬ因此ꎬ需将其分开进行考虑ꎬ推理㊁计算出符合题意的结果.5解答圆锥曲线习题圆锥曲线是高中数学一个重难点ꎬ圆锥曲线习题中产生分类讨论的情况多种多样ꎬ尤以直线与圆锥曲线的关系不确定时为讨论的切入点ꎬ讨论过程中为减少运算量ꎬ提高运算效率ꎬ应认真观察图形ꎬ注重几何性质的应用.例5㊀已知F1ꎬF2为双曲线C:x2-y2b2=1(b>0)的左㊁右焦点ꎬ过点F2的直线和双曲线交于AꎬB两点ꎬ当әABF1为等边三角形ꎬ则b的所有取值的积为(㊀㊀).A.2㊀㊀㊀B.3㊀㊀㊀C.22㊀㊀㊀D.23解析㊀(1)当过点F2的直线和双曲线相交的情境如图1时ꎬ设|AF2|=m(m>c-1)ꎬ则由双曲线定义可得|AF1|=|AF2|+2a=m+2ꎬ由әABF1为等边三角形ꎬ可得|AF1|=|BF1|=|AB|=m+2ꎬ可得|BF2|=2ꎬ由双曲线的性质可得|BF1|-|BF2|=|AB|-|BF2|=m=2ꎬ则|AF2|=|BF2|ꎬ则ABʅF1F2ꎬ则2c=4cos30ʎ=23ꎬ则c=3ꎬb=2ꎻ图1㊀例5题解析(1)㊀㊀㊀㊀㊀图2㊀例5题解析(2) (2)当过点F2的直线和双曲线相交的情境如图2时ꎬ设|BF2|=n(n>c-1)ꎬ则|BF1|=|BF2|+2a=n+2ꎬ由әABF1为等边三角形ꎬ可得|AF1|=|BF1|=|AB|=n+2ꎬ|AF2|=2n+2ꎬ又由|AF2|-|AF1|=2n+2-(n+2)=2ꎬ解得n=2ꎬ则|AF1|=4ꎬ|AF2|=6ꎬ则әAF1F2中由余弦定理可得|F1F2|2=|AF1|2+|AF2|2-2|AF1|AF2||cos60ʎ=27ꎬ则c=7ꎬ此时ꎬb=6.结合以上两种情境可得b的所有取值的积为2ˑ6=23ꎬ选择D项.点评㊀对于情况一ꎬ等边әABF1位置较为特殊ꎬ可借助双曲线和等边三角形性质构建线段之间的关系求解.对于情况二ꎬ则需应用余弦定理进行运算.综上所述ꎬ应用分类讨论思想解答数学题时ꎬ应明确为何要进行分类讨论ꎬ分类讨论的依据是什么ꎬ怎样对分类讨论的结果进行合理取舍ꎬ等[2].解题教学中ꎬ为使学生掌握技巧㊁把握思路ꎬ既要展示经典例题ꎬ又要加强专题训练ꎬ启发学生的同时ꎬ帮助其积累丰富经验ꎬ增强应用能力.参考文献:[1]俞洁.高中数学问题中的分类讨论思想例谈[J].中学数学ꎬ2022(03):35-36.[2]顾宣峰.分类讨论思想在高中数学解题中的应用[J].高中数理化ꎬ2021(S1):20.[责任编辑:李㊀璟]31。

高考题型专题讲解1: 含参数导数问题的分类讨论

高考题型专题讲解1: 含参数导数问题的分类讨论
上递增.
对于第③种情况,
g
(
x
)
=
0
有两个不等的实根,
x1
=
1 2a

和 (a −1)(3a −1)
2a(1− a)
1 x2 = 2a +
(a −1)(3a − 2a (1− a)
1)
.由于不知道两根是否落在定义域
(0,
+∞
)
内,因此要考虑讨论点
2

而利用韦达定理进行判断是一个快捷的方法.
因为 , ,所以当 时,有 且 ,此时 x1
1 / 10
况.由于 g(x) 的函数类型不能确定,所以需要对a 进行分类讨论从而确定函数的类型.
(1)当 a =1时,g (x) 是常数函数,此时 g (x) =1, f ′(x) = 1 > 0 ,于是 f (x) 在(0,+∞) x
上递增.
(2)当a ≠1时,g(x) 是二次函数,类型确定后,我们首先考虑讨论点1—— f ′(x) = 0是
(2)若 ln
1 1
+ −
x x

a
x

x
∈ ( −1,1)
恒成立,求正数
a
的最大值.
【解析】(1)定义域为(0,+∞) , f ′(x) = 1 − k = −kx +1 .
x
x
法 1:①当 k = 0 时, f ′(x) = 1 > 0 ,函数 f (x) 在[1,2] 为增函数,所以 x
. f ( x)min = f (1) = 0
否有实根的问题.由于 g(x) 不能因式分解,所以我们考虑其判别式∆ = 4(a −1)(3a −1) ,判

第3讲 导数中含参问题的分类讨论(解析版)

第3讲 导数中含参问题的分类讨论(解析版)

导数中含参问题的分类讨论本讲义由作业帮周永亮老师(白哥)独家编撰,侵权必究或知识导航★ 1.-次型导函数一次型导函数,是指能够影响原函数单调性的部分是一次函数形式,或者说导函数中,除去里面的一次函数形式,剩余的部分全部恒为正(负).例:f (x) = ax + b;f (a:) = (ax + b) e x ; f' (a;) = 口“ * " (z > 0)X★ 2.二次型导函数二次型导函数:二次型导函数,是指能够影响原函数单调性的部分是二次函数形式,或者说导函数中,除去里面的二次函数形式,剩余的部分全部恒为正(负).例:f (a:) = ax2 +bx + c;f (x) = (ax2 +bx + cj e x ; f (x) —* 况* ° (a; > 0)注:以上a尹0,若不确定a是否可以为0,就先讨论是一次型还是二次型;★ 3 .含参函数单调性的分类讨论(1)先确定导函数是一次型还是二次型,一次型按照一次型的讨论方式讨论;①判断是否有根,没有根会出现恒成立状况;②求出导函数的根,判断根是否在定义域内,不在定义域会出现恒成立问题;③根在定义域内,穿根法确定导函数正负,进而确定原函数的单调性;(2)若是二次型,先判断二次型函数是否有根,没有根会出现恒成立状况;①如果二次型函数有根,就先求出根(能因式分解就因式分解);②判断根是否在定义域内(讨论根与定义域端点值的大小关系);③如果两根全在定义域,那么确定两根大小关系;④穿根法确定导函数正负,进而确定原函数的单调性;★ 4.拟合函数(1)拟合函数是指,根据散点图,拟合出函数的解析式,这里考虑到的点越多,拟合的解析式就越精确.(2 )在求导中,我们会发现很多函数的导函数是指数型或者对数型的,如:f' (x) = e x—2 ; (/ (x) = (a; — a) (In x — S),这种类型的导函数,我们判断原函数的单调性比较麻烦,所以我们会采用拟合函数的形式进行讨论就可以了;(3)在单调性讨论中,拟合的形式比较简单,只需要参考两个关键点就可以了,分别是:①等于0的解,②所需拟合函数单调性;例如:f (a;) = e x -2,①当 / (a:) = 0 时,c = ln2 :② f (时=e x -2单调递增;则,我们也可以找到一个具有相同性质的一次函数,所以f (x) = 可以拟合成f' {x) — x — \n.2 ;再如:寸(x) = (a; — a) (In a: — 3),只需要讨论g = In r - 3这部分就可以了,此函数可以拟合成:y = x-^(x>0);则寸(c) = (z — a) (Ina: — 3)可以拟合成(/ (x) = (x — a) (x — e3) (z > 0).知识札记歩经典例题考点1 一次型含参导函数的分类讨论已知函数f(x) = lnx + --l ^R),讨论函数六z)的单调性. X解答:由题意知该函数的定义域为(0, +8),且/ (^) = - - 4 = 与凸从而当a W0时,/(苛>0,则,(z)在(0,+8)上单调递增当a > 0时(1 )若z € (0,a),则「(r) < 0,从而/(a:)在(0,a)上单调递减(2)若z€(a,+8),则f(z)>0,从而f(3!)在(a,+8)上单调递增综上所述,当aWO时,义时在(0,+8)上单调递增;当a>0时,山z)在(0,a)上单调递减,在(a, +oo)上单调递增讨论函数f(x)=ax-inx的单调区间.解答:函数,(z)的定义域是(0,+8) m—,若aWO,则/ (x) <。

【高考数学】《分类讨论的“界点”》破解导数解答题

【高考数学】《分类讨论的“界点”》破解导数解答题
ཧᥐ ཧ
【规范解答】(1)令 h(x)=f(x)﹣g(x)=lnx+x+1﹣x2﹣2x=lnx+1﹣x2﹣x.(x∈(0,
+∞)).
h′(x)
ᄖ ཧ
2x﹣1
ሺ ཧ ᄖ ሺཧᥐᄖ .

可知:当 x ᄖ时,函数 h(x)取得极大值,h(ᄖ)=lnᄖ ᥐ1 ᄖ ᄖ
ln2ᥐ ᄖ.h(x)无
极小值.
(2)令 f(x)﹣mg(x)≤0 成立,g(x)=x2+2x>0.∴m
①当﹣1ᥐ ᄖ ᄖ 1 即 ᄖ a<0 时,f(x)在[0,1]单调递增, f(0)=0,此时 f(x)在区间[0,1]上有一个零点; ②当﹣1ᥐ ᄖ ᄖ<1 即 a< ᄖ时,
若 f(1)>0 即ᄖ 1<a< ᄖ时,f(x)在[0,﹣1ᥐ ᄖ ᄖ)单调递增,在[﹣1ᥐ ᄖ ᄖ, 1]单调递减, f(0)=0,此时 f(x)在区间[0,1]上有一个零点; 若 f(1)≤0 即 a ᄖ 1 时,f(x)在[0,﹣1ᥐ ᄖ ᄖ)单调递增,在[﹣1ᥐ ᄖ ᄖ,1] 单调递减, f(0)=0,此时 f(x)在区间[0,1]上有零点 x=0 和在区间[﹣1ᥐ ᄖ ᄖ,1]有一个零点 共两个零点; 综上:当 a ᄖ 1 时,f(x)在区间[0,1]上有 2 个零点; 当 a> ᄖ 1 时,f(x)在区间[0,1]上有 1 个零点.
②当 a>1 时,令 f′(x)=0,解得:x1=﹣1 ᄖ ᄖ,x2=﹣1ᥐ ᄖ ᄖ,
x,f′(x),f(x)的变化如下:
x
(﹣∞,x1)
x1
f′(x)
+
0
(x1,x2) x2

0
(x2,+∞) +
f(x)

(完整版)导数含参数取值范围分类讨论题型总结与方法归纳

(完整版)导数含参数取值范围分类讨论题型总结与方法归纳

导数习题题型十七:含参数导数问题的分类讨论问题含参数导数问题的分类讨论问题1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。

★已知函数ax x a x x f 2)2(2131)(23++-=(a 〉0),求函数的单调区间)2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a xax x f ln )2(2)(+--=(a 〉0)求函数的单调区间 222))(2(2)2()(x a x x x a x a x x f --=++-='★★★例3已知函数()()22211ax a f x x R x -+=∈+,其中a R ∈。

(Ⅰ)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。

解:(Ⅰ)当1a =时,曲线()y f x =在点()()2,2f 处的切线方程为032256=-+y x 。

(Ⅱ)由于0a ≠,所以()()12)1(222+-+='x x a x f ,由()'0f x =,得121,x x a a=-=。

这两个实根都在定()()()()()()22'2222122122111a x a x a x x ax a a f x x x ⎛⎫--+ ⎪+--+⎝⎭==++义域R 内,但不知它们之间 的大小。

因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。

(1)当0a >时,则12x x <.易得()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭,(),a +∞内为减函数,在区间1,a a ⎛⎫- ⎪⎝⎭为增函数。

故函数()f x 在11x a =-处取得极小值21f a a ⎛⎫-=- ⎪⎝⎭;函数()f x 在2x a =处取得极大值()1f a =。

利用导数求含参数的函数单调区间的分类讨论归类

利用导数求含参数的函数单调区间的分类讨论归类

利用导数求含参数的函数单调区间的分类讨论归类一、根据判别式 △=b ²-4ac 讨论↵例1.已知函数. f(x)=x ³+ax ²+x+1(a∈R),求f(x)的单调区间.解: f ′(x )=3x²+2ax +1,判别式△=b ²-4ac=4(a ²-3),(1)当 a >√3或 a <−√3时,则在 (−∞,−a−√a 2−33)和 (−a+√a 2−33,+∞)上,f'(x)>0, f(x)是增函数;在 (−a−√a 2−33,−a+√a 2−33),f ′(x )<0,f(x)是减函数;(2)当 −√3<a <√3时,则对所有x∈R, f'(x)>0, f(x)是(-∞,+∞)上的增函数;↵二、根据判二次函数根的大小讨论↵例2:已知函数. f (x )=(x²+ax −3a²+3a )eˣ(a ∈R 且 a ≠23),求f(x)的单调区间. 解: f ′(x )=[x²+(a +2)x −2a²+4a ]⋅eˣ,f ′(x )=(0得x=-2a 或x=a-2↵(1)当 a >23时,则-2a<a-2,在(-∞,-2a)和(a-2,+∞)上, f'(x)>0, f(x)是增函数;在(-2a,a-2)上, f'(x)<0, f(x)是减函数;(2)当 a <23时,则a-2<-2a,在(-∞,a -2)和(-2a,+∞)上, f'(x)>0, f(x)是增函数;在(a-2,-2a)上, f'(x)<0, f(x)是减函数;题型归纳总结:求导后是二次函数的形式,如果根的大小不确定,应对根的大小讨论确定单调区间.练习2↵三、根据定义域的隐含条件讨论。

例3:已知函数f(x)=lnx-ax(a∈R),求f(x)的单调区间.解: f ′(x )=1x −a (x ⟩0), (1)当a≤0时, f ′(x )=1x −a >0,在(0,+∞)上,f'(x)>0, f(x)是增函数;(2)当a>0时,令 f ′(x )=1x −a =0,得 x =1a ,题型归纳总结:定义域有限制时,定义域与不等式解集的交集为分类标准讨论。

帮你归纳总结五导数中常见的分类讨论

帮你归纳总结五导数中常见的分类讨论

帮你归纳总结五导数中常见的分类讨论在导数的学习中,我们经常会遇到各种不同的函数和问题,为了更好地理解和解决这些问题,我们需要进行分类讨论。

下面将介绍导数中常见的五种分类讨论,并探讨每种分类讨论的应用。

一、基本函数的导数基本函数是指一些常见的函数,如常数函数、幂函数、指数函数、对数函数、三角函数等。

对于这些函数,我们可以通过公式或运用基本性质来求导数。

例如,对于常数函数f(x) = c,其导数为f'(x) = 0;对于幂函数f(x) = x^n,其中n为常数,其导数为f'(x) = nx^(n-1)。

基本函数的导数可以通过记忆公式或基本性质来求解,这是导数求解中最基础的分类讨论。

二、复合函数的导数复合函数是指由两个或多个函数相互组合而成的函数。

对于复合函数的导数求解,我们可以运用链式法则。

链式法则指出,若y=f(g(x)),其中f(u)和g(x)分别是两个可导函数,则复合函数y的导数可以表示为y'=f'(g(x))*g'(x)。

通过链式法则的应用,我们可以将复合函数的导数求解转化为求两个基本函数的导数,从而简化导数的计算。

三、隐函数的导数隐函数是指由一个关系式所定义的函数,其自变量和因变量的关系并不明显。

对于隐函数的导数求解,我们可以运用隐函数求导法。

隐函数求导法是一种通过求全微分和利用导数的定义来求解隐函数的导数的方法。

具体而言,我们可以将隐函数的方程两边求导,并利用导数的表示推导出隐函数的导数表达式。

隐函数的导数求解不仅可以帮助我们理解隐函数的性质,还可以解决一些与隐函数相关的问题。

四、参数方程的导数参数方程是指用参数的形式表示的函数。

对于参数方程的导数求解,我们可以运用参数方程的求导法。

参数方程的求导法是一种通过将参数作为自变量,并利用导数的定义和基本性质来求解参数方程的导数的方法。

具体而言,我们可以将参数方程中的每个参数视为独立的变量,然后对每个参数分别求导得到参数方程对应的导数表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含参数导数问题的三个基本讨论点
导数是研究函数图像和性质的重要工具,自从导数进入高中数学教材以来,有关导数问题是每年高考的必考试题之一。

随着高考对导数考查的不断深入,含参数的导数问题又是历年高考命题的热点。

由于含参数的导数问题在解答时往往需要对参数进行讨论,因而它也是绝大多数考生答题的难点,具体表现在:他们不知何时开始讨论、怎样去讨论。

一、 求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),从而引起讨论。

例1(07高考山东理科卷改编)设函数()()2ln 1f x x b x =++,其中0b ≠,求函数()f x 的极值点
二、 求导后,导函数为零有实根(或导函数的分子能分解因式),但不知导函数为零的实根是否
落在定义域内,从而引起讨论。

例2 (2008高考浙江卷理科)已知a 是实数,函数())f x x a =
-
(Ⅰ)求函数()f x 的单调区间;
三、 求导后,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根也落在定义
域内,但不知这些实根的大小关系,从而引起讨论。

例3(2007年高考天津理科卷)已知函数()()22211
ax a f x x R x -+=∈+,其中a R ∈。

(Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。

以上三点即为含参数导数问题的三个基本讨论点,在求解有关含参数的导数问题时,可按上述三点的顺序对参数进行讨论。

因此,对含参数的导数问题的讨论,还是有一定的规律可循的。

当然,在具体解题中,可能要讨论其中的两点或三点,这时的讨论就更复杂一些了,需要灵活把
课堂练习
1.(2010山东文数)(21)(本小题满分12分)已知函数1()ln 1()a f x x ax a R x -=-+
-∈ (II )当12
a ≤
时,讨论()f x 的单调性.
2.(2010辽宁文数)(21)(本小题满分12分)已知函数2()(1)ln 1f x a x ax =+++. (Ⅰ)讨论函数()f x 的单调性;
从以上诸例不难看出,在对含参数的导数问题的讨论时,只要把握以上三个基本讨论点,那么讨论就有了方向和切入点,即使问题较为复杂,讨论起来也会得心应手、层次分明,从而使问题迎刃而解。

例1:当0b <时,()f x
有唯一极小值点12x -+=; 当102b <<时,()f x
有一个极大值点12x -=
和一个极小值点12x -+=; 当12
b ≥时,()f x 无极值点。

例2:(1)当0a ≤时, ()f x 的单调递增区间为[)0,+∞。

当0a >时,()f x 的单调递减区间为0,3a ⎡⎤⎢⎥⎣⎦,()f x 的单调递增区间为,3a ⎡⎫+∞⎪⎢⎣⎭
(2)(
))0,06
2,~6a g a a a a ⎧≤⎪⎪=<<⎨-≥ 例3:(Ⅱ)当0a >时, ()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭,(),a +∞内为减函数,在区间1,a a ⎛⎫- ⎪⎝⎭
为增函数。

()f x 在11
x a =-处取得极小值
21f a a ⎛⎫-=- ⎪⎝⎭;函数()f x 在2x a =处取得极大值()1f a =。

当0a <时, ()f x 在区间),(a -∞,),1(+∞-a 内为增函数,在区间)1,(a
a -为减函数。

故函数()f x 在11x a =-处取得极小值21f a a ⎛⎫-=- ⎪⎝⎭;函数()f x 在2x a =处取得极大值()1f a =。

练习1:当0a
≤时,函数()f x 在(0,1)上单调递减;在(1,+∞)上单调递增; 当12
a =
时,函数()f x 在(0,+∞)上单调递减; 当102a <<时,函数()f x 在(0,1)上单调递减;在1(1,1)a -上单调递增;1(1,)a
-+∞在上单调递减, 练习2:当a ≥0时, f (x )在(0,+∞)单调增加; 当a ≤-1时, f (x )在(0,+∞)单调减少;
当-1<a <0时, f (x )在(
+∞)单调减少.。

相关文档
最新文档