最大流问题

合集下载

运筹学最大流问题例题

运筹学最大流问题例题

运筹学最大流问题例题
以下是一个关于运筹学最大流问题的例题:
假设有一个有向图,有两个特殊的节点,分别是源点(S)和
汇点(T)。

图中还有一些其他的节点,表示各个任务或工作。

节点之间有一些带有容量限制的边,表示各个任务之间的关系。

假设需要将尽可能多的任务从源点发送到汇点,但要满足以下条件:
1. 每个任务只能由一个人来执行;
2. 每个人只能执行一个任务;
3. 每个任务只能在特定的时间完成;
4. 每个人只能在特定的时间段内工作。

问题:设计一个算法来确定可以完成的最大任务数。

解法:
1. 为了建立最大流问题的模型,我们需要将图中的节点和边进行转换。

首先,将源点和汇点分别用两个特殊的节点S和T
表示。

2. 对于每个任务节点,将其分解为两个节点v_in和v_out,以
表示任务开始和任务结束的时间点。

3. 对于每个容量限制的边(a, b),我们将其转换为两条边
(v_out_a, v_in_b)和(v_out_b, v_in_a),容量为边(a, b)上的容量
限制。

4. 然后,将所有节点和边加入到一个图中,并运用最大流算法(如Ford-Fulkerson算法)来找到从S到T的最大流。

5. 最终的最大流就是可以完成的最大任务数。

这是一个应用最广泛的最大流问题的例题,通过建立合适的模型,可以将实际问题转化为最大流问题,并通过最大流算法来解决。

最大流问题的求解方法及应用

最大流问题的求解方法及应用

最大流问题的求解方法及应用
最大流问题,是指在一个有向图中,从源点 s 到汇点 t 的最大
流量。

在实际应用中,最大流问题往往用于描述网络传输、油管输送等流量分配问题。

求解最大流问题的方法包括以下几种:
1. 网络流算法:这是一种基于图论和线性规划的算法。

通过构建网络流图,将最大流问题转化为最小割问题,再利用线性规划求解最小割问题的对偶问题来求解最大流问题。

2. 增广路算法:这是一种经典的最大流算法,其基本思想是不断找到增广路径,即从源点 s 到汇点 t 的一条路径,沿途边权
均有剩余容量,使得该路径上的边的剩余容量中的最小值最大化,最终得到最大流。

3. 矩阵树定理:这是一种基于图论和矩阵运算的算法,适用于有向图和无向图。

通过计算图的拉普拉斯矩阵的行列式等方法,求得图的生成树个数,从而计算最大流。

4. Dinic算法:是对增广路算法的改进。

在增广路算法中,每
次查找增广路径的过程需要遍历整个图,为了提高效率,
Dinic算法引入了分层图的概念,将图分层之后只在图的一层
中查找增广路径,最终求得最大流。

这些方法在实际应用中常常被用来解决路由选择、网络流量优化、模拟电路分析等问题。

例如,最大流可以被用来优化数据传输、流水线设计、流量管道的运营和管理,提高资源利用率和数据传输速度。

最大流问题解题步骤

最大流问题解题步骤

最大流问题解题步骤一、什么是最大流问题?最大流问题是指在一个有向图中,给定源点和汇点,每条边都有一个容量限制,求从源点到汇点的最大流量。

该问题可以用于网络传输、电力调度等实际应用中。

二、最大流问题的解法1. 增广路算法增广路算法是最基本的解决最大流问题的方法。

其基本思想是不断地寻找增广路,并将其上的流量加入到原来的流中,直到不存在增广路为止。

具体步骤如下:(1)初始化网络中各边上的流量均为0;(2)在残留网络中寻找增广路;(3)如果存在增广路,则将其上的最小剩余容量作为增量加入到原来的流中;(4)重复步骤2和步骤3,直到不存在增广路。

2. Dinic算法Dinic算法是一种改进型的增广路算法,其核心思想是通过层次分析和分层图来减少搜索次数,进而提高效率。

具体步骤如下:(1)构建分层图;(2)在分层图上进行BFS搜索寻找增广路径;(3)计算路径上可行流量并更新残留网络;(4)重复步骤2和步骤3,直到不存在增广路。

3. Ford-Fulkerson算法Ford-Fulkerson算法是一种基于增广路的算法,其核心思想是不断地寻找增广路,并将其上的流量加入到原来的流中,直到不存在增广路为止。

具体步骤如下:(1)初始化网络中各边上的流量均为0;(2)在残留网络中寻找增广路;(3)如果存在增广路,则将其上的最小剩余容量作为增量加入到原来的流中;(4)重复步骤2和步骤3,直到不存在增广路。

三、最大流问题解题步骤1. 确定源点和汇点首先需要确定问题中的源点和汇点,这是解决最大流问题的前提条件。

2. 构建残留网络在有向图中,每条边都有一个容量限制。

我们可以将这些边看作管道,容量看作管道的宽度。

在实际传输过程中,某些管道可能已经被占用了一部分宽度。

因此,在求解最大流问题时,需要构建一个残留网络来表示哪些管道还能够继续传输数据。

具体方法是:对于每条边(u,v),分别构造两条边(u,v)和(v,u),容量分别为c(u,v)-f(u,v)和f(u,v),其中c(u,v)表示边的容量,f(u,v)表示当前流量。

最大流常见算法

最大流常见算法

最大流常见算法最大流问题是图论中的一个重要问题,其求解方法有多种,本文将介绍最常见的几种算法。

一、最大流问题简介最大流问题是在一个网络中寻找从源点到汇点的最大流量的问题。

网络是由一些节点和连接这些节点的边构成的,每条边都有一个容量,表示该边所能承载的最大流量。

源点是流量的起点,汇点是流量的终点。

在网络中,还可能存在其他节点和边。

二、Ford-Fulkerson算法Ford-Fulkerson算法是最早用于解决最大流问题的算法之一。

该算法基于增广路径来不断增加流量,直到无法再找到增广路径为止。

1. 算法步骤(1)初始化:将所有边上的流量设为0。

(2)寻找增广路径:从源点开始进行深度优先或广度优先搜索,在搜索过程中只选择剩余容量不为0且没有被标记过的边,并记录路径上容量最小值min。

(3)更新路径上各个边上的流量:将路径上各个边上的流量加上min。

(4)返回第二步,直到无法找到增广路径为止。

2. 算法分析Ford-Fulkerson算法可以保证在有限步内求解出最大流,但是其时间复杂度与增广路径的选择有关,最坏情况下可能需要指数级的时间复杂度。

三、Edmonds-Karp算法Edmonds-Karp算法是基于Ford-Fulkerson算法的一种改进算法。

该算法使用BFS来寻找增广路径,可以保证在多项式时间内求解出最大流。

1. 算法步骤(1)初始化:将所有边上的流量设为0。

(2)寻找增广路径:从源点开始进行BFS,在搜索过程中只选择剩余容量不为0且没有被标记过的边,并记录路径上容量最小值min。

(3)更新路径上各个边上的流量:将路径上各个边上的流量加上min。

(4)返回第二步,直到无法找到增广路径为止。

2. 算法分析Edmonds-Karp算法相对于Ford-Fulkerson算法来说,在同样的网络中,其时间复杂度更低,可以保证在O(VE^2)的时间内求解出最大流。

但是在某些特殊情况下仍然可能需要指数级时间复杂度。

最大流的概念

最大流的概念

最大流的概念最大流(Maximum Flow)是指在一个有向图中,给每条边一个容量限制,然后寻找一条从源点到汇点的路径,使得路径上的每条边的流量都不超过其容量限制的最大值。

最大流问题是网络流理论中的一种经典问题,具有广泛的应用领域,如网络优化、流量分配、资源调度等。

最大流问题可以用图论中的图来进行模型表示,其中图中的节点表示流经的位置,边表示流量通路,每条边还有一个容量值,表示该边所能承载的最大流量。

图中通常包括一个源点(Source)和一个汇点(Sink),各个节点与源点和汇点之间的连接关系构成了一个流量网络。

每个节点上的流量是指通过该节点的流量总和,而边上的流量是指该边上的实际流量。

最大流问题的求解可以采用不同的算法,其中最常见的是Ford-Fulkerson算法和Edmonds-Karp算法。

下面将对这两种算法进行详细介绍。

1. Ford-Fulkerson算法Ford-Fulkerson算法是最大流问题的经典算法,它的思想是不断寻找增广路径,并通过增加该路径上各边的流量来增加整个流量网络的流量。

算法的基本步骤如下:(1) 初始化流量网络的流量为0。

(2) 通过任意的路径查找算法(如深度优先搜索)找到一条从源点到汇点的增广路径。

(3) 在该增广路径上增加流量的值为该路径上残余容量的最小值。

(4) 更新整个流量网络中各边的残余容量和反向边的流量。

(5) 重复步骤2至4,直到无法找到增广路径为止。

2. Edmonds-Karp算法Edmonds-Karp算法是Ford-Fulkerson算法的一种改进,它通过使用广度优先搜索来寻找增广路径,使得算法的时间复杂度优于Ford-Fulkerson算法。

算法的具体步骤如下:(1) 初始化流量网络的流量为0。

(2) 通过广度优先搜索查找一条从源点到汇点的最短增广路径。

(3) 在该增广路径上增加流量的值为该路径上残余容量的最小值。

(4) 更新整个流量网络中各边的残余容量和反向边的流量。

5-4 最 大 流 问题

5-4 最 大 流 问题

(2)标号过程 标号过程
给起点v 标上标号( , 1给起点 s标上标号(-,+∞); ); (表示 s是源点(起点),能够得到任意多的量。 表示v 是源点(起点),能够得到任意多的量。 ),能够得到任意多的量 表示 vs称为已标记的点。让S表示已标记点的集合 S 表示 称为已标记的点。 表示已标记点的集合, 表示已标记点的集合 未标记点的集合, 未标记点的集合 VS ∈ S ) 2考察起点的所有相邻未标号点: 考察起点的所有相邻未标号 所有相邻未标号点 若存在以S中的点为起点, 若存在以 中的点为起点,以 S 中的点为终点的非饱 中的点为起点 [vi+ , ε j ] ,否则不加标记。 和弧( 否则不加标记。 和弧(vi,vj)则vj可标记为
从S出发到 S 终止的所有边的集合即割集。 终止的所有边的集合即割集。
v2
e1
e3 e6
v4
e8
v1
e2
e4 e7
v6
e5
v3
v5
e9
不包括从 S 出发到S终 止的边!
4、弧的分类
(1)在可行流X={xij}中,按流量的特征 在可行流X 分有: 分有: ①饱和弧——xij=bij 饱和弧 ②非饱和弧——xij<bij 非饱和弧 ③零流弧——xij=0 零流弧 ④非零流弧——xij>0 非零流弧
顶点3的标记化 顶点 的标记化: 的标记化 ∵ x s 3 = bs 3 , 但
正向饱和 弧 ∴不能从v 不能从
得到标记; 标记 s得到标记;
x
32
得到标记 标记。 > 0,故可从v2得到标记。
反向非零流
于是
ε ε3 = min { 2 , x 32 } = min {6 , 4 } = 4

运筹学第7章 最大流问题(精简)


对最大流问题有下列定理:
定理1 容量网络中任一可行流的流量 不超过其任一割集的容量。
定理2(最大流-最小割定理)任一容 量网络中,最大流的流量等于最小割集 的割量。
推论1 可行流f*={fij*}是最大流,当且 仅当G中不存在关于f.*的增广链。
求最大流的标号法
标号法思想是:先找一个可行流。 对于一个可行流,经过标号过程得到 从发点vs到收点vt的增广链;经过调整 过程沿增广链增加可行流的流量,得 新的可行流。重复这一过程,直到可 行流无增广链,得到最大流。
.
标号过程:
(1)给vs标号(,+∞),vs成为已标号未检查的点,其 余都是未标号点。
(2)取一个已标号未检查的点vi,对一切未标号点vj: 若有非饱和边(vi,vj),则vj标号(vi,l(vj)),其中l(vj)= min[l(vi),cij – fij],vj成为已标号未检查的点;若有非 零边(vj,vi),则vj标号(-vi,l(vj)),其中l(vj)=min[l(vi), fji], vj成为已标号未检查的点。vi成为已标号已检查的点 。
最大流问题
.
基本概念
v2 3
4
v4
5
vs
1
1
3
vt
5
2
v1
2
v3
给定一个有向图G=(V,E),其中仅有一个点的入次
为零称为发点(源),记为vs,仅有一个点的出次为零 称为收点(汇),记为vt,其余点称为中间点。
对于G中的每一条边(vi,vj),相应地给一个数cij (cij≥0),称为边(vi,vj)的容量。我们把这样的网络 G称为容量网络 ,记为G=(V,E,C)。
但利用它与图的密切关系,可以利用图直观简便地求 解。

运筹学最大流问题例题

运筹学最大流问题例题摘要:1.运筹学最大流问题简介2.最大流问题的基本概念和方法3.最大流问题的求解步骤4.最大流问题在实际应用中的案例分享5.总结与展望正文:【提纲1:运筹学最大流问题简介】运筹学最大流问题是一种求解网络中最大流量的问题。

在有向图中,有一个发点(源)和一个收点(汇),其他点称为中间点。

给定每条边的容量,我们需要找到一条从发点到收点的路径,使得这条路径上的流量最大。

最大流问题在物流、交通、通信等领域具有广泛的应用。

【提纲2:最大流问题的基本概念和方法】在最大流问题中,我们需要了解以下几个基本概念:1.流量:表示在一条边上流动的单位数量。

2.容量:表示一条边能承受的最大流量。

3.增广链:从发点到收点的路径,路径上的每条边都有剩余容量。

求解最大流问题的基本方法是:1.初始化:将所有边的流量设为0。

2.寻找增广链:在图中寻找一条从发点到收点的路径,使得路径上的每条边都有剩余容量。

3.更新流量:将找到的增广链上的流量增加,同时更新路径上其他边的剩余容量。

4.重复步骤2和3,直到无法再找到增广链。

【提纲3:最大流问题的求解步骤】以下是求解最大流问题的具体步骤:1.构建网络图:根据题目给出的条件,构建有向图。

2.初始化:将所有边的流量设为0,记录发点和收点。

3.寻找增广链:使用深度优先搜索或广度优先搜索等算法,在图中寻找一条从发点到收点的路径。

4.更新流量:找到增广链后,将路径上的流量增加,同时更新路径上其他边的剩余容量。

5.重复步骤3和4,直到无法再找到增广链。

6.输出结果:最大流即为所有增广链上的流量之和。

【提纲4:最大流问题在实际应用中的案例分享】最大流问题在实际应用中具有广泛的价值,例如:1.物流配送:通过最大流问题优化配送路线,降低物流成本。

2.交通规划:通过最大流问题优化交通网络,提高出行效率。

3.通信网络:通过最大流问题优化网络资源分配,提高通信质量。

【提纲5:总结与展望】运筹学最大流问题是一种重要的优化问题,其在实际应用中具有广泛的价值。

运筹学最大流问题

最小割是这些路中的咽喉部分, 其容量最小,
它决定了整个网络的最大通过能力。
四、最大匹配问题
|M |表示集合M中M的边数。
一个图的最大匹配中所含边数是确定的, 但匹配方案可以不同。
定义23 二部图G=(X,Y,E), M是边集E的子集, 若M中的任意
若不存在另一匹配M1, 使得|M1|>|M|, 则称M为最大匹配.
x5
y1x3y2x2y3x1
y4
x4
y5
x5
y1
x3
y2
x2
y3
x1
y4
x4
y5
vs
vt
1
1
1
1
1
1
1
1
1
1
1
1
如图,要求设计一个方案,使量多的人能就业。
(1,3)
(2,4)
(4,3)
(1,2)
(3,2)
(3,t)
(2,4)
(3,t)
(4,3)
(4,t)
(1,3)
(3,t)
15
(4,t)
21
17
18
19
24
14
25
15

容量
4-3、最大流-最小割定理
定理
定理2 (最大流-最小割定理) 任一网络G中, 从vs 到 vt 的
定义
设 f 为网络G=(V, E, C)的任一可行流, 流量为W ,
未标号点集合为 S = {v1, v2, v4, v5, v6, v7}
割集(S, S )= {(vs, v1), (vs, v2), (v3, v6)}
割集容量
可得到一个最小割. 见图中虚线.

最小费用最大流

最小费用最大流1.最大流问题1.1案例假设现在因为种种原因,我们只能通过地面线路来运输口罩物资,并且每一条线路是有流量限制的。

假设不考虑运输速度,并且源点S (杭州)的口罩物资产量是足够多的,我们需要求解汇点T(武汉)在不计速度的情况下能收到多少物资?对于这个流网络,我们可以轻松的获得汇点T的最大流量。

因为在这个图中,只有两条路径,分别是S → A → B → T和S → C → D → T两条路径来输送流量,前者最大流量是12 ,后者是4,所以最大流量总和是16。

1.2建模图1是连接产品产地Vs和销售地Vt的交通网,每一条弧代表两点间的运输线,弧旁的数字表示这条运输线的最大通过能力。

现在要求制定一个运输方案,使得从Vs运输到Vt的产品数量最多。

图1模型():(,):(,)max .,,,,s ,0,s.t 0,,V V st f c Vf f t f Vμυμυμυυμυυυμμυλμυμυλμλμμμυ∈∈≤∀∈⎧=⎪-=-=⎨⎪≠⎩≥∀∈∑∑其中λ表示总共运输量f μυ表示弧(),μυ中的实际流量(),c μυ表示弧(),μυ中的容量限制S,t 表示物质运输的起点和终点最大流问题的推广现实问题中的网络,不但边有容量,而且点也有容量。

例如运 输网络中表示中转站的点v, 点容量 c(v) 可表示该中转站能容纳的货物的数列。

对点有容量的网络 N ,流函数若满足对一点 v,流入v 的流量之和等于流出v 的流量之和,并且小于等于c(v),2.最小费用最大流问题上面我们介绍了一个网络上最短路以及最大流的算法,但是还没有考虑到网络上流的费用问题,在许多实际问题中,费用的因素很重要。

例如,在运输问题中,人们总是希望在完成运输任务的同时,寻求一个使总的运输费用最小的运输方案。

这就是下面要介绍的最小费用流问题。

在运输网络N = (s,t,V, A,U)中,设(),c μυ是定义在A上的非负函数,它表示通过弧(),μυ单位流的费用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(0,10)
v0
(0,3)
(0,4)
(2,6) vn (0,10)
(2,5)
v3
(0,3)
增流路: v0v2vn 增流值=4
(4,5)
v1 (2,6) (0,3) (2,2) v5 (0,3) (0,4) v2
(0,10)
v0
(0,3)
(0,4)
(6,6) vn (0,10) v4 (0,5)
(2,5)
(2,5)
(0,3) v3
(4,5)
v1 (6,6) (0,3) (2,2) v5 (0,3) (0,4) v2
(4,10)
v0
(0,3)
(4,4)
(6,6) vn (4,10) v4 (0,5)
(2,5)
(0,3) v3
f =10
(4,5)
v1 (6,6) (0,3) (2,2) v5 (0,3) (0,4) v2
(0,10)
v0
(0,3)
(0,4)
(6,6) vn (0,10) v4 (0,5)
(2,5)
(0,3) v3
(4,5)
v1 (2,6) (0,3) (2,2) v5 (0,3) (0,4) v2
(0,10)
v0
(0,3)
(0,4)
(6,6) vn (0,10) v4 (0,5)
(2,5)
(0,3) v3
(4,10)
v0
(0,3)
(4,4)
(6,6) vn (4,10) v4 (3,5)
(5,5)
(0,3) v3
f =13
(4,5)
v1 (6,6) (0,3) (2,2) v5 (0,3) (0,4) v2
(4,10)
v0
(0,3)
(4,4)
(6,6) vn (4,10) v4 (3,5)
(5,5)
(4,5)
v1 (6,6) (3,3) (2,2) v5 (3,3) (0,4) v4 (3,5) v2
9-5
最大流问题
一、几个概念
定义(前向弧和后向弧)在任 意一顶点之处,凡离开vi的有 向弧称为vi的前向弧,凡进入 vi的有向弧称为vi的后向弧。
a vi vj
称有向弧a为vi点的前向弧, vj点的后向弧。
定义(道路或通路)在任意一 网络中,凡从始点v0(发点) 开始到终点vn(收点)结束的 一系列前向弧集合称为道路。 记为P。
(7,10)
v0
(0,3)
(4,4)
(6,6) vn (7,10) v4 (3,5)
(5,5)
(0,3) v3
(4,5)
v1 (6,6) (3,3) (2,2) v5 (3,3) (0,4) v2
(7,10)
v0
(0,3)
(4,4)
(6,6) vn (7,10) v4 (3,5)
(5,5)
(0,3) v3
v1 b
v0
v2
vn
截集b:v1vn,v2vn,v0vn
v1
v0
v2
vn
c
截集c:v1vn,v1v2,v2v1,v0v2 ,v0vn
d
v1
v0
v2
vn
截集d:v0v1,v1v2,v2v1,v2vn,v0vn
定义(截集的容量)从S中各 顶点到S中各顶点全部容量之 和称为截集的容量(截量), 用(S,S)表示。
fij (vi,vj)是后向弧
其中Cij是边容量, f(i,j) 是流过边 vivj 的可行流, ( f(i,j) Cij) 定义:若 (P)=0 称P为f 的饱和的; 若 (P)>0 称P为f 的不饱和的。
定义:一条从发点到收点的 f不饱和通路称 为f 的增长道路(增流路)。
在一个网络中,f 的增长道路的存在 表示 f 不是最大流。所以。沿着P增 加一个值为 (P)的附加流,得到一个 新流:
(0,5)
v1 (0,6) (0,3) (0,2) v5 (0,3) (0,4) v2
(0,10)
v0
(0,3)
(0,4)
(0,6) vn (0,10) v4 (0,5)
(0,5)
(0,3) v3
(0,5)
v1 (0,6) (0,3) (0,2) v5 (0,3) (0,4) v2
(0,10)
v0
则称f为N的一个网络流,简称流。
定义(最大流)
若 f 为N的一个网络流,而 N中不存在流 f ,使得 f >f , 则称 f 为一个最大流,记Max f 。
截量 C与流 f 的关系 任一有向网络流,如果 f 是从发点到收点的流量,C(S,S) 是任一个截集,则 f C(S,S) 。
等号什么时候成立?
(4,10)
v0
(0,3)
(4,4)
(6,6) vn (4,10) v4 (0,5)
(2,5)
(0,3) v3
(4,5)
v1 (6,6) (0,3) (2,2) v5 (0,3) (0,4) v4 (0,5) v2
(4,10)
v0
(0,3)
(4,4)
(6,6) vn (4,10)
(2,5)
v3
(0,3)
v1
v0
v2
vn
v1
v0
v2
vn
V0——V1——Vn
v1
v0
v2
vn
v1
v0
v2
vn
V0——V1——Vn
v1
v0
v2
vn
V0——Vn
v1
v0
Байду номын сангаас
v2
vn
v1
v0
v2
vn
v1
v0
v2
vn
V0——V1——V2——Vn
v1
v0
v2
vn
v1
v0
v2
vn
V0——V2——Vn
v1
v0
v2
vn
v1
定义(最小截量)
一个网络中,各种截集中容量 最小的称为最小截量,用min C(S,S)表示。
现在我们把一个网络看成 是一个自来水管网络,煤气管 网络,电力线网络或公路网络, 铁路网络,水运交通网络等, 都可以归纳成一个运输问题, 称为网络流,值得关心问题是 在这样一个网络中最大流为多 少?
定义(流)若对网络N,函数f满 足如下条件: (1)0 fij Cij (i,j)E(N) (2)f-(vi) = f+(vi) iV(N)
(0,10)
v0
(0,3)
(0,4)
(6,6) vn (0,10)
(2,5)
v3
(0,3)
增流路: v0v1v2v4vn
增流值=4
(4,5)
v1 (6,6) (0,3) (2,2) v5 (0,3) (0,4) v2
(4,10)
v0
(0,3)
(4,4)
(6,6) vn (4,10) v4 (0,5)
截集a: 截集c:
Ca=C01+C02+C0n Cc=C1n+C12+ C02+ C0n
截集b: Cb=C1n+C2n+C0n
截集d: Cd=C01+C21+ C2n+ C0n
S
v0
v1
v2
vn
c
S 在截集c中边v2v1是反向的,
其容量视为零。
d
v1
S
v0
v2
vn
S
在截集d中边v1v2是反向 的,其容量视为零。
(7,10)
v0
(0,3)
(4,4)
(6,6) vn (7,10) v4 (3,5)
(5,5)
(0,3) v3
f =16
(4,5)
v1 (6,6) (3,3) (2,2) v5 (3,3) (0,4) v2
(7,10)
v0
(0,3)
(4,4)
(6,6) vn (7,10) v4 (3,5)
(5,5)
定理(最小截量 最大流)
任一有向网络流,从发点到 收点的最大流量Max f 等于最 小截量Min C(S,S) 。
即: Max f = Min C(S,S)
最大流算法
设P=v0v1v2….vn为网络中的一条通路, 记E(P)=(所有P中的前向弧和后向弧) 令(P)=min (i,j) 其中
(i,j)= Cij-fij (vi,vj)是前向弧
(0,3) v3
(4,5)
v1 (6,6) (0,3) (2,2) v5 (0,3) (0,4) v2
(4,10)
v0
(0,3)
(4,4)
(6,6) vn (4,10) v4 (3,5)
(5,5)
(0,3) v3
(4,5)
v1 (6,6) (0,3) (2,2) v5 (0,3) (0,4) v2
算法:寻找增流路方法(标号法)
从v0开始,沿着边从已有标号vi出 发,对符合下列条件之一相邻顶点 vj作标记,直到vn;
1 如(vi,vj)是前向弧,条件是
f(i,j)< Cij 2 如(vi,vj)是后向弧,条件是
f(j, i) > 0
(0,5)
v1 (0,6) (0,3) (0,2) v5 (0,3) (0,4) v4 (0,5) v2
(0,3) v3
f=6
(4,5)
v1 (2,6) (0,3) (2,2) v5 (0,3) (0,4) v2
(0,10)
v0
(0,3)
相关文档
最新文档