浅析碳捕集与封存技术
碳捕集与封存技术研究

碳捕集与封存技术研究一、引言地球温度的上升引起了全球气候变化的问题,使得碳排放成为了全球关注的热点问题之一。
碳排放从源头上控制已经成为了国际大势所趋。
碳捕集与封存技术就是由此派生出来的技术之一。
本文将深入探讨碳捕集与封存技术研究的现状与未来展望,旨在为碳捕集与封存技术的推广提供有益参考。
二、碳捕集与封存技术的定义和分类碳捕集与封存技术是指从燃烧排放的二氧化碳中分离出大量的碳,并将其存储在地下,以减缓温室效应的发展。
碳捕集和封存技术可以分为三类:第一类是通过气相传输或化学吸收来捕获二氧化碳的技术;第二类是将CO2压缩输送到沉淀可能存储二氧化碳的地下岩层或地质盆地;第三类是通过生物质将二氧化碳转化为其他有用的物质来减少CO2的排放量。
三、碳捕集与封存技术的现状1.技术成熟度碳捕集与封存技术研究的历史可以追溯到20世纪60年代,现在已经有了很大的进展,目前,该技术已经实现了可度量的大规模demo项目,能够进行大规模工程开发,并具有一定的经济效益。
2.实际应用迄今为止,全球已经有31个碳捕集与封存项目正在进行中,其中26个正在建设或者规划中,而另外5个已经开始了营运。
最大规模的项目是位于挪威的Sleipner项目,可以将每年约一百万吨二氧化碳存储在地下岩石中。
3.国际合作为了在全球范围内寻求碳排放解决方案,许多国际合作组织已确立,如加拿大的Saskatchewan区域和中国的城市和工业区域、阿拉伯国家等。
同时,还组织了一些国际研究计划,例如欧盟开展的“网络总结碳的战略研究”和美国“大西部碳捕集与地质封存研究联合计划”。
四、碳捕集与封存技术的发展趋势1.技术进步尽管碳捕集与封存技术已经成熟,但是目前仍然缺乏低成本,大规模应用于实际环境中的可行性。
因此在未来的发展中,必须通过技术创新来解决这些问题。
2.政策营造尽管政策环境的利好,但是能否实现大规模应用还有很大的挑战。
政府需要为碳捕集与封存技术创造更好的营商环境,因此政策的优惠和支持至关重要。
碳捕集与封存( CCS)简介

碳捕集与封存(CCS)简介碳捕集与封存(Carbon Capture and Storage,简称CCS)是指将大型发电厂、钢铁厂、水泥厂、化工厂等排放的二氧化碳收集起来并封存而与大气隔绝的一种技术。
CCS是为了实现温室气体减排、应对全球气候变化而开发的一项新技术,其重要意义在Array于:它是在继续利用煤、石油等化石能源的同时实现CO2近零排放的唯一有效技术。
CCS技术包括CO2捕集、运输以及封存三个环节,每个环节都已有成熟技术,但在串联起来应用于大规模CO2减排时尚需要通过各种途径降低成本,包括进行技术改造和将所捕集的一部分CO2提供利用,如用于提高石油采收率等。
二氧化碳捕集二氧化碳的捕集方式主要有三种:燃烧前捕集(Pre-combustion)、富氧燃烧(Oxy-fuelcombustion)、燃烧后捕集(Post-combustion)。
燃烧前捕集目前主要采用IGCC(整体煤气化联合循环)发电系统。
其过程是在燃烧之前将煤气化成煤气并净化除去CO2、H2S、NOx及粉尘等,再将煤气分离得到得到H2和CO2。
H2作为燃气轮机的燃料,CO2经脱水和压缩后提供封存。
伴生的高温废气再利用来产生蒸汽供蒸汽轮机发电。
该技术的捕集系统小,效率高、用水少、环保(同时实现脱碳、脱硫、脱硝和除尘),还可与煤化工相结合,实现电、热、化工产品(氢气、甲醇、烯烃)等多联产。
IGCC的研发已列入我国“十一五”发展规划纲要和863计划重大项目。
富氧燃烧采用传统燃煤电站的技术流程,但通过制氧技术,将空气中占大比例的氮气(N2)脱除,直接采用高浓度的氧气(O2)与抽回的部分烟气的混合气体来替代空气,这样得到的烟气中有高浓度的CO2气体,可以直接进行处理和封存。
该技术目前尚处于研发阶段,最大的难题是制氧技术的投资和能耗太高。
燃烧后捕集在传统工业排放的烟道气中捕集CO2。
目前常用的CO2分离技术主要有化学吸收法(利用酸碱Array性吸收)和物理吸收法(变温变压吸附),而膜分离法也发展很快,在能耗和设备紧凑性方面具有巨大潜力。
碳捕获与封存技术在煤矿工程中的应用研究

碳捕获与封存技术在煤矿工程中的应用研究煤矿工程是一个重要的能源行业,然而,燃烧煤炭会释放大量的二氧化碳,对全球气候变化产生了巨大影响。
为了减少煤矿工程对气候变化的负面影响,研究人员开始探索碳捕获与封存技术在矿场中的应用。
碳捕获与封存技术是一种将二氧化碳从燃烧排放物中分离出来并将其长期储存的方法。
在煤矿工程中,这种技术可以分为两个主要方面的应用研究,即在燃烧过程中捕获和储存二氧化碳以及在煤矿井下直接封存二氧化碳。
首先,研究人员在燃烧过程中发展了各种碳捕获技术。
其中最常用的方法是后燃烧碳捕获技术。
这种技术基于燃烧后的废气,将二氧化碳与其他废气组分分离出来。
例如,通过化学吸收剂可以将二氧化碳吸收并分离出来。
此外,膜分离、吸附等技术也在研究之中。
这些技术的研究目标是寻找高效、经济并且可持续的碳捕获方法,以减少煤矿工程对气候变化的负面影响。
其次,煤矿井下的直接封存技术也得到了广泛研究。
这些技术基于将二氧化碳直接注入煤矿井下空腔中,并将其永久储存起来,以避免其进入大气。
主要的封存方法包括地层封存和煤矿封存。
地层封存是指将二氧化碳气体储存在深层地质层中,如盐穴等地质层。
而煤矿封存则是将二氧化碳固体化,注入已经开采完毕的煤矿中,从而将其长期封存。
这些直接封存技术需要进行地质调查、注入方案设计以及监测等环节来确保安全有效地封存二氧化碳。
此外,研究人员还在寻找新的碳捕获与封存技术,并进行技术经济性和可持续性的评估。
例如,近年来,利用天然气水合物进行碳捕获和封存的研究得到了重视。
天然气水合物是一种在特定温度和压力条件下形成的天然气和水分子的复合物,其中天然气水合物可以用来捕获二氧化碳并长期储存。
这种技术的研究不仅在煤矿工程中具有潜力,还可以为其他工业领域的碳减排提供新思路。
综上所述,碳捕获与封存技术在煤矿工程中的应用研究是为了减少煤矿工程对气候变化的负面影响。
通过研究碳捕获技术,我们可以有效地将二氧化碳从煤矿工程中分离出来。
碳捕捉利用与封存技术发展浅析

图1 CCUS 流程图CO 2的捕捉2的捕捉作为CCUS 技术发展的重点与前提,按照捕捉难度的不同可以分为燃烧后捕捉、燃烧前捕捉及燃烧中捕捉(富氧捕捉),技术路线如图2所示。
燃烧后捕捉将生物质燃料燃烧后气体与煤气等烟气净化后,在净化通道CO 2捕获装置,该方法捕获成功率高、基金项目:深水、绿色新能源及智能监检测技术可碳捕捉利用与封存技术发展浅析使用范围广,现已在炼厂、电厂得到广泛使用,但由于单位体积中烟气流速过快,CO 2在未被捕捉前易被空气所稀释,增加捕获难度。
燃烧前捕捉相对成本、效率而言是最具经济价值的捕捉方法。
该法通过将化石燃料气化为H 2与CO 混合气,再经过化学反应使转换为CO 2,利用吸附法将CO 2分离,是经典的水煤气转化流程具有极高的经济价值,但该技术仅限于水煤气循环发电系统且设备占地空间较大、前期投入成本较高等问题导致以此技术为基础项目投产较少,尚需更多项目进一步验证。
燃烧中捕捉(富氧燃烧)指化石燃料在高纯度、高体积分数氧气中进行燃烧,燃烧后主要产物为CO 2、H 他惰性产物。
水蒸气冷凝后通过低温闪萃提取得到纯度高~95%的CO 2,避免之后对CO 2的分离操作,分离消图2 碳捕捉路线图226研究与探索Research and Exploration ·工程技术与创新中国设备工程 2024.03(上)较快;低温蒸馏法简单易行,避免了外加吸附剂的使用但同时导致CO 2回收率低、回收消耗居高不下。
截至目前,虽然各种方法优缺点明显,但吸收法与吸附法在我国CCUS 项目中国已经得到较多利用,具有较高的经济发展空间。
(2)化学法。
根据分离技术的不同,化学法可进一步划分为溶剂吸收法、吸附法、膜吸收法、电化学法以及水合物法。
其中吸收法工业化成熟、自主性好、吸收效率高但吸收剂消耗较高、损失明显且前期设备投资较大;吸附法工艺简单易懂、具有明显针对性、去除CO 2效率较高但吸附能力受吸-解吸次数、温度等因素影响较大;膜吸收法吸收膜表面与CO 2接触面积较大、自主吸附能力较高但构成膜材料自身持久性较差;电化学法技术较为普遍且费用较低但高温环境下耐蚀电极材料选材需要极为谨慎;水合物法成本低,工艺简单且原理上没有第三产物生成,但其常温下对装置便具有极强腐蚀性,装置材料成为该法的主要限制因素。
碳捕集与封存技术的现状与挑战

碳捕集与封存技术的现状与挑战在全球气候变化的大背景下,减少温室气体排放已成为当务之急。
碳捕集与封存(Carbon Capture and Storage,简称 CCS)技术作为一种重要的减排手段,近年来受到了广泛的关注。
本文将探讨碳捕集与封存技术的现状,并分析其面临的挑战。
一、碳捕集与封存技术的原理碳捕集与封存技术主要包括三个环节:碳捕集、碳运输和碳封存。
碳捕集是指将二氧化碳从工业排放源(如发电厂、钢铁厂、水泥厂等)中分离出来的过程。
目前主要的碳捕集技术有燃烧后捕集、燃烧前捕集和富氧燃烧捕集。
燃烧后捕集是在燃烧过程完成后,从烟道气中捕集二氧化碳;燃烧前捕集则是在燃料燃烧前将其转化为氢气和二氧化碳,然后分离出二氧化碳;富氧燃烧捕集是采用高浓度氧气进行燃烧,从而产生高浓度的二氧化碳,便于捕集。
碳运输是将捕集到的二氧化碳通过管道、船舶或公路槽车等方式输送到封存地点。
碳封存则是将二氧化碳注入地下深处的地质构造中,如枯竭的油气田、深部盐水层等,使其长期与大气隔离。
二、碳捕集与封存技术的现状(一)技术进展经过多年的研究和发展,碳捕集与封存技术在某些方面取得了显著的进步。
燃烧后捕集技术中的化学吸收法不断优化,提高了二氧化碳的捕集效率和降低了成本。
同时,新型的吸附材料和膜分离技术也在研发中,有望进一步提高捕集效果。
在碳运输方面,管道运输技术相对成熟,但对于长距离和大规模的运输,还需要解决一些工程和安全问题。
碳封存的地质评估和监测技术也在不断改进,以确保二氧化碳的安全封存。
(二)示范项目全球范围内已经建立了一些碳捕集与封存的示范项目。
例如,挪威的 Sleipner 项目是世界上第一个大规模的二氧化碳封存项目,自 1996 年以来,已经成功将超过 1000 万吨的二氧化碳封存在北海的海底盐水层中。
美国的 Petra Nova 项目采用燃烧后捕集技术,每年可捕集约 140 万吨二氧化碳,并将其用于提高石油采收率。
中国也在积极推进碳捕集与封存技术的示范项目,如神华集团在鄂尔多斯的 10 万吨/年二氧化碳捕集与封存示范项目。
碳捕集和封存技术的研究与发展

碳捕集和封存技术的研究与发展近年来,随着全球气候变化问题的日益凸显,碳捕集和封存技术成为了备受瞩目的研究领域。
这项技术可以将二氧化碳从大气中去除并将其地下封存,使之不再对地球产生温室效应,从而减缓全球气候变化的速度。
本文将从以下几个方面展开对碳捕集和封存技术的研究和发展情况进行探讨。
1. 什么是碳捕集和封存技术?碳捕集(CO2 Capture)和封存(Storage)技术是指一系列将大气中二氧化碳分离、收集、转运并最终封存于地下、水下或其他安全地点的技术方法。
该技术通过对二氧化碳的转化和压缩,将其封存在深水层地下或地下储层中,既可以减缓温室气体的排放,又可以进行永久性地封存,从而达到保护环境的目的。
2. 碳捕集和封存技术的意义及其应用领域随着全球气候变化问题的逐渐凸显,碳捕集和封存技术逐渐被广泛应用于工业生产、能源开发、建筑、汽车等领域。
主要应用领域包括:化工、石化、钢铁、水泥以及电力等行业;海运、航空、汽车等交通运输领域;建筑、制冷、供暖和制冷行业;农业、林业和其他土地使用行业等领域。
碳捕集和封存技术的应用,不仅可减缓温室气体的排放,而且可实现低碳经济发展,为国家可持续发展和环境保护的目标作出了重要贡献。
3. 目前碳捕集和封存技术的研究进展情况当前,碳捕集和封存技术的研究方向主要包括:提高捕集效率、降低捕集成本、增强封存安全性等方面。
其中,提高捕集效率和降低捕集成本是当前重点关注的问题。
近年来,随着先进材料、新型催化剂、高精度检测技术等科技的不断发展,许多新的碳捕集技术和封存技术不断涌现。
其中,最有前途和应用价值的碳捕集和封存技术包括:化学吸收法、吸附和解吸法、离子液体法、渗透膜法、光催化还原法等。
这些新的技术手段,将对碳捕集和封存技术的研究和发展起到积极意义。
4. 碳捕集和封存技术存在的问题及解决办法目前,碳捕集和封存技术存在以下几个主要问题:(1)成本高昂问题。
当前,碳捕集和封存技术还面临高昂的成本费用,这往往是企业所难以承受的。
煤炭加工中的碳捕集与碳封存技术

技术研发:加强碳捕集与碳封存技术的研发,提高效率和可靠性
政策支持:政府出台相关政策,鼓励企业和研究机构开展碳捕集与碳封存技术的研究和应用
国际合作:加强国际合作,共享技术和经验,共同应对气候变化挑战 市场需求:随着全球对低碳经济的重视,碳捕集与碳封存技术将迎来更大的市场需求和发展空 间
汇报人:
果。
燃烧前碳捕集技术的挑战: 需要解决碳捕集效率、成 本和环保等问题,以实现
大规模商业化应用。
原理:通过提高燃烧过 程中的氧气浓度,降低 燃烧温度,减少NOx 和SOx等有害气体的排
放
应用:广泛应用于电力、 冶金、化工等行业
优点:可显著降低碳排放, 提高能源利用效率
挑战:需要解决氧气供应、 设备投资和运行成本等问 题
矿井封存技术的应用前景:随着全球对气候变化的关注,矿井封存技术有望成为碳捕集 与碳封存领域的重要技术之一。
减少温室气体排 放:通过捕获和 封存二氧化碳, 减少对环境的影
响
促进可持续发展: 实现煤炭资源的 清洁利用,促进 可持续发展
提高能源效率: 通过碳捕集与碳 封存技术,提高
能源利用效率
应对气候变化: 为应对气候变化 提供技术支持, 降低碳排放压力
碳捕集技术的原理主要包括吸收、吸附、 膜分离等方法。
吸收法是利用吸收剂将二氧化碳吸收, 然后通过加热、减压等方式将二氧化碳 释放出来。
吸附法是利用吸附剂将二氧化碳吸附在 表面,然后通过加热、减压等方式将二 氧化碳释放出来。
膜分离法是利用膜材料将二氧化碳从气 体中分离出来,然后通过加热、减压等 方式将二氧化碳释放出来。
20世纪80年代:初步探索 碳封存技术的可行性
20世纪70年代:开始研究 碳封存技术
碳捕集与封存技术的研究与应用

碳捕集与封存技术的研究与应用随着全球温室气体排放问题的不断加剧,碳捕集与封存技术成为了控制气候变化的重要手段。
本文将从碳捕集与封存技术的定义、研究进展、应用前景等方面进行论述,并探讨该技术在未来的发展方向。
一、碳捕集与封存技术的定义碳捕集与封存技术(Carbon Capture and Storage, CCS)是指将二氧化碳从工业排放源或大气中捕获,并将其永久地封存在地下储存库中的一种技术。
该技术主要包含三个步骤:捕集、运输和封存。
二、碳捕集与封存技术的研究进展随着对气候变化认识的不断深入,碳捕集与封存技术的研究也在不断发展。
目前主要的研究方向包括以下几个方面:1. 捕集技术捕集技术是碳捕集与封存技术中的关键环节,其主要方法包括化学吸收、物理吸附、膜分离和生物吸收等。
化学吸收是目前应用最广泛的捕集技术之一,其利用胺类化合物与二氧化碳发生反应,将其从气体中吸收出来。
物理吸附则是利用多孔材料如活性炭等将CO2吸附在表面上。
膜分离则是通过膜的选择性透过性对CO2进行分离。
生物吸收则借助于微生物的作用将二氧化碳转化为有价值的产品。
2. 运输技术碳捕集后的二氧化碳需要进行运输到封存地点,运输技术主要包括管道输送、船运和气体储存等。
管道输送是目前最常用的运输方式,其具有输送量大、成本低等优势。
船运则适用于远距离的二氧化碳运输,但其成本较高。
气体储存可以将二氧化碳压缩成液态或固态,便于运输和储存。
3. 封存技术封存技术是将捕集到的二氧化碳安全地储存在地下储存库中。
目前常用的封存技术有地下注入和海洋封存。
地下注入是将二氧化碳储存在地下岩层中,例如地下盐水层、油气田等。
海洋封存则是将二氧化碳储存在深海中,但其对海洋生态环境的影响尚需进一步研究。
三、碳捕集与封存技术的应用前景碳捕集与封存技术具有重要的应用前景,可以在一定程度上减少温室气体排放并控制气候变化。
其主要应用领域包括以下几个方面:1. 电力行业电力行业是二氧化碳排放的主要来源之一,采用碳捕集与封存技术可以将排放的二氧化碳捕集并封存,减少对大气的释放。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析碳捕集与封存技术黄丹 20090390105(郑州大学09级化工与能源学院热能与动力工程一班)1.摘要 [Abstract]全球气候变暖问题已经越来越严重,碳捕集与封存(CCS)技术被看作是最具发展前景的解决方案之一,随着研究的不断深入,CCS技术成本将进一步降低。
碳捕集工艺按操作时间可分为燃烧前捕集、富氧燃烧捕集和燃烧后捕集,其中最有发展前景的是富氧燃烧捕集。
我国在CCS技术的研究上进行了大量工作,CCS技术已被列入“973计划”和“863计划”,但仍面临着很多问题,如二氧化碳泄漏问题、技术难点、建设和运行成本高昂等。
好在种种迹象表明,随着全球气候问题的加剧,各国政府越来越重视CCS技术的研发和利用。
【关键词】 CCS技术二氧化碳碳捕集封存Carbon Capture and Sequestration Technology[Abstract] Carbon capture and sequestration (CCS) technology is seen as one of the most promising solutions to deteriorating climate changes. As research progresses,the cost of CCS is set to decline. By operational time,carbon capture technology can be categorized into pre-combustion capture,enriched oxygen combustion capture and post-combustion capture technologies,of which the enriched oxygen combustion capture technology is the most promising. China has done a lot of work on the research of CCS technology. The development of this technology has been listed in the country′s 973 Plan and 863 Plan. Although substantial advance has been made in CCS technology ,many challenges remain,such as the leakage of CO2,technical bottlenecks and high facility construction and operational costs. The good news is that as global climate problems worsen,governments across the globe are putting increasing emphasis on the research,development and utilization of CCS technology.[Keywords] CCS technology;carbon dioxide;carbon capture;carbon sequestration2引言全球气候变暖问题已经越来越严重,目前二氧化碳在大气中的含量水平为百万分之三百八十五,而其正以每年3%的速度增长。
按这个速度发展,到2100年,空气中的二氧化碳的聚集量将达到百万分之一千一百,温室效应造成的高温将不适合任何动物的生存,人类社会则将在这一进程中崩溃。
然而,时至今日,全球有80%的能源来自煤炭、石油和天然气等化石能源。
水电和核能虽然成本并不高,但环境条件限制了其发展规模。
至于风能、太阳能和生物质能等新能源,虽然环保前景喜人,但受高成本和技术不成熟等客观因素制约,这些新能源完全取代传统的化石能源仍处于探索阶段,真正做到大规模商业化开发还需很长时间。
因此,发展可靠技术、减少化石燃料的温室气体排放是一个明智的“缓兵之计”。
3.正文3.1 CCS技术CCS技术是指将二氧化碳从相关排放燃烧源捕获并分离出来,输送到油气田、海洋等地点进行长期(几千年)封存,从而阻止或显著减少温室气体排放,以减轻对地球气候的影响[1]。
这是一项新兴的、具有大规模减排潜力的技术,有望实现化石能源的二氧化碳近零排放。
该技术将工业生产过程中产生的二氧化碳捕集并安全地储存于特定的地质结构中。
目前,处于研究阶段、工业试验或工业化应用的封存场所主要有深度含盐水层、枯竭或开采到后期的油气田、不可采的贫瘠煤层和海洋。
根据联合国政府间气候变化委员会(IPCC)的调查,CCS技术的应用,能将全球二氧化碳排放量减少20%~40%,将对减缓气候变化产生积极的影响。
2007年7月18日,美国国家石油委员会(NPC)组织多种知识背景和机构的350多名专家,历经两年研究完成了《直面严峻的能源现实》的报告,报告中对CCS技术进行了介绍和展望。
实现CCS主要有两大步骤——“碳捕集”和“碳封存”,另外还有“二氧化碳运输”等.3.1.1碳捕集目前全球每年排放的二氧化碳在300×108t以上,其中约有40%来自发电厂,23%来自运输行业,22%来自水泥厂、钢厂和炼油厂。
碳捕集技术最早应用于炼油、化工等行业,这些行业排放的二氧化碳浓度高、压力大,捕集成本并不高。
而燃煤电厂排放的二氧化碳则恰好相反,捕集能耗和成本较高,现阶段的碳捕集技术尚无法完全解决这一问题.目前主流的碳捕集工艺按操作时间可分为3类——燃烧前捕集、富氧燃烧捕集(燃烧中捕集)和燃烧后捕集。
三者各有优势,却又各有技术难题尚待解决,目前呈并行发展之势。
燃烧前捕集实现起来最为复杂,而燃烧后只能捕集到排出二氧化碳的10%,既不经济,也不节能。
最有发展前景的是燃烧中捕集.燃烧后捕集可以直接应用于传统电厂,这一技术路线对传统电厂烟气中的二氧化碳进行捕集,投入相对较少。
这项技术分支较多,可以分为化学吸收法、物理吸附法、膜分离法、化学链分离法等等。
其中,化学吸收法被认为市场前景最好,受厂商重视程度也最高,但设备运行的能耗和成本较高。
事实上,由于传统电厂排放的二氧化碳浓度低、压力小,无论采用哪种捕集技术,能耗和成本都难以降低。
如果说燃烧前捕集技术的建设成本高、运行成本低,那么燃烧后捕集技术则是建设成本低、运行成本高。
富氧燃烧捕集技术试图综合前两种技术的优点,做到既可以在传统电厂中应用,排出的二氧化碳的浓度和压力也较高。
由于该技术主要着力在燃烧过程中,也被看作是燃烧中捕集技术。
与传统电厂直接用空气助燃的燃烧技术不同,富氧燃烧是用纯度非常高的氧气助燃,同时在锅炉内加压,使排出的二氧化碳在浓度和压力上与IGCC差不多,再用燃烧后捕集技术进行捕集,从而降低前期投入和捕集成本。
但看似完美无缺的解决方案,却有一个巨大的技术难题——制氧成本太高,这也使得富氧燃烧捕集技术在经济性上并没有太大优势3.1.2碳封存若把CCS作为一个系统来看,碳捕集的成本要占到2/3,碳封存的成本占1/3。
碳封存技术相对于碳捕集技术也更加成熟,主要有3种:含盐咸水层封存、油气层封存和煤气层封存。
咸水层封存是指将二氧化碳封存于距地表800m以下的咸水层当中。
通常咸水层空气体积大,可封存相当多的二氧化碳。
油气层封存分为废弃油气层封存和现有油气层封存。
国际上有企业在研究利用废弃油气层的可行性,但并不被看好。
主要原因在于,目前对油气层的开采率只能达到30%~40%,随着技术的进步,存在着将剩余的60%~70%的油气资源开采出来的可能性。
煤气层封存是指将二氧化碳注入比较深的煤层当中,置换出含有甲烷的煤层气,所以这项技术也具有一定的经济性。
但必须选在较深的煤层中以保证不会因开采而造成泄漏。
根据碳封存地点和方式的不同,可将碳封存方式分为地质封存,海洋封存、碳酸盐矿石固存以及工业利用固存等。
其中,每种封存方式又包括不同的具体技术,他们的发展现状见下表。
3.1.3二氧化碳运输运输成本在CCS技术系统中所占比重相当小,主要有管道运输和罐装运输两种方式,技术上问题不大。
管道运输是一种成熟的技术,也是运输二氧化碳最常用的方法,一次性投资较大,适宜运输距离较远、运输量较大的情况。
罐装运输主要通过铁路或公路进行运输,仅适合短途、小量的运输,大规模使用不具有经济性。
3.2案例研究3.2.1国际形势当前,国际上CCS技术研发所关注的主要问题包括:二氧化碳在地质封存系统中吸附和迁移的机理与规律,在地层中的相态及其变化规律、化学反应及固化条件;注二氧化碳采油过程中的物理化学理论问题、复杂渗流力学原理、各类二氧化碳提高采收率数值模拟基础模型;长距离管道运输二氧化碳的化学腐蚀机理与规律等。
世界上第一个完整的碳捕获和存储技术示范项目在德国一家燃煤发电厂开始运转。
该示范性试验项目建于德国北部(Schwarze Pumpe)发电厂旁边,每年将捕获10万吨二氧化碳,随后将之压缩,埋藏在枯竭的(Altmark)天然气田表面以下3000米的地方。
该气田距离发电厂大约200公里。
示范项目耗资7000万欧元(5700万英镑),能够输出12兆瓦的电力和30兆瓦的热能,足以供应1000多户家庭。
美国西弗吉尼亚州登山者(Mountaineer)项目将于2009年启动,有可能成为第一个把所有燃烧后捕获技术综合在一起的示范发电厂。
这家发电厂只是一项更为雄心勃勃的计划的试验田。
该计划从俄克拉荷马州一家燃煤发电厂捕获和存储二氧化碳,将于未来几年内开始运转,每年捕获150万吨二氧化碳,并掩埋于附近的油田。
3.2 .2国内形势与国际较为先进的CCS技术相比,中国还处于起步阶段,而且大都采用燃烧后捕集方式,工业上的应用也主要是提高石油采收率。
目前我国只是在二氧化碳浓度高、比较容易捕集的炼油、合成氨、制氢、天然气净化等工业过程中应用二氧化碳捕集。
中国在碳捕获与封存方面积极与澳大利亚、英国等技术发达国家合作,积极发展碳捕获与储存的试点项目。
2008年7月,中国华能集团与澳大利亚联邦科学工业研究组织(CSIRO)正式宣布在北京成立的燃煤电厂二氧化碳捕集示范工程建成投产。
这项由华能控股的西安热工研究院设计完成的华能北京热电厂二氧化碳捕集示范工程,坐落于北京郊区,是中国首个燃煤电厂烟气二氧化碳捕集示范工程,预计其年回收二氧化碳能力可达为3000吨。
2009年3月,神华集团表示其正在研究利用碳捕获和封存技术减少煤制油项目的二氧化碳排放,目前正在进行示范项目的研究、开发和评估工作。