立体图形展开图得技巧,七年级数学从不同的方向观察立体图形难题经典例题及答案解析

合集下载

七年级数学上册4.1.1.2从不同方向看立体图形和立体图形的展开图习题课件(新版)新人教版

七年级数学上册4.1.1.2从不同方向看立体图形和立体图形的展开图习题课件(新版)新人教版
形成的展开图为图②.判断下列哪一个选项中的四个边可为此四个边( )
A
A.AC,AD,BC,DE C.AC,BC,AE,DE
B.AB,BE,DE,CD D.AC,AD,AE,BC
第十五页,共18页。
17.如图是由棱长为1的正方体搭成的积木从正面(zhèngmiàn)、左面、上面看
到的图形,则图中棱长为1的正方体的个数是____.6
12.某物体(wùtǐ)的展开图如图所示,则从左面看到的平面图形是( B )
13.如图所示的几何体是由六个完全相同的正方体组成的,这个(zhège)几何
体的主视图(从正面看)是( ) A
第十二页,共18页。
14.一个几何体的三视图(从正面、左面、上面看)如图所示,这个几何体是
()B
A.棱柱(léngzhù)
同正的面方(向zh看èn,gm左将ià面会n)得到它们上的面平面图形.通常我们是从_______、_______、
_________三个方向看,从而得到相应的平面图形. 2.许多立体图形是由一些平面图形围成的,将它们的表面(biǎomiàn)适当剪开, 可以展开成________图形,这个图形称为相应立体图形的 ______________平__面_________.
4.1 几何图形( jǐhé tú xíng)
4.1.1 2课时 从不同(bù tónɡ)方向看立体图形和立体图形的展开图
第一页,共18页。
平面(píngmiàn)图形 1.对于一些立体图形的问题,常把它们转化为__________来研究和处理.从不
B.圆柱
C.圆锥
D.球
第十三页,共18页。
15.如图所示是一个由多个相同小正方体堆积而成的几何体的俯视图 (shìtú)(从上面看),图中所示数字为该位置小正方体的个数,则这个几 何体的左视图(shìtú)(从左面B 看)是( )

新人教版初中数学七年级上册4.1.1第2课时从不同的方向看立体图形和立体图形的展开图过关习题和解析答案

新人教版初中数学七年级上册4.1.1第2课时从不同的方向看立体图形和立体图形的展开图过关习题和解析答案

第四章几何图形初步4.1几何图形4.1.1 几何图形与平面图形第2课时从不同的方向看立体图形和立体图形的展开图一、选择题1.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是( ).2.如图所示的四种物体中,哪种物体最接近于圆柱( ).3.如图是一正方体纸盒的展开图,每个面上都标注了字母或数字,则面a在展开前所对的面上的数字是( ).A.2 B.3 C.4 D.54.按如图所示的图形中的虚线折叠可以围成一个棱柱的是( ).5.如图所示,下列图形绕着虚线旋转一周得到圆锥体的是 ( )6.将左图中的正方体纸盒沿所示的粗线剪开,其平面展开图的示意图为()A. B. C. D.二、填空题7.五棱柱有________个顶点,________条棱,________个面.8.柱体包括________和________,锥体包括________和________.9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的字是________.10.(内蒙古赤峰)如图所示是一个几何体的三视图,则这个几何体是________.11.圆锥的底面是__________形,侧面是__________的面,侧面展开图是__________形. 12.当笔尖在纸上移动时,形成_______,这说明:_____;表针旋转时,形成了一个,这说明:;长方形纸片绕它的一边旋转,形成的几何图形就是,这说明: .三、解答题13.如图所示是一个长方体的展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果面A在多面体的上面,那么哪一面会在下面?(2)如果面F在多面体的后面,从左面看是面B,那么哪一面会在上面?(3)从右面看是面A,从上面看是面E,那么哪一面会在前面?14.如图所示是一个机器零件从正面看和从上面看所得到的图形,求该零件的体积(π取3.14,底面积×高).单位:mm)(提示:V=圆柱15. 如图所示的一张硬纸片,它能否折成一个长方体盒子?若能,说明理由,并画出它的立体图形,计算它的体积.参考答案一、选择题1.B;2.A;3.B;【解析】要求面a在展开前所对的面上的数字,我们可以把正方体的展开图折叠起,则面a、2、3、4按照第一、三个对应,第二、四个对应,于是面a在展开前所对的面上的数字为3.4. C ;【解析】A、D中两个底面不能放在同一侧,B中侧面个数与底面边数不等,故选C.5. D ;【解析】选项A、B、C、D中的图形旋转一周分别形成圆台、球、圆柱和圆锥,故选D.6. C;【解析】由正方体的表面展开图的特点再结合实际操作,便可得解.二、填空题7. 10, 15, 7 ;【解析】五棱柱上底面有5个顶点,下底面有5个顶点,共10个顶点;上、下底面各有5条棱,竖直有5条棱,共15条棱;7个面,其中5个侧面,2个底面.8. 圆柱,棱柱;圆锥,棱锥9. 自;【解析】要弄清立体图形与其平面展开图各部分间的关系,需要较强的空间想象能力,这种能力是建立在动手操作、认真观察与善于思考的基础上.10.三棱柱(或填正三棱柱) ;【解析】考查空间想象能力.11.圆,曲,扇;【解析】动手操作或空间想象,便得答案.12.一条线,点动成线;圆面,线动成面;圆柱体,面动成体三、解答题13.解:(1)如果面A在多面体的上面,那么面C会在下面.(2)如果面,在多面体的后面,从左面看是面C,那么向外折时面C会在上面,向里折时面A 会在上面.(3)从右面看是面A,从上面看是面E,那么向外折时从前面看是面B,向里折时从前面看是面D.14.解:22032302540400482π⎛⎫⨯⨯+⨯⨯=⎪⎝⎭(mm3),即该零件的体积为40048 mm3.提示:由该零件从正面看和从上面看所得到的图形可以确定该零件是由上、下两部分组成的,上面是一个高为32 mm,底面直径为20 mm的圆柱;下面是一个长为30 mm,宽为25 mm,高为40 mm的长方体,零件的体积是圆柱与长方体体积之和.15. 【解析】解:能折成一个长方体盒子,因为符合长方体的平面展开图的所有条件,该几何体的立体图形如图所示.此长方体的长为5m,宽为2m,高为3m,所以它的体积为:5×2×3=30(m3).。

人教版七年级数学上册从不同方向看立体图形与立体图形的展开图

人教版七年级数学上册从不同方向看立体图形与立体图形的展开图
第四章 几何图形初步
4.1.1
第2课时
从不同方向看立体图形与立体图 形的展开图
学习指 知 南识 管 归 理类 探 当 究堂 测 分 评层 作

教学目标
学习指 南
能识别从不同方向看简单物体得到的平面图形.
情景问题引入
《题西林壁》
横看成岭侧成峰,远近高低各不同.
不识庐山真面目,只缘身在此山中.
从诗中可以看出作者苏东坡从不同角度对庐山进行了仔细观察,那他从
A.认 C.复
图 4-1-18 B.真 D.习
6.如图 4-1-19,从不同方向看一把茶壶,你认为从上面看到的图形 是( A )
7.[2018·福建 A 卷]如图 4-1-20 是一个几何体从不同方向看到的平面
图形,则该几何体是( C )
A.圆柱
B.三棱柱
C.长方体
D.四棱锥
图 4-1-20
8.若干个棱长为 a 的正方体摆放成如图 4-1-21 的几何体,回答下列 问题:
【解析】 因为王亮所搭几何体恰好可以和张明所搭几何体拼成一个无 缝隙的大长方体,
所以该长方体至少需要小正方体 3×3×4=36(个), 因为张明用 17 个棱长为 1 的小正方体搭成了一个几何体, 所以王亮至少还需 36-17=19(个)小正方体,他搭的几何体的表面积为 2×(9+7+8)=48.
2.立体图形的展开图 定 义:有些立体图形是由一些平面图形围成的,将它们的表面适当 剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.
归类探 类型之一 从不同方向看立体图形究
如图 4-1-10,该几何体从上面看到的平面图形是( D )
【解析】 从上面看,总体是一个长方形,中间有一道竖线.故选 D. 【点悟】 从上面看到的平面图形,相当于从上到下把几何体压缩.

立体图形的展开图(有答案)

立体图形的展开图(有答案)
小壁虎的难题
如图:一只圆桶的下方有一只壁虎, 上方有一只蚊子,壁虎要想尽快吃到 蚊子,应该走哪条路径?
蚊子

你有何高 招?
壁虎 ●
● 蚊子
壁虎 ●
蚊子


壁虎
4、1、1立体图形的展开图
学习目标:
• 1、理解常见几何体的展开图; • 2、能根据展开图想象相应的几何体.
• 学习重点:
• 了解直棱柱、圆柱、圆锥的展开图
• 8、将三角形绕直线L旋转一周,可以得到如 下图所示立体图形的是(B).
A
B
C
D
课后小测 4.1.2 点、线、面、体
如图,是一个正方体的平面展开图, 每个面内部标注了字母,
则展开前与面E相对的是( D )
A.面A B.面B C.面C D.面D
A
DC E
BF
考考你
有一个正方体,在它的各个面上分别涂了 白、红、黄、兰、绿、黑六种颜色。甲、乙、 丙三位同学从三个不同的角度去观察此正方体, 结果如下图,问这个正方体各个面的对面的颜 色是什么?
1

23 45 6
前你 似程

ABC DE F
考考你
1、如果Y: 棒
2、“坚”在下,“就”在后,胜利在哪 里?

持就是


考考你 2.下图是一个正方体的展开图,标注了字母A 的面是正方体的正面,如果正方体的左面与右面
所标注代数式的值相等,求 x 的值.
• 学习难点:
• 根据展开图想象相应的几何体.
说一说 在生活中, 制作这些美丽的包装盒 ,我们需 要知道些什么呢? 讨论:如何制作正 方体的墨水盒?
常常需要了解整个立体图形在同一个平面 内展开的形状(即立体图形的平面展开图), 根据它的平面展开图来裁剪纸张。

人教版七年级数学上册第四章 4.1.2从不同方向看立体图形与立体图形的展开图4

人教版七年级数学上册第四章 4.1.2从不同方向看立体图形与立体图形的展开图4

【想一想错在哪?】一个长和宽分别为4和3的长方形,绕其一 边所在直线旋转得到的圆柱的体积是多少(保留π)?
提示:绕长或宽所在直线旋转得到的圆柱不同.
R版七年级上
4.1
第四章 几何图形 初步
几何图形
第2课时 从不同方向看立体图形
1.【2019•孝感】下列立体图形中,左视图是圆的是( D )
【总结提升】点、线、面、体的关系 1.点是构成图形的基本元素,几何图形都是由点、线、面、体 组成的. 2.圆柱、圆锥、球与棱柱、棱锥是不同的两类几何体.圆柱、圆 锥、球有一个共同的特点,它们都有一个曲面;棱柱、棱锥也 有一个共同点,它们全部由多边形围成.
知识点 2 面动成体 【例2】(2012·泸州中考)将左图所示的梯形绕直线l旋转一周 得到的立体图形是( )
【解析】不同的走法分别是:A→B→C→G;A→B→F→G; A→D→C→G;A→D→H→G;A→E→F→G;A→E→H→G. 答案:6
6.将下列几何体分类,并说明理由.
【解析】答案不唯一,如 (1)按平面分:正方体,长方体,三棱锥. (2)按曲面分:圆柱,球,圆锥. 理由是:正方体的面是六个正方形组成,长方体的面是六个长 方形组成,三棱锥的面是四个三角形组成,都是平面图形;而 圆柱和圆锥的侧面都是曲面,球的整个面是曲面.
个直角三角形,若绕直角边所在直线旋转一周,则形成圆锥; 若绕斜边所在直线旋转一周,则形成底相同的两个圆锥的组合 体.所以把一个平面图形旋转成几何体时,一定要明确绕哪条直 线旋转,否则可能得到不同的结果.
题组一:点、线、面、体 1.下面四个几何体中,含有曲面的几何体个数是( )
A.1 B.2
C.3
D.4
【解析】选B.球、圆锥有曲面,而正方体、棱柱不含曲面.

人教版七年级数学上册第4章4.1几何图形4.1.1立体图形与平面图形第2课时折叠展开与从不同的方向观察几何体备

人教版七年级数学上册第4章4.1几何图形4.1.1立体图形与平面图形第2课时折叠展开与从不同的方向观察几何体备

4.1 几何图形4.1.1立体图形与平面图形第3课时立体图形的展开图置疑导入归纳导入复习导入类比导入图4-1-73生活中,我们经常见到正方体形状的物体.将他们完全展开后形状是怎样的?下面我们先来将你面前的正方体盒子沿棱剪开,看看能得到一个什么样的平面图形?[说明与建议] 说明:利用常见的正方体是怎样制作的这一问题作为切入点,激发学生的兴趣,并通过动手操作让学生深刻认识正方体的面、棱之间的关系,调动学生的积极性.建议:让学生思考并动手操作,将正方体沿棱展开,再给出本节课的课题并板书:立体图形的展开图.活动内容:回答下列问题.问题1:同学们,在我们日常生活中,随处都可以见到五花八门的包装盒,你能说出几种你所见到过的包装盒的名字吗?你能说出下面几种包装盒的几何图形的名字吗?图4-1-74问题2:像上面的这几种包装盒,你知道将其拆开后会展开成什么样的平面图形吗?问题3:如果给你一些展开的包装盒的纸板,你能不能把它们恢复成完整的包装盒呢?[说明与建议] 说明:利用学生感兴趣的生活中常见的实物,贴近学生的生活,培养学生的学习兴趣,激发学生的求知欲,让学生在不知不觉中感受学习数学的乐趣,同时也让学生进一步体会了展开与折叠的两个互逆的过程,这也为新课的学习做好铺垫.建议:问题1是从学生生活中常见到的实物——几个不同形状的包装盒出发提问,首先由学生回答完成;问题2、3学生思考交流后由代表尝试回答,根据学生回答的情况教师适当引导,从而引出新课.教材母题——教材第119页练习第3题下列图形中可以作为一个正方体的展开图的是( )图4-1-75【模型建立】正方体的表面展开后有11种图形:对的面.正方体相对的面展开前与展开后都不可能相邻,更不可能有公共边和公共顶点.注意:若展开图中出现以下图案,就不能围成正方体.图4-1-76【变式变形】1.[长春中考] 下列图形中,是正方体表面展开图的是(C)图4-1-77图4-1-782.[汕尾中考] 如图4-1-78所示是一个正方体的展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是(D)A.我B.中C.国D.梦3.[鸡西中考] 小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图4-1-79),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的表面展开图可能是(C)图4-1-79 图4-1-804.[德州中考] 如图4-1-81所示给定的是纸盒的外表面,图4-1-82能由它折叠而成的是(B)图4-1-81 图4-1-824-1-27[命题角度1] 圆柱、圆锥、棱柱、棱锥的表面展开图圆柱、圆锥、棱柱、棱锥的表面展开图如下:注意:同一个立体图形按照不同的方式展开得到的平面图形是不一样的.例下面四个图形是多面体的展开图,其中是四棱锥的展开图的是(C)图4-1-83[命题角度2] 正方体的表面展开图正方体的表面展开后有11种图形:注意:若展开图中出现以下图案,就不能围成正方体:图4-1-84例[温州中考] 下列个图中,经过折叠能围成一个正方体的是(A)图4-1-85[命题角度3] 正方体的表面展开图中各正方形的对应关系正方体相对的面在正方体的表面展开图中其中间应当间隔1个正方形,反过来要在正方体中成为相对的面,这两个正方形无论怎样折叠都不会有相邻的边和顶点.图4-1-86例[贵阳中考] 一个正方体的表面展开图如图4-1-86所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与写有“成”字的面相对的面上的字是(B)A.中B.功C.考D.祝P118练习1.如图,右面三幅图分别是从哪个方向看这个棱柱得到的?[答案] (1)从上面看;(2)从正面看;(3)从左面看.2.如图,把相应的立体图形与它的展开图用线连起来.[答案] 如图所示:3.下列图形中可以作为一个正方体的展开图的是( )[答案] C[当堂检测]1. 【2011•龙岩】如图可以折叠成的几何体是()A.三棱柱 B.四棱柱C.圆柱 D.圆锥2. 如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB,DC重合,则所围成的几何体图形是()A B C D3.下列四个图中,是三棱锥的表面展开图的是()A B C D4. 【2011•呼和浩特】将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是( )A B C D5. 小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图),六个面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()AA B C D参考答案:1. A2. C3. B4. C5. C正方体的平面展开图正方体是我们最常见的一种简单的立体图形,你研究过它的平面展开图?一、图形分类正方体的平面展开图按展开图中正方形所在的行数及正方形的个数,归纳起来有四情形.1. 1-4-1型:展开图有3行,中间一行有4个正方形,其余两行均1个正方形,如图1中所示.图12. 2-3-1型:展开图有3行,中间一行有3个正方形,第1行有2个正方形,第3行有1个正方形,如图2中所示.图23. 2-2-2型:展开图有3行,每一行均有2个正方形,如图3所示.图3 图44. 3-3型:展开图有2行,每一行均有3个正方形,如图4所示.二、规律探究1.排在同一条直线上的小正方形,与同一个正方形相连的两个正方形折叠后,位置关系怎样?2.正方体的平面展开图中最多只能出现几个正方形有一个公共点的情形,最多只能出现几个正方形与一个正方形相邻的情形?3.当上下、左右四个面展开成一条直线时,前后两个面不可能分布在其同侧,对吗?4.原来处于相对位置上的两个面,展开后的正方形有公共顶点和公共边吗?反之,展开图中有一个公共顶点或一条公共边的两个正方形,在折叠成正方体后,必将成为相邻的两个面吗?5.当从正方体的某顶点出发,最多只能观察到几个面?能同时看到两个相对的面吗?。

初一数学立体图形的展开图含答案

初一数学立体图形的展开图含答案

初一数学立体图形的展开图中考要求例题精讲正方形展开图的知识要点:第一类:有6种。

特点:是4个连成一排的正方形,其两侧各有一个正方形简称“141型〃第二类:有3种。

特点:是有3个连成一排的正方形,其两侧分别有1个和两个相连的正方形;简称“132第四类:仅有1种,三个连成一排的正方形的一侧,还有3个连成一排的正方形,可简称“33型〃正方形展开图的识别方法:1.排除法:(1)由少于或多于6个的正方形组成的图形不是正方形的平面展开图(2)有“凹〃字型或“田〃字型部分的平面图形不是正方体的展开图2.对比法:对照上面的四种规则进行对照;从展开图可以看出,在正方形的展开图中不会出现如下图所示的“凹〃字型和“田〃字型结构。

模块一长方体的展开图长方体展开图【例1】下列图形中,不能表示长方体平面展开图的是()A. L B . I—C C. ---------- D. '— '—【解析】由平面图形的折叠及正方体的展开图解题.选项A, B, C经过折叠均能围成长方体,D两个底面在侧面的同一侧,缺少一定底面,所以不能表示长方体平面展开图.故选D.【答案】D【巩固】如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()A. 4 【解析】B. 6【答案】 由图可知,无盖长方体盒子的长是3,宽是2 盒子的容积为3x2x1=6.故选B . B【巩固】 下图是一个长方体纸盒的展开图,请把5, 3,成长方体后,相对面上的两数互为相反数.li1 TI LTD . 15 高是1,所以盒子的容积为3x2x1=6. 5, -1, -3, 1分别填入六个长方形,使得按虚线折 【解析】根据题意,找到相对的面,把互为相反数的数字分别填入即可.正方体展开图【答案】C展开图;5可以拼成一个正方体.故选C.【答案】C【答案】C【巩固】将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.注意带图案的三个面相交于一点.而通过折叠后A、B都不符合,且D折叠后图案的位置正好相反,所以能得到的图形是C.【答案】C.【例4】将如图正方体的相邻两面上各画分成九个全等的小正方形,并分别标上0、x两符号.若下列有一图形为此正方体的展开图,则此图为()【解析】此题主要根据0、x两符号的上下和左右位置判断,可用排除法.由已知图可得,0、x两符号的上下位置不同,故可排除A、B;又注意到0、x两符号之间的空行有3列.【答案】C.【解析】本题考查正方体的表面展开图及空间想象能力.在验证立方体的展开图式,要细心观察每一个标志的位置是否一致,然后进行判断.根据有图案的表面之间的位置关系,正确的展开图是D.【答案】故选D.【点评】学生对相关图的位置想象不准确,从而错选,解决这类问题时,不妨动手实际操作一下,即可解决问题.A、B、C、D、【巩固】如图,哪一个是左边正方体的展开图(【答案】D.成不相符,所以不是无盖的正方体盒子的平面展开图.【答案】D.【巩固】如图,是一个正方体盒子(6个面)的侧面展开图的一部分,请将它补充完整.模块二圆柱、圆锥的侧面展开图圆柱体【例6】圆柱的侧面展开图形是()A.圆B.矩形C.梯形D .扇形【解析】略【答案】B【巩固】如图,已知MN是圆柱底面的直径,NP是圆柱的高,在高柱的侧面上,过点M, P嵌有一幅路径最短的金属丝,现将圆柱侧面沿NP剪开,所得的侧面展开图是()A.产 F & p p c.尹尸D .尸尸【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.因圆柱的展开面为长方形,MP展开应该是两直线,且有公共点M.故选A.【答案】A【例7】如图,MN是圆柱底面的直径,NO是圆柱的高,在圆柱的侧面上,过点M, P.有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿NO剪开,所得的侧面展开图可以是:【解析】根据两点之间线段最短,剪开后所得的侧面展开图中的金属丝是线段,即可选择.注意P点在展开图中长边的中点处,圆柱侧面沿NO剪开,根据两点之间线段最短,剪开后所得的侧面是长方形,P点在展开图中长边的中点处,金属丝是线段,且从P点开始到M点为止.故选②.【答案】②圆锥体【例8】下列立体图形中,侧面展开图是扇形的是()A. LB.C. ^—■D D , L——U【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥. 【答案】B【巩固】我国运用长征火箭发射了百余颗人造卫星和5次神州飞船.如图是我国航天科技人员自主研究开发的长征系列火箭的立体图形.(火箭圆柱底面圆的周长不等于圆柱的高)(1)请你画出火箭的平面展开图,并标上字母.(2)写出平面图形中所有相等的量.【解析】结合圆柱和圆锥的侧面展开图的特征解题.(1)如右图.(2)OA=OB , CB = ED = AB , BE=CD , Z B = Z C = Z D = Z E = 90 .【答案】同解析.模块二其他立体图形的展开图【例9】若下列只有一个图形不是右图的展开图,则此图为何?()【解析】选项D的四个三角形面不能折叠成原图形的四棱锥,而是有一个三角形面与正方形面重合,故不能组合成原题目的立体图形. 【答案】故选D.【巩固】图1是由白色纸板拼成的立体图形,将此立体图形中的两面涂上颜色,如图2所示.下列四个图形中哪一个是图2的展开图()排除B、D,又阴影部分正方形在左,三角形在右.【答案】故选A.形,故可得答案.【答案】B.【巩固】下面四个图形中,是三棱柱的平面展开图的是()A. B. C.【解析】根据三棱柱的展开图的特点作答.八、是三棱柱的平面展开图;3、是三棱锥的展开图,故不是;C、是四棱锥的展开图,故不是;D、两底在同一侧,也不符合题意.故选A.【答案】A【解析】利用棱柱及其表面展开图的特点解题.A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D 围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.【答案】故选D.【例12]如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC、BC、CD剪开展成平面图形,则所得的展开图是()【答案】B.【例13】哪种几何体的表面能展成如图所示的平面图形?需剪几条棱才能得到如此形状的平面图?你是怎样数出来的?请总结其规律.【解析】侧面为五个长方形,底边为五边形,故原几何体为五棱柱.五棱柱能展成如图所示的平面图形.由五棱柱展开成平面图形,需要剪9条棱.因为五棱柱共有15条棱,7个面,展成平面图形时,7个面需有6条棱相连,共需留下6条棱不剪,所以需剪15-6=9 (条)棱.总结规律:n棱柱有n+2个面,3n条棱,展成平面图形时,n+2个面需有n+1条棱相连,故应留下n+1条棱不剪,所以要把n棱柱展成平面图形,共需剪3n- (n+1) =(2n-1)条棱.(n +1)= 2 n -1.【答案】五棱柱;9; 3 n-【例14】下列图形是某些立体图形的平面展开图,说出这些立体图形的名称.【解析】由平面图形的折叠及常见立体图形的展开图解题.根据图示可知:①五棱锥;②圆柱;③三棱柱.【答案】①五棱锥②圆柱③三棱柱由平面图形的折叠及立体图形的表面展开图的特点解题.6个正方形能围成一个正方体,个长方形和两个三角形能围成一个三棱柱,一个四边形和四个三角形能围成四棱锥,6个长方形可以围成长方体.课后作业【解析】圆锥的侧面展开图是扇形,故选C .【答案】C【巩固】图中四个图形是多面体的展开图,你能说出这些多面体的名称吗?【解析】 【答案】 正方体;三棱柱;四棱锥;长方体.【答案】故选D ..【答案】B4.如图,四种图形各是哪种立体图形的表面展开所形成的?画出相应的四种立体图形.【解析】根据四棱锥、三棱柱、圆柱、圆锥及其表面展开图的特点解答并作图.观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是四棱锥、三棱柱、圆柱、圆锥.作图如下:【答案】同解析.【点评】本题考查了几何体的展开图,可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.。

人教版七年级上第四章从不同的方向看物体及立体图形的展开与折叠(含答案)

人教版七年级上第四章从不同的方向看物体及立体图形的展开与折叠(含答案)
A.5B.4C.3D.2
7.某数学兴趣小组的同学探究用相同的小立方块搭成几何体的三视图及其变化规律,下面是他们画出的左视图与俯视图.由此可知,搭这个几何体时,最多需要的小立方块的个数是().
A.8B.9C.10D.11
二、解答题
8.图1是由7个小正方体(每个小正方体的棱长都是1)所堆成的几何体.请画出这个儿何体从正面、左面、上面三个方向看到的形状图;
14.24.
【详解】试题分析:长方体的左视图是一个矩形,因为它的面积为6,一边长为2,所以另一边长为3,从而得出长方体的高为3,因此长方体的体积等于2×4×3=24.故答案为24.
考点:由三视图判断几何体.
15.有
【分析】根据正方体展开图的性质即可求解.
【详解】解:由正方体的展开图可知,“☆”与“有”相对,“几”与“真”相对,“何”与“趣”相对.
10.如图是由10个大小相同的小立方体搭建的几何体,其中每个小立方体的棱长为1厘米.
(1)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图;
(2)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加个小正方体(直接填空).
11.如图,在 中, , , ,点 是 的中点,动点 从点 出发,以每秒 个单位长度的速度沿 运动.到点 停止.若设点 运动的时间是 秒( ).
人教版七年级上第四章
从不同的方向看物体及立体图形的展开与折叠
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.如图,根据三视图,这个立体图形的名称是()
A.长方体B.球体C.圆柱D.圆锥
2.如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档