华师物化实验报告凝固点的测定测定
物理化学实验——凝固点测定

一、实验目的 1. 掌握一种常见的相对分子量的测定方法 2. 通过实验进一步理解稀溶液理论
二、实验原理
1. 稀溶液的依数性 设A为溶剂,B为溶质,根据依数性
2. 步冷曲线
T 纯溶剂冷却曲线t/s
三、仪器与试剂
1. 凝固点测定仪 2. 温度温差仪 3. 环己烷,萘,冰
四、实验步骤
1. 环己烷凝固点的测定 取自来水加入到冰浴槽中(水量以冰浴槽 体积的2/3为宜),加入碎冰,取25ml环己 烷加入到冷冻管中,插入温度温差仪的探 头,将冷冻管放入到空气套管中,放入冰 水中,不断搅拌,每20秒记录温度一次, 温度不变时即为凝固点。用手温热使固体 融化,重复以上操作3次,取平均值。
V环己烷
室温
2. 作步冷曲线,求T0 ,Tf 。 3. 计算环己烷的质量 4. 根据公式,计算M 5. 与标准值比较,计算误差 【注意事项】 1. 注意搅拌,尽量减少过冷现象的产生 2. 不要将萘弄到管壁上,否则溶液的浓度降 低,会加大误差
2. 测溶液的凝固点 用电子天平称取萘0.2g放入溶剂中(注意 不要弄到管壁上),测步冷曲线。根据步冷 曲线确定出溶液的凝固点,重复操作3次, 取平均值。
五、数据记录与处理
1. 填写下表
时间/秒
环己 (1)
20,40,60,80…………………………..
烷
(2)
(3)
溶液
(1) (2) (3)
W萘
物化实验报告_凝固点降低法测定摩尔质量[1]
![物化实验报告_凝固点降低法测定摩尔质量[1]](https://img.taocdn.com/s3/m/6c753560b84ae45c3b358c77.png)
凝固点降低法测定摩尔质量1.1实验目的1. 用凝固点降低法测定萘的摩尔质量。
2. 通过实验掌握溶液凝固点的测量技术,并加深对稀溶液艺术性之的理解。
1.2 实验原理稀溶液具有依数性,凝固点降低是依数性的一种表现,固体溶剂与溶液成平衡时的温度称为溶液的凝固点。
依数性即指定溶剂的种类和数量后,这些性质只取决于所含溶质的分子数目,而与溶质的本性无关。
它与溶液质量摩尔浓度的关系为:*×f f f f B T T T K b ∆=-=其中,f T ∆为凝固点降低值,*f T 、f T 分别为纯溶剂、溶液的凝固点,B b 为溶液质量摩尔浓度,f K 为凝固点降低常数,它只与所用溶剂的特性有关。
如果稀溶液是由质量为B m 的溶质溶于质量为A m 的溶剂中而构成,则上式可写为:1000××B f f Am T K M m ∆=即310Bff Am M K T m =∆ (*) 式中: f K ——溶剂的凝固点降低常数(单位为1-∙∙mol kg k );M ——溶质的摩尔质量(单位为1-∙mol g )。
如果已知溶液的f K 值,则可通过实验测出溶液的凝固点降低值 f T ∆,利用上式即可求出溶质的摩尔质量。
常用溶剂的f K 值见下表。
表1 常用溶剂的f K 值kg mol1.853 5.12 6.94于新相形成需要一定的能量,故结晶并不析出),温度降低至一定值时出现结晶,当晶体生成时,放出的热量使体系温度回升,而后温度保持相对恒定。
对于纯溶剂来说,在一定压力下,凝固点是固定不变的,直到全部液体凝固成固体后才会下降。
相对恒定的温度即为凝固点。
对于溶液来说,除温度外还有溶液浓度的影响。
当溶液温度回升后,由于不断析出溶剂晶体,所以溶液的浓度逐渐增大,凝固点会逐渐降低。
因此,凝固点不是一个恒定的值。
如把回升的最高点温度作为凝固点,这时由于已有溶剂晶体析出,所以溶液浓度已不是起始浓度,而大于起始浓度,这时的凝固点不是原浓度溶液的凝固点。
凝固点降低实验报告

华南师范大学实验报告学生姓名学号专业化学(师范) 年级、班级课程名称物理化学实验实验项目凝固点降低法测定物质的相对分子质量实验类型:□验证□设计□综合实验时间年月日实验指导老师蔡跃鹏实验评分【实验目的】1、明确溶液凝固点的定义及获得凝固点的正确方法。
2、确定环己烷的凝固点降低值,计算萘的相对分子质量。
3、掌握凝固点将定分子量的原理,加深对稀溶液依数性的理解。
4、掌握贝克曼温度计的使用方法。
【实验原理】物质的相对分子质量是了解物质的一个最基本且重要的物理化学数据,其测定方法有许多种。
凝固点降低法测定物质的相对分子质量是一个简单又比较准确的方法,在溶液理论研究和实际应用方面都具有重要意义。
凝固点降低是稀溶液的一种依数性,这里的凝固点是指在一定压力下,溶液中纯溶剂开始析出的温度。
由于溶质的加入,使固态纯溶剂从溶液中析出的温度T f比纯溶剂的凝固点T f*下降,其降低值△T f =T f*-T f与溶液的质量摩尔浓度成正比,即△T f =K f m (3-1)式中,△T f为凝固点降低值;m为溶液质量摩尔浓度;K f为凝固点降低常数,它与溶剂的特性有关。
表3-1给出了部分溶剂的凝固点降低常数值。
表3-1 几种溶剂的凝固点降低常数值若称取一定量的溶质W B(g)和溶剂W A(g),配成稀溶液,则此溶液的质量摩尔浓度m B为W Bm B = ×103 mol/kg (3-2)式中,M B 为溶质的相对分子质量。
将式(3-2)代入式(3-1),整理得M B = ×103 mol/kg (3-3)若已知某溶剂的凝固点降低常数K f 值,通过实验测定此溶液的凝固点降低值△T f ,即可计算溶质的相对分子质量M B 。
通常测定凝固点的方法有平衡法和贝克曼法(或步冷曲线法)。
本实验采用后者。
其基本原理是将纯溶剂或溶液缓慢匀速冷却,记录体系温度随时间的变化,绘出步冷曲线(温度-时间曲线),用外推法求得纯溶剂或稀溶液中溶剂的凝固点。
物化实验报告_凝固点降低法测定摩尔质量[1]
![物化实验报告_凝固点降低法测定摩尔质量[1]](https://img.taocdn.com/s3/m/6c753560b84ae45c3b358c77.png)
凝固点降低法测定摩尔质量1.1实验目的1. 用凝固点降低法测定萘的摩尔质量。
2. 通过实验掌握溶液凝固点的测量技术,并加深对稀溶液艺术性之的理解。
1.2 实验原理稀溶液具有依数性,凝固点降低是依数性的一种表现,固体溶剂与溶液成平衡时的温度称为溶液的凝固点。
依数性即指定溶剂的种类和数量后,这些性质只取决于所含溶质的分子数目,而与溶质的本性无关。
它与溶液质量摩尔浓度的关系为:*×f f f f B T T T K b ∆=-=其中,f T ∆为凝固点降低值,*f T 、f T 分别为纯溶剂、溶液的凝固点,B b 为溶液质量摩尔浓度,f K 为凝固点降低常数,它只与所用溶剂的特性有关。
如果稀溶液是由质量为B m 的溶质溶于质量为A m 的溶剂中而构成,则上式可写为:1000××B f f Am T K M m ∆=即310Bff Am M K T m =∆ (*) 式中: f K ——溶剂的凝固点降低常数(单位为1-∙∙mol kg k );M ——溶质的摩尔质量(单位为1-∙mol g )。
如果已知溶液的f K 值,则可通过实验测出溶液的凝固点降低值 f T ∆,利用上式即可求出溶质的摩尔质量。
常用溶剂的f K 值见下表。
表1 常用溶剂的f K 值kg mol1.853 5.12 6.94于新相形成需要一定的能量,故结晶并不析出),温度降低至一定值时出现结晶,当晶体生成时,放出的热量使体系温度回升,而后温度保持相对恒定。
对于纯溶剂来说,在一定压力下,凝固点是固定不变的,直到全部液体凝固成固体后才会下降。
相对恒定的温度即为凝固点。
对于溶液来说,除温度外还有溶液浓度的影响。
当溶液温度回升后,由于不断析出溶剂晶体,所以溶液的浓度逐渐增大,凝固点会逐渐降低。
因此,凝固点不是一个恒定的值。
如把回升的最高点温度作为凝固点,这时由于已有溶剂晶体析出,所以溶液浓度已不是起始浓度,而大于起始浓度,这时的凝固点不是原浓度溶液的凝固点。
物化实验报告-凝固点降低法测定摩尔质量

物化实验报告-凝固点降低法测定摩尔质量凝固点降低法测定摩尔质量实验报告
实验时间:xxxx年xx月xx日
实验目的:
实验原理:
凝固点降低法是一种常用的定量分析方法,它的基本原理是利用当溶剂中加入指定的物质时其凝固点所发生的变化来确定物质的含量,进而来测定摩尔质量。
当溶剂中加入物质时,它们会发生氢键等因素的作用,使得其凝固点显著改变,因此根据凝固点的变化,可以计算出溶剂中物质的摩尔质量。
实验设备:
电子天平、显微镜、烧杯、数控酸碱度计、凝固点计等。
实验步骤:
1. 准备实验仪器及物质,按实验设计要求量取样品,把样品放入烧杯中,加入指定的溶剂,用电子天平微量称量。
2. 将烧杯放入适当的恒温器中,开启定温器,设定温度,将溶液恒温,然后使用凝固点计将溶液于调节好的温度下冷却,并观察其凝固点。
3. 根据实验设计要求,调整温度,重复上述步骤,直至求出实验样品的凝固点,并进行计算,求出摩尔质量。
4. 将摩尔质量与标准值进行比对,得出最终的实验结论。
实验结果:
实验结果表明,实验标准摩尔质量为xx.xx g/mol,实验样本的实验摩尔质量为
xx.xx g/mol,测量值与实验标准值吻合,结果满足要求。
本次实验采用凝固点降低法测定摩尔质量,成功地得出了实验样本的摩尔质量,实验结果与实验标准值接近,说明凝固点降低法是一种有效的测定摩尔质量的方法。
凝固点降低实验报告

华 南 师 范 大 学 实 验 报 告学生姓名 学 号 专 业 化学(师范) 年级、班级 课程名称 物理化学实验实验项目凝固点降低法测定物质的相对分子质量实验类型 :□验证□设计□综合 实验时间 年 月 日 实验指导老师 蔡跃鹏 实验评分【实验目的】1、明确溶液凝固点的定义及获得凝固点的正确方法。
2、确定环己烷的凝固点降低值,计算萘的相对分子质量。
3、掌握凝固点将定分子量的原理,加深对稀溶液依数性的理解。
4、掌握贝克曼温度计的使用方法。
【实验原理】物质的相对分子质量是了解物质的一个最基本且重要的物理化学数据,其测定方法有许多种。
凝固点降低法测定物质的相对分子质量是一个简单又比较准确的方法,在溶液理论研究和实际应用方面都具有重要意义。
凝固点降低是稀溶液的一种依数性,这里的凝固点是指在一定压力下,溶液中纯溶剂开始析出的温度。
由于溶质的加入,使固态纯溶剂从溶液中析出的温度T f 比纯溶剂的凝固点T f *下降,其降低值△T f =T f *-T f 与溶液的质量摩尔浓度成正比,即△T f =K f m (3-1)式中,△T f 为凝固点降低值;m 为溶液质量摩尔浓度;K f 为凝固点降低常数,它与溶剂的特性有关。
表3-1给出了部分溶剂的凝固点降低常数值。
表3-1 几种溶剂的凝固点降低常数值若称取一定量的溶质W B (g)和溶剂W A (g),配成稀溶液,则此溶液的质量摩尔浓度m B 为m B =×103 mol/kg (3-2) 式中,M B 为溶质的相对分子质量。
将式(3-2)代入式(3-1),整理得M B = ×103mol/kg (3-3) 若已知某溶剂的凝固点降低常数K f 值,通过实验测定此溶液的凝固点降低值△T f ,即可计算溶质的相对分子质量M B 。
通常测定凝固点的方法有平衡法和贝克曼法(或步冷曲线法)。
本实验采用后者。
其基本原理是M B W AW B △T f W AK f W B将纯溶剂或溶液缓慢匀速冷却,记录体系温度随时间的变化,绘出步冷曲线(温度-时间曲线),用外推法求得纯溶剂或稀溶液中溶剂的凝固点。
物化实验报告-凝固点降低法测定摩尔质量

物理化学实验报告武汉大学凝固点降低法测定摩尔质量一、实验目的1. 用凝固点降低法测定某未知物的摩尔质量 2. 学会用步冷曲线对溶液凝固点进行校正3. 通过本实验了解掌握凝固点降低法测定摩尔质量的原理,加深对稀溶液依数性的理解。
二、实验原理稀溶液具有依数性,凝固点降低是依数性的一种表现,它与溶液质量摩尔浓度的关系为:*×f f f f B T T T K b ∆=-=其中,f T ∆为凝固点降低值,*f T 、f T 分别为纯溶剂、溶液的凝固点,B b 为溶液质量摩尔浓度,f K 为凝固点降低常数,它只与所用溶剂的特性有关。
如果稀溶液是由质量为B m 的溶质溶于质量为A m 的溶剂中而构成,则上式可写为:1000××B f f Am T K M m ∆=即310Bff Am M K T m =∆ (*) 式中: f K ——溶剂的凝固点降低常数(单位为K·kg·mol -1)M ——溶质的摩尔质量(单位为g/mol )。
如果已知溶液的f K 值,则可通过实验测出溶液的凝固点降低值 f T ∆,利用上式即可求出溶质的摩尔质量。
实验中,要测量溶剂和溶液的凝固点之差。
对于纯溶剂如图1(a )所示,将溶剂逐渐降低至过冷(由于新相形成需要一定的能量,故结晶并不析出),温度降低至一定值时出现结晶,当晶体生成时,放出的热量使体系温度回升,而后温度保持相对恒定。
对于纯溶剂来说,在一定压力下,凝固点是固定不变的,直到全部液体凝固成固体后才会下降。
相对恒定的温度即为凝固点。
对于溶液来说,除温度外还有溶液浓度的影响。
当溶液温度回升后,由于不断析出溶剂晶体,所以溶液的浓度逐渐增大,凝固点会逐渐降低。
因此,凝固点不是一个恒定的值。
如把回升的最高点温度作为凝固点,这时由于已有溶剂晶体析出,所以溶液浓度已不是起始浓度,而大于起始浓度,这时的凝固点不是原浓度溶液的凝固点。
要精确测量,应测出步冷曲线,按下一页图1(b )所示方法,外推至f T 校正。
凝固点降低法测定物质的相对分子质量 纯萘、环己烷

华南师范大学实验报告课程名称 物理化学实验 实验项目 凝固点降低法测相对分子质量【实验目的】①测定环己烷的凝固点降低值,计算萘的分子量。
②掌握溶液凝固点的测定技术。
③技能要求:掌握冰点降低测定管、数字温差仪的使 用方法,实验数据的作图处理方法。
【实验原理】1、凝固点降低法测分子量的原理化合物的分子量是一个重要的物理化学参数。
用凝固点降低法测定物质的分子量是一种简单而又比较准确的方法。
稀溶液有依数性,凝固点降低是依数性的一种表现。
稀溶液的凝固点降低(对析出物是纯溶剂的体系)与溶液中物质的摩尔分数的关系式为:ΔT f = T f * - T f = K f m B (1)*式中,T f *为纯溶剂的凝固点,T f 为溶液的凝固点,m B 为溶液中溶质B 的质量摩尔浓度,K f 为溶剂的质量摩尔凝固点降低常数,它的数值仅与溶剂的性质有关。
已知某溶剂的凝固点降低常数K f,并测得溶液的凝固点降低值ΔT ,若称取一定量的溶质W B (g)和溶剂W A (g),配成稀溶液,则此溶液的质量摩尔浓度m B 为:3AB BB 10W M W m ⨯=mol/kg (2)将(2)式代入(1)式,则:3Af Bf B 10W T W K M ⨯∆=g/mol (3)表1 几种溶剂的凝固点降低常数值因此,只要称得一定量的溶质(WB )和溶剂(WA )配成一稀溶液,分别测纯溶剂和稀溶液的凝固点,求得ΔT f ,再查得溶剂的凝固点降低常数,代入(3)式即可求得溶质的摩尔质量。
* 当溶质在溶液里有解离、缔合、溶剂化或形成配合物等情况时,不适用上式计算,一般只适用于强电解质稀溶液。
2、凝固点测量原理纯溶剂的凝固点是它的液相和固相共存时的平衡温度。
若将纯溶剂缓慢冷却,理论上得到它的步冷曲线如图中的 A , 但但实际的过程往往会发生过冷现象,液体的温度会下降到凝固点以下,待固体析出后会慢慢放出凝固热使体系的温度回到平衡温度,待液体全部凝固之后,温度逐渐下降,如图中的B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华南师范大学实验报告学生姓名 __________________________ 学号 _____________________________________专业 _____________________________ 年级、班级 ________________________________课程名称 __________________________ 实验项目凝固点降低法测定物质的相对分子质量实验类型□验证□设计■综合实验时间 ______________ 年______ 月_____ 日实验指导老师 ______________________ 实验评分 _____________________________一、实验目的:1、明确溶液凝固点的定义及获得凝固点的正确方法。
2、测定环己烷的凝固点降低值,计算萘的相对分子质量。
3、掌握凝固点降低法测分子量的原理,加深对稀溶液依数性的理解。
4、掌握贝克曼温度计的使用。
二、实验原理:物质的相对分子质量是了解物质的一个最基本而且重要的物理化学数据,其测定方法有多种。
凝固点降低法成的物质的相对分子质量是一个简单又比较准确的方法,在溶液理论研究和实际应用方面都具有重要的意义。
凝固点降低是稀溶液的一种依数性,这里的凝固点是指在一定压力下,溶液中纯溶剂开始析出的温度。
由于溶质的加入,使固态纯溶剂从溶液中析出的温度T f比纯溶剂的凝固点T f*下降,其降低值T f T;T f与溶液的质量摩尔浓度成正比,即T f = K f m式中,T f为凝固点降低值;m为溶质质量摩尔浓度;K f为凝固点降低常数,它与溶剂的特性有关。
若称取一定量的溶质W B(g)和溶剂W A(g),配成稀溶液,则此溶液的质量摩尔浓度m B为W B“3m B10 mol/kgM B W A3式中,M B为溶质的相对分子质量。
则M B f - 10 g/molT f W A若已知某溶剂的凝固点降低常数K f值,通过实验测定此溶液的凝固点降低值T f,即可计算溶质的相对分子量M B。
通常测凝固点的方法有平衡法和贝克曼法(或步冷曲线法)。
本实验采用后者。
其基本原理是将纯溶剂或溶液缓慢匀速冷却,记录体系温度随时间的变化,绘出步冷曲线(温度-时间曲线),用外推法求得纯溶剂或稀溶液中溶剂的凝固点。
纯溶剂步冷曲线:纯溶剂逐步冷却时,体系温度随时间均匀下降,至牒一温度时有固体析出,由于结晶放出的凝固热抵消了体系降温时传递给环境的热量,因而保持固液两相平衡,当放热与散热达到平衡时,温度不再改变。
在步冷曲线上呈现出一个平台;当全部凝固后,温度又开始下降。
从理论上来讲,对于纯溶剂,只要固液两相平衡共存,同时体系温度均匀,那么每次测定的凝固点值应该不变。
但实际上由于过冷现象存在,往往每次测定值会有起伏。
当过冷现象存在时,纯溶剂的步冷曲线如图1-1 (1)所示。
即先过冷后足够量的晶体产生时,大量的凝固热使体系温度回升, 回升后在某一温度维持不变, 此不变的温度作为纯溶剂的凝固 点。
稀溶液的步冷曲线:稀溶液凝固点测定也存在上述类似现象。
没有过冷现象存在时,溶液 首先均匀降温,当某一温度有溶剂开始析出时,凝固热抵消了部分体系向环境的放热,在步冷 曲线上表现为一转折点,此温度即为该平衡浓度稀溶液的凝固点,随着溶剂析出,凝固点逐渐 降低。
但溶液的过冷现象普遍存在。
当某一浓度的溶液逐渐冷却成过冷溶液,通过搅拌或加入晶种促使溶剂结晶,由结晶放出的凝固热抵消了体系降温时传递给环境的热量, 当凝固放热与体系散热达到平衡时,温度不再回升。
此固液两相共存的平衡温度即为溶液的凝固点。
往往并不析出晶体,这是因为新相形成需要一定的能量,故结晶并不析出,这就是所谓过冷现象。
然后由于搅拌或加入晶种促使溶剂结晶,由结晶放出的凝固热,使体系温度回升。
从相律看,溶齐U 与溶液的冷却曲线形状不同。
对纯溶剂,固—液两相共存时,自由度f =1_2+仁0 ,冷却曲线出现水平线段。
对溶液,固—液两相共存时,自由度f =2-2+仁1温度仍可下降,但由于溶剂凝固时放出凝固热,使温度回升,回升到最高点又开始下降,所以冷却曲线不出现水平线段,此时应加以校正。
本实验通过测定纯溶剂与溶液的温度与冷却时间的关系数据, 两者的凝固点之差? Tf ,进而计算待测物的摩尔质量。
團1-1 (1?纯液体的冷却]曲线图1-1 (2)溶液的冷却 曲线通常测定凝固点的方法是将溶液逐渐冷却,使其结晶。
但是,实际上溶液冷却到凝固点,绘制冷却曲线,从而得到三、仪器与试剂:仪器:凝固点测定仪1套贝克曼温度计1支烧杯2个普通温度计(0 — 50 C)1支移液管(50mL )1支”试剂:环己烷(AR )萘(AR )、冰四、实验步骤:1、仪器安装:连接凝固点测定仪、精密数字温度温差仪等;2、调节寒剂温度:调节寒剂温度为 4 C左右。
凝固点测定装置3、溶剂凝固点的测定:仪器装置如图所示。
用移液管向清洁、干燥的凝固点管内加入20mL环己烷,插入贝克曼温度计探头,不要碰壁与触底。
先将盛环己烷的凝固点管直接插入寒剂中,均匀搅拌,使环己烷的温度逐渐降低,当冷到6.6 C左右,要快速搅拌(以搅棒下端擦管底),幅度要尽可能的小,待温度回升后,恢复原来的搅拌速度,同时观察贝克曼温度计读数,直到温度回升稳定为止,此温度即为水的近似凝固点。
同时每隔15秒记录一个温度读数。
取出凝固点管,用手捂住管壁片刻,同时不断搅拌,使管中固体全部熔化,将凝固点管放在空气套管中,缓慢搅拌,使温度逐渐降低,当温度降至近似凝固点时,自支管加入少量晶种,并快速搅拌(在液体上部),待温度回升后,再改为缓慢搅拌。
直到温度回升到稳定为止,记下稳定的温度值,重复测定二次,每次之差不超过0.006 C,二次平均值作为环己烷的凝固点。
4、溶液凝固点的测定:取出凝固点管,如前将管中冰溶化,用分析天平精确称重0.1722 g萘,加入凝固点管中,待全部溶解后,测定溶液的凝固点。
测定方法与环己烷的相同,先测近似的凝固点,再精确测定,但溶液凝固点是取回升后所达到的最高温度。
重复二次,取平均值。
五、实验数据与处理:数据记录:室温:22.8 C 大气压:101.810kPa纯环己烷 26.5ml[ p=0.778~0.779g/mL(20 C) ] 萘 0.3100g环己烷第二次次数 1 2 3 4 5 6 7 8 9 10 11 12温度/c 13.099 1 1.658 10 .2979.26 68.503 7.937 7.52 7.216 6.99 6.784 6.657 6.556次数 13 14 1516 17 18 19 20 21 22 23 24温度/ c 6.491 6.435 6.395 6.368 6.348 6.334 6.323 6.315 6.308 6.3 6.289 6.279次数 25 26 27 282930313233343536温度/ c 6.268 6.258 6.244 6.232/ = m * ltf*X WrialliMn WBiqH;irgResl dLia Eiurn d S^U*reiS0.015159F'-ur AU^.ir -0 03FKG 削斗.F7三耳口尊巴0 67154VaLieMTEN ST = IFCKBe.5s? UILM3 ~lnpe-□ ODF41g r?7 nr-1EqUafbu^iy ■ * i i&*x计阳1唳htiMn '/Veiolitnsl =?e^iciU9i E.E cf Qqgie 弃0 791 38^■eeraoir/B r -D nrn &3P MJ R-Squ^ren 斗GR 11va ue Stsnctwd Errjr曰lrter«pt 1 3.DF1I 酋Sope fl n f7K-1R8E cMAtion y = a * ti*x內砌kl IU 吐UMfeigihtirbgI- es-du■! Sum ul nififirriRPerson1-□ ^BS?TAdji_ H-b!c|jinr —Jisndwd ErrorIIrilercBpI 1 3,T57?70話斗525SI^Fie!--1.03731Q.oeesaE ius!lon y = e + b"3:M凸勺nrt h QHWpiyl'-^lliy尺看可刖UR *^Ufl1 Qi五wuereen nHR?sH--ar sen's r-0 «7OB2扎屮P 5<|iji *i ij0.7603Virtue^l ArdRri E*r or1 ntenzepl E-.B1 E1J1□ aECKlISlcpe-C.D231G□ UD3Q3 I o环己烷第三次次数1 2 345678910111212.93 11.84 10.78温度/c68 8 9.2418.54 7.823 7.545 7.317 7.0936.91 6.749 6.638次数1314151617181920212223 24温度/ c6.56 6.501 6.432 6.433 6.4446.444 6.444 6.443 6.441 6.435 6.427环己烷+萘第一次Lq<_Bat]£rjy »■ & * h *x W 册11附NoV/Tiulwii™Sum ofSqijar&sQ 27-^斗«.M3些出尽・We|gr 寸三t 日irdhcl Errcii"U tercept13.&9&6 0^451 e1 O MIiEquation y =曰―小 Welgnl NoV^eighiiro PGSiQuai 自 urn of SguaiesQ.107&1lesrscn s r-0.7S55i!斟 tU0 6851 3V^iue■^irirrli'dErm Idintent e pt *护QE□ 10^55 8 tips1II ■'■'h 1000328亠11C次数 1 2 3 4 5 6 7 8 9 10 11 12温度/C11.1899.786 8.6757.78 7.0436.377 5.8295.412 5.109 4.868 4.526 4.313次数 13 14 15 16 17 18 19 20 21 22 2324温度/C4.168 4.03 3.927 3.851 3.794 3.75 3.71 3.669 3.639 3.606 3.576次数1 2 3 45678910111213.26 12.08 10.96 10.01温度/c75769.2468.55 7.9447.436 6.966.531 6.146 5.813次数131415161718192021222324温度/ c 5.496 5.107 4.792 4.653 4.597 4.528 4.444 4.35 4.249 4.206 4.152 4.094次数 25 26 27 28 29 30313233343536温度/ c4.026 3.965 3.913 3.866 3.8263.795Eq uiiicin y= a匕帕Ws light:Ho V/eighl«rii^吕LkViCfD .570 STPea--son's r -D.9B093 Adj R-Sqica-eD.9B095e11.LU12&O.309ST當|口8 0 F7Rf7«1 仃 filAfShqiJ^llony = j * b*k v*" I[jliH 口 w»igmtin*gRRFidu^l Rum-仃f Squai'B^ n i msPRarsoin's r0 5447 此H] fl-SqijJiB住怕“dFir" Frrmr日Intericept Slope5 wos4 o. t^?ga2 -0X171260.00746A环己烷+萘第三次次数 1 2 3 4 5 6 7 8 9 10 11 1213温度/c 13.317 13.312.572 * 1.612 1().6129.7 25 9.0( 3 8.361 7.8117.3286 .692 6. 5326.1 81次数 14 15 1617181920212223242526温度/ c 5.878 5.589 5.309 4.955 4.7054.519 4 L384 4269 4.1 844.11 9 4.06 14.008 3.973次数 27 28 29 30 31 3233343536373839温度/ c 3.941 3.915 3.89 3.8653.841 3.818 3L798 37783.756 3.7: X3.71-1t lu^ion y = s *州日i/M N J AMglMI FS P -alrli Ifril Sum Dfn 崗尸?srson"s r -0.M321 斗H.卜之rCl 98 林 7Sl^nd^rd ErrinterG 曰 pt 1 4 S33B 0 21 B79 U Slope-□74330.03D79E ©LiMI Iony — a +WsigintNo Wieljjm hjJResidu-nl Butn QiS OUM昨0.19534Psahson*^ r-O.923E3 A.dj . R-Squ^iieO.«6-<8d Errw hIntei'wpf0.T1 361-0.0 4-32Q ,00404AErfjgHDri 7 ■ W *WtJghlNo vveightlngRgralAjai Sunn or Sqrjares0.95001Pearscin-hi rAdh R^SqtiBreCL !■7004V^lIlJRgr^nidQ|r(j Ernxentorcept 13.49847 Q26B76 £|Q I 口 E• ^0.^7012 0X^4??^巨 <qjMtlDFiV/sighiEF e^idLai S UM w squaresarson's r Adj. R-Squarey = s + ti*KMe WeiBhriing07613-0 93125□ B594-17 日1 ueIntent'iflpt 6. J 7M0Sldptf■□ 09340 102^7 25St^nJ^rd ErmrW 环己烷=0.778g/mL X 26.5mL=20.617g20 0.3100 10八3 2.22376 20.617参考文献的萘的相对分子质量为: 128.18g/molK f W 萘 T f W 环己烷130.86g/mol相对误差为:2.144%六、思考与讨论:1、本次实验过程很快,参考记录数据大约为每组40 个左右,而本组实验进行时仅仅记录30 左右数据则已趋近平衡,没有记录的意义,则每组实验仅有 30 个数据。