初三数学复习-圆-学霸笔记
初三数学复习-圆-学霸笔记

数学九下复习-圆【笔记、总结】【荣华教育】出品一、我的笔记第三章:圆难点1、为什么车轮要做成圆形?把车轮做成圆形,车轴定在圆心,是因为圆形易滚动,而且车轮上各点到车轴即圆心的距离都等于半径,当车轮在平面上滚动时,车轴与平面的距离保持不变.难点2、用直角钢尺检查某一工件是否恰好是半圆形?难点3、用一张三角形的纸片,你能裁出一个尽可能大的圆吗?与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形,三角形的内心是三角形三条角平分线的交点。
三角形一定有内切圆,其他的图形不一定有内切圆(一般情况下,n边形无内切圆,但也有例外,如对边之和相等的四边形有内切圆(挑战:如何验证?)。
且内切圆圆心定在三角形内部。
在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。
内切圆的半径为r=2S/C,当中S表示三角形的面积,C表示三角形的周长。
(挑战:如何证明?)内切圆内切圆是三角形的内部最大的圆,(挑战:如何证明?)特例:直角三角形的内切圆中,r是Rt△内切圆的半径,a, b是Rt△的2个直角边,c是斜边。
有这样两个简便公式:(挑战:如何证明?)1、两直角边相加的和减去斜边后除以2,得数是内切圆的半径。
r=(a+b-c)/22、两直角边乘积除以直角三角形周长,得数是内切圆的半径。
r=ab/ (a+b+c)1、圆等圆、等弧,重合。
2、圆的对称性圆是中心对称的,对称中心为圆心,围绕圆心旋转重合;圆是轴对称的,对称轴为直径。
弧、弦、弦心距、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
3、垂径定理4、圆心角和圆周角的关系。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
初三上册数学圆的知识点归纳总结

初三上册数学圆的知识点归纳总结数学中的圆是一种重要的几何图形,在初中数学的学习中也占据着重要的地位。
下面对初三上册数学中关于圆的知识点进行归纳总结,以帮助同学们更好地理解和掌握相关内容。
一、圆的定义和性质1. 定义:圆是一个平面上与一个固定点距离相等的点的集合。
2. 元素:圆心、半径、弦、弧、切线等。
3. 性质:(1) 圆上所有点到圆心的距离相等。
(2) 圆上的弦的垂直平分线通过圆心。
(3) 圆上的任意一条弧都小于或等于圆周长的一半。
二、圆的线段关系1. 半径与弦:如果一个线段的两个端点都在圆上,且其中一个是圆心,那么这个线段就是半径;如果这个线段的两个端点都在圆上但不是圆心,那么这个线段就是弦。
2. 弦的性质:(1) 通过圆心的弦是直径,直径是圆上最长的弦。
(2) 在同一个圆或等圆中,等长的弦所对的圆心角相等。
(3) 如果一个弦与另一个弦交于圆内的一点,那么两个弦所对的弧相等。
三、圆的圆周角和弧度制1. 圆周角的定义:以圆心为顶点的角,角的两边是圆上的两条弧。
圆周角的度数等于所对的圆弧的度数。
2. 弧度制:将圆的一周等分为360份,每份称为一度,每度又等分为60分,每分又等分为60秒。
弧度是用弧长等于半径的圆周长所对应的角中的弧所对应的角。
3. 弧度制与角度的换算:(1) 1度= π/180弧度(2) 1弧度≈ 57.3度四、切线与切线定理1. 切线定义:如果一条直线与圆相交于圆上的一点,且在该点处的切线与这条直线垂直,那么这条直线就是圆的切线。
2. 切线定理:切线与半径垂直。
(1) 如果一条直线与圆相交于圆上的一点,并且通过圆心,那么这条直线就是切线。
(2) 反之,如果一条直线与圆相交于圆上的一点,并且与通过圆心的切线垂直,那么这条直线就通过圆心,也是切线。
五、圆的面积和周长1. 圆的周长公式:C = 2πr,其中C表示圆的周长,r表示半径。
2. 圆的面积公式:A = πr²,其中A表示圆的面积,r表示半径。
九年级数学圆知识点梳理

九年级数学圆知识点梳理一、圆的定义与特点圆是由平面上离定点(圆心)距离相等的点构成的图形。
圆的特点有:1. 圆心:圆中心点的位置。
2. 半径:连接圆心和圆上任意一点的线段的长度,即半径。
3. 直径:通过圆心的两个点所构成的线段,即直径。
直径的长度是半径的两倍。
4. 弧:连接圆上两点的弧。
5. 圆周:由圆上所有点组成的曲线,也叫圆周。
二、圆的计算公式1. 圆的周长公式:C = 2πr,其中C代表圆的周长,r代表圆的半径。
π取近似值3.14。
2. 圆的面积公式:S = πr²,其中S代表圆的面积,r代表圆的半径。
三、圆的相交关系1. 相离:两个圆没有任何公共点,彼此之间没有交集。
2. 外切:两个圆相切于一点,且外切的圆没有穿过另一个圆。
3. 相交:两个圆有公共点,且相交的圆穿过另一个圆。
4. 内切:一个圆刚好位于另一个圆内部,并且两圆相切于一点。
5. 同心圆:有相同的圆心,但半径不同的圆。
四、圆的性质和定理1. 弧与角度的关系:圆心角是以圆心为顶点的角,圆心角的度数等于其所对应的弧所对角的度数。
2. 弧长公式:弧长等于圆周的$\frac{1}{n}$,其中n是圆周上被划分的几等分,m是圆周上的弧所对应的角的角度。
3. 弧与切线的关系:圆上的切线与切点处的弧垂直。
4. 切线定理:当一条直线与圆相切时,切点与切线的连线垂直于半径。
5. 弦的性质:如果两个弦在圆内或圆外相交,那么穿过内圆或外圆的弦的两边相乘的和等于其他穿过的弦的两边相乘的和。
6. 弧度制:以圆心为顶点的角所对应的弧长与半径的比值等于一个常数,即弧度制。
7. 平行切线定理:平行于切线的直线也是切线。
8. 平行弦定理:当两个弦平行时,两个弦的长度之比等于两个弦所对应的弧的长度之比。
五、圆的应用1. 几何画图:根据已知的圆心、半径、弦、切线等元素要求画出几何图形。
2. 圆的作图:根据已知条件画出满足要求的圆。
3. 物体的运动轨迹:物体在圆周运动时,物体的位置与时间的关系可表示为圆。
(word完整版)初中数学圆知识点总结,推荐文档

A图5圆的总结一 集合:圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合二 轨迹:1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;2、到线段两端点距离相等的点的轨迹是:线段的中垂线;3、到角两边距离相等的点的轨迹是:角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线三 位置关系:1点与圆的位置关系:点在圆内 d<r 点C 在圆内 点在圆上 d=r 点B 在圆上 点在此圆外 d>r 点A 在圆外2 直线与圆的位置关系:直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 d<r 3 圆与圆的位置关系:外离(图1) 无交点外切(图2) 相交(图3) 内切(图4) 内含(图5) 无交点DBB ABA四 垂径定理:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB ⊥CD ③CE=DE ④⑤ 推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O 中,∵AB ∥CD五 圆心角定理六 圆周角定理圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠ACB圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧即:在⊙O 中,∵∠C 、∠D 都是所对的圆周角∴∠C=∠D推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径即:在⊙O 中,∵AB 是直径 或∵∠C=90° ∴∠C=90° ∴AB 是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形»»BC BD =»»AC AD =P即:在△ABC 中,∵OC=OA=OB∴△ABC 是直角三角形或∠C=90° 注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
九年级数学圆形知识点归纳

九年级数学圆形知识点归纳九年级数学学习中,我们接触到了许多有关圆形的知识。
本文将对这些知识进行归纳总结,以便更好地了解和掌握圆形的特性和运用。
一、圆的定义和性质圆是由平面上与一个固定点的距离相等的所有点组成的图形,这个固定点称为圆心,距离称为半径。
圆的性质有以下几个要点:1. 圆上的任意点与圆心的距离都相等。
2. 圆的直径是两个任意点在圆上连线的最长线段,它的长度是圆的半径的两倍。
3. 圆的弧是两个点在圆上连线所得到的曲线部分。
4. 圆心角是以圆心为顶点的角,它的度数等于所对的弧所在圆周的度数。
二、圆的计算公式在解决圆的相关问题时,我们需要运用一些计算公式。
以下是常见的圆的计算公式:1. 圆的周长公式:C = 2πr,其中C表示圆的周长,r表示半径,π取近似值3.14。
2. 圆的面积公式:S = πr²,其中S表示圆的面积。
三、圆的相关定理1. 同圆弧所对的圆心角相等。
2. 等弧所对的圆心角相等。
3. 在同一个圆或等圆中,圆心角大的所对的弧也大,圆心角小的所对的弧也小。
4. 在同一个圆或等圆中,与同一弧相交的弦所对的圆心角相等。
四、切线和切点的性质1. 切线是与圆只有一个交点的直线。
2. 在切点处,切线垂直于半径。
3. 半径和切线之间的夹角是直角。
五、圆锥和圆柱体1. 圆锥是以一个圆为底面,上方以一个顶点为端点的三维图形。
2. 圆柱体是以一个圆为底面,上下底面平行且等大小的三维图形。
六、几何图形的应用在生活中,我们经常会遇到一些与圆相关的几何图形。
以下是一些常见的应用场景:1. 钟表:钟表的表盘就是一个圆形,指针所指的位置是圆上的点。
2. 气球:气球形状都是圆形,用圆的表面面积计算气球的充气量。
3. 轮胎:轮胎是车辆底盘的重要组成部分,轮胎的结构和运动都与圆形有关。
通过对九年级数学圆形知识点的归纳总结,我们对圆形的定义、性质、计算公式、相关定理,以及在几何图形应用中的实际场景有了更深入的理解。
九年级上册数学圆章节知识点总结

九年级上册数学圆章节知识点总结What is a classic? It takes about 100 years to become a classic.与圆相关的基本知识和计算一、知识梳理:一:圆及圆的有关概念1.圆:到顶点的距离等于定长的点的集合叫做圆;2.弧:圆上任意两点间的部分叫做圆弧,简称弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的叫做劣弧;3.弦:连接圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,它是圆的最长的弦;4.等圆:能够完全重合的两个圆叫做等圆;等弧:在同圆或等圆中,能够互相重合的弧叫做等弧;5.圆心角:顶点在圆心的角叫做圆心角;圆周角:顶点在圆上且两边与圆相交的角叫做圆周角;二圆的有关性质:1.对称性:圆是中心对称图形,其对称中心是圆心;圆是轴对称图形,其对称轴是直径所在的直线;2.垂径定理及其推论:1、垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧;2、推论:平分弦不是直径的直径垂直于弦,并且平分弦所对的弧;3.圆心角、弧、弦之间的关系1定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;2推论:在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等、所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等、所对的弧相等.4.圆周角与圆心角的关系1在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;2推论:半圆或直径所对的圆周角是直角,090的圆周角所对的弦是直径;5.圆内接四边形对角互补.(三)点与圆的位置关系1、点和圆的位置关系如果圆的半径为r,已知点到圆心的距离为d,则可用数量关系表示位置关系.1d>r点在圆外;2d=r点在圆上;3d<r点在圆内.2、确定圆的条件:不在同一直线上的三个点确定一个圆.(四)直线与圆的位置关系1、1直线与圆的位置关系有关概念①相交与割线:直线和圆有两个公共点时,叫做直线和圆相交,这条直线叫做圆的割线.②切线与切点:直线和圆有惟一公共点时,叫做直线和圆相切,这条直线叫做圆的切线,惟一的公共点叫做切点.③相离,当直线和圆没有公共点时,叫做直线和圆相离.2用数量关系判断直线与圆的位置关系如果⊙O的半径为r,圆心O到直线l的距离为d,那么:1直线l和⊙O相交d<r如图1所示;2直线l和⊙O相切d=r如图2所示;3直线l和⊙O相离d>r如图3所示.2、切线1切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.2切线的性质:圆的切线垂直于过切点的半径.3切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.4切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.五三角形的外接圆和内切圆1、三角形的外接圆1定义:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.三角形的外心:外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形.2三角形外心的性质:①三角形的外心是外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等.②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是惟一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.2、三角形的内切圆与三角形的内心①与三角形各边都相切的圆叫做三角形的内切圆.三角形内切圆的圆心叫做三角形的内心.这个三角形叫做圆的外切三角形.②三角形的内心就是三角形三条内角平分线的交点,三角形的内心到三边的距离相等.六:圆的有关计算一正多边形与圆1、正多边形的定义:各边相等,各角也相等的多边形叫做正多边形.2、任何正多边形都有一个外接圆和内切圆,这两个圆是同心圆,正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心;如果一个正n 边形有偶数条边,那么它又是中心对称图形,其中心就是对称中心;3、边数相同的正多边形相似,它们的周长的比等于它们的相似比,面积的比等于它们相似比的平方;4、正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形;正n 边形的中心角等于外角等于n3600; 二 弧长与扇形面积1、在半径为R 的圆中,0n 圆心角所对的弧长l=180n ℜπ;2、在半径为R 的圆中,圆心角为0n 的扇形面积扇形S =360n 2R π;半径为R,弧长为l 的扇形面积为扇形S =R l 21;3、侧面积:设圆锥的母线长为l,底面积的半径为r,那么圆的侧面积展开得到的扇形的半径为l,扇形的弧长为2πr,因此圆锥的侧面积为πrl,圆锥的全面积为πrl+πr 2.。
初三数学圆知识点总结

6.两圆公切线的性质
〔1〕如果两圆有两条外公切线,那么两外公切线长相等。
〔2〕如果两圆有两条内公切线,那么两内公切线长相等。
7.相交弦定理、切割线定理、切线长定理
定理 相交弦定理
图形
A
C
P
O
D
B
关系式
PA PB PC PD R2 OP2
相交弦定理的
推论
A
C OP B
PA PB PC2 PD2 R2 OP2
2
为斜边〕 〔2〕圆外切四边形两组对边与相等,即如右图,四边形 ABCD 是⊙ O 的外切四边形,那么 AB+CD=AD+BC。 三.圆中的计算问题 1.圆 〔2〕弧长: l n R ;
180
〔3〕圆面积: S R2 ;
〔4〕扇形面积:
S扇形=
1 2
lR
n R2 ;
于半圆的弧叫做劣弧。
〔4〕圆心角:如右图中∠COD 就是圆心角。
3.圆心角、弧、弦、弦心距之间的关系。
第1页
〔1〕定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的 弦的弦心距相等。 〔2〕推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或 两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分 别相等。 4.过三点的圆。 〔1〕定理:不在同一条直线上的三点确定一个圆。 〔2〕三角形的外接圆圆心〔外心〕是三边垂直平分线的交点。 5.垂径定理。 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推论: 〔1〕①平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对的两 条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平 分弦所对的一条弦的直径,垂直平分弦,并且平分弦所对 的另一条 弧。 〔2〕圆的两条平行弦所夹的弧相等。 6.与圆相关的角 〔1〕与圆相关的角的定义 ①圆心角:顶点在圆心的角叫做圆心角 ②圆周角:顶点在圆上且两边都与圆相交的角叫做圆周角。 ③弦切角:顶点在圆上,一边与圆相交,另一连轴与圆相切的角叫做 弦切角。
(完整版)九年级数学圆的知识点总结大全(可编辑修改word版)

一、知识回顾第四章:《圆》圆的周长:C=2πr 或C=πd、圆的面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²-r²)(R 是大圆半径,r 是小圆半径)二、知识要点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点 O 为圆心。
连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内2、点在圆上3、点在圆外⇒ d <r ⇒⇒ d =r ⇒⇒ d >r ⇒点C 在圆内;点 B 在圆上;点 A 在圆外;三、直线与圆的位置关系1、直线与圆相离2、直线与圆相切3、直线与圆相交⇒ d >r⇒ d =r⇒ d <r⇒无交点;⇒有一个交点;⇒有两个交点;四、圆与圆的位置关系外离(图 1) ⇒ 外切(图 2) ⇒ 相交(图 3) ⇒ 内切(图 4) ⇒ 内含(图 5) ⇒无交点 有一个交点有两个交点有一个交点无交点 ⇒ d > R + r ;⇒ d = R + r ; ⇒ R - r < d < R + r ; ⇒ d = R - r ; ⇒ d < R - r ;周 2周 4 周 5五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学九下复习-圆
【笔记、总结】
【荣华教育】出品
一、我的笔记
第三章:圆
难点1、为什么车轮要做成圆形?
把车轮做成圆形,车轴定在圆心,是因为圆形易滚动,而且车轮上各点到车轴即圆心的距离都等于半径,当车轮在平面上滚动时,车轴与平面的距离保持不变.
难点2、用直角钢尺检查某一工件是否恰好是半圆形?
难点3、用一张三角形的纸片,你能裁出一个尽可能大的圆吗?
与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形,三角形的内心是三角形三条角平分线的交点。
三角形一定有内切圆,其他的图形不一定有内切圆(一般情况下,n边形无内切圆,但也有例外,如对边之和相等的四边形有内切圆(挑战:如何验证?)。
且内切圆圆心定在三角形内部。
在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。
内切圆的半径为r=2S/C,当中S表示三角形的面积,C表示三角形的周长。
(挑战:如何证明?)
内切圆内切圆是三角形的内部最大的圆,(挑战:如何证明?)
特例:直角三角形的内切圆中,r是Rt△内切圆的半径,a, b是Rt△的2个直角边,c是斜边。
有这样两个简便公式:(挑战:如何证明?)
1、两直角边相加的和减去斜边后除以2,得数是内切圆的半径。
r=(a+b-c)/2
2、两直角边乘积除以直角三角形周长,得数是内切圆的半径。
r=ab/ (a+b+c)
1、圆
等圆、等弧,重合。
2、圆的对称性
圆是中心对称的,对称中心为圆心,围绕圆心旋转重合;圆是轴对称的,对称轴为直径。
弧、弦、弦心距、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
3、垂径定理
4、圆心角和圆周角的关系。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
也就是说,弧长或弦长决定了圆心角的大小。
整圆:弧360度,圆心角360度。
圆心角的度数等于它所对的弧的度数。
在同圆或等圆中,如果(1)两个圆心角,(2)两条弧,(3)两条弦(4)两条弦上的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等
在同圆或等圆中,圆周角相等<=>弧相等<=>弦相等。
总结,1)弧长或弦长决定了圆周角的大小,与圆周角顶点位置无关。
2)半圆(或直径)所对的圆周角是直角;90度圆周角所对的弦是直径。
3)圆内
接四边形的对角互补,并且任何一个外角都等于它的内对角。
在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。
难点4,如何证明?
分三种情况讨论,始终做直径COD,利用等腰三角形等腰底角相等,外角等于两内角之和来证明。
5、确定圆的条件
不在一条直线上三点确定一个圆,外接圆,圆心叫三角形的外心。
6、直线和圆的位置关系
7、切线长定理
注意切线的对称性,四边形ACOB对角互补8、圆内接正多边形
特例:内接正六边形(边长=半径)
正六边形
9、弧长及扇形的面积
①L(弧长)=n/180Xπr(n为圆心角度数,以下同);
②S(扇形面积) = n/360Xπr2;
③扇形圆心角n=(180L)/(πr)(度)。
④K=2Rsin(n/2) K=弦长;n=弦所对的圆心角,以度计。
特例:同心圆
难题5,如图,A、B、C、D是⊙O上的四点,AB=AC,AD交BC于点E,AE=2,ED=4,求AB的长.
二、我的总结
圆的焦点是圆心,圆的大小是半径,圆上的点是平等的,弧是平等的,弦是平等的。
圆的灵巧在于以
圆心转动是重合的,有很多相等关系。
周长=2πr
扇形面积S=n°/360°×πr²(n为圆心角度数)
圆面积
外角和=360°。