初中数学中考圆的知识点总结归纳(中考必备)

合集下载

初三圆知识点汇总

初三圆知识点汇总

初三圆知识点汇总圆是初中数学中的一个重要内容,也是中考的必考知识点之一。

下面就为大家详细汇总初三圆的相关知识点。

一、圆的定义1、动态定义:在平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 所形成的图形叫做圆。

固定的端点 O 叫做圆心,线段 OA 叫做半径。

2、静态定义:圆是到定点的距离等于定长的点的集合。

二、圆的相关概念1、弦:连接圆上任意两点的线段叫做弦。

2、直径:经过圆心的弦叫做直径,直径是圆中最长的弦。

3、弧:圆上任意两点间的部分叫做圆弧,简称弧。

弧分为优弧、劣弧和半圆。

4、半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

5、等圆:能够重合的两个圆叫做等圆。

6、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

三、圆的基本性质1、圆的对称性(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线。

(2)圆是中心对称图形,对称中心为圆心。

2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

3、圆心角、弧、弦之间的关系在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。

推论 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

四、圆的位置关系1、点与圆的位置关系设圆的半径为 r,点到圆心的距离为 d,则有:(1)点在圆外⇔ d > r;(2)点在圆上⇔ d = r;(3)点在圆内⇔ d < r。

2、直线与圆的位置关系设圆的半径为 r,圆心到直线的距离为 d,则有:(1)直线与圆相离⇔ d > r;(2)直线与圆相切⇔ d = r;(3)直线与圆相交⇔ d < r。

中考圆 知识点总结

中考圆 知识点总结

中考圆知识点总结一、圆的基本概念圆是平面上到一定点的距离等于给定长度的所有点的集合。

这个给定长度叫做圆的半径。

圆的一条封闭曲线叫做圆周,圆心到圆周上任一点的距离叫做半径。

二、圆的性质1. 圆的周长公式:C=πd 或C=2πr2. 圆的面积公式:S=πr²3. 圆心角:以圆心为顶点的角。

它对应的弧叫做这个角的弧4. 圆内接四边形:内接于同一个圆的四条边全是立交于一个点的四边形5. 圆外接四边形:其四顶点在同一个圆上的四边形6. 弧长:圆周上的一小段被称为弧,圆周的任一弧的长即弧长7. 弧度:弧长等于半径长的弧所对函数角的量度叫弧度8. 弧度制:把圆周长等分成361份,每段长为半径长的弧叫做1弧度9. 相似圆周:如果两个弧所对的圆心角的两个弧相等,则这两个arc的两个圆周叫做相似圆周三、圆的定理1. 两条平行余同一个圆的两条切线2. 如果两个arc和中各有一个相等的角的立交于同一条弧的平面内3. 弧与弧所对的角相关联4. 线段与圆相关联5. 邻角对角互补6. 梯形中角平分性质7. 环形中它的两个arc及两个对分-四、圆的变量方法常用的弧度制基本关系:1、1弧度=180/π度2、1度=π/180弧度常用的弧度制与直角度基本关系:1、180度=π弧度2、1度= π/180 弧度圆周率是一个无理数,近似值是3.1415926 。

圆的半径是r ,这样圆周长为C=2πr 。

圆的面积等于S= π(r^2)。

先看C=2πr的这半径(C是所求的圆周长,r是所需求的圆的半径,C=2 πr)由此得到半径的长。

继而计算圆的面积;S=π(r^2)。

五、圆的解析式方程解析式方程就是用$x$和$y$表示方程中的变量,利用解析式方程可以方便表示圆的位置、大小和形状。

圆的解析式方程一般是:$(x-a)^2+(y-b)^2=r^2$其中$(a,b)$为圆心坐标,r为半径。

圆的解析式方程与圆的位置有关。

若圆的圆心位于原点,圆的解析式方程为$x^2+y^2=r^2$,点$(x,y)$满足圆的解析式方程。

中考数学圆知识点总结

中考数学圆知识点总结

中考数学圆知识点总结一、圆的基本概念1.1 圆的定义圆是由平面上到定点到距离等于定值的所有点的集合。

这个定点叫做圆心,这个定值叫做圆的半径。

1.2 圆的元素圆的元素有圆心、半径、直径、弦、弧、扇形等。

1.3 圆的相关概念圆周率π:定圆的周长与直径的比值。

圆心角:以圆心为顶点的角。

圆周角:角的顶点在圆周上,并且角的两边都是圆上的弧。

1.4 圆的性质圆的性质有很多,比如半径相等的圆,直径相等的圆,弦长相等的圆等等。

二、圆的计算2.1 圆的周长圆的周长又叫做圆周长,也叫做圆的周长,通常用字母C表示。

圆的周长等于圆的直径乘以圆周率π。

C=πd2.2 圆的面积圆的面积是圆内部的所有点的集合,通常用字母A表示。

圆的面积等于圆心角的正弦值乘以半径的平方再乘以圆周率π。

A=πr²2.3 圆的相关角和弧长的求解在圆中,角和弧是密切相关的。

圆心角的度数等于它所对的弧所代表的圆周的长度所占整个圆周的比例。

所以我们可以利用这个性质来求解圆的相关问题。

三、圆的相关定理3.1 圆的切线与切点圆的切线与切点是圆的一个重要定理,它的性质有点多。

比如一个圆与直线相切,与圆外一点两切线为公切线或两切线的交点到原圆的距离相等。

3.2 圆的相交定理圆的相交定理也是圆的一个重要定理。

比如两个圆相交于两个不同的点,那么连接这两个交点和两个圆心就组成了一个四边形,并且它的对角线相交于一点。

3.3 圆的正接弦定理圆的正接弦定理是圆的一个重要定理。

它表示一个圆内部的一个锐角与它所对的正切弦之间的关系,这个定理在圆的相关计算中是非常重要的。

四、圆的应用圆在现实生活中有很多应用,比如钟面就是一个圆,轮胎也是一个圆,圆锥形的灯泡和圆球等等都是圆的应用。

而在数学中,圆也是几何图形中的一个重要内容,比如在三角函数中,圆和三角函数是密切相关的。

在平面几何中,圆与直线相交的问题也是经常出现的。

所以掌握圆的知识对于学生来说是非常重要的。

总之,圆是中考数学中的一个重要知识点。

中考圆的知识点总结总结

中考圆的知识点总结总结

中考圆的知识点总结总结一、圆的定义和性质1. 圆的定义圆是一个平面上和一个确定点的距离都相等的点的集合。

这个确定点就是圆心,而圆心到圆上的任意点的距离就是半径。

2. 圆的性质(1)圆心角圆心角是以圆心为顶点的角,它的两条边分别是圆周上的两条弦。

圆心角的度数等于对应的弧所对的圆周的度数。

如果圆心角的度数为360度,那么这个角就是周角。

(2)弧圆上的一段弧是圆周的一部分。

圆的周长就是圆周的长度,可以用角度和弧度来表示。

(3)切线和切点切线是一个直线,它与圆相切于一个点。

在圆上,切线与半径的夹角为90度。

(4)同位角同位角是两条平行线被一条截线所切割而形成的一对内角和一对外角。

同位角的性质也可以应用到圆上。

(5)相似两个或者更多的圆是相似的,如果它们有着相同的形状但是不同的尺寸。

相似的圆的半径之比等于它们的直径之比。

二、圆的相关定理1. 圆周角定理圆周角等于圆心角的一半。

2. 圆的面积和周长圆的面积等于πr^2,圆的周长等于2πr,其中r是圆的半径,π是一个无理数,约等于3.14159。

3. 弦长定理在同一个圆上,相交弦的两个切点到圆心的距离相等。

4. 弧长定理同样的圆上,相对的圆周弧长相等。

5. 切线定理切线和半径的夹角为90度。

6. 弧上的角定理同样的圆上,一个圆周弧所对的圆心角等于这个弧上的其他角的和。

7. 线段对定理在一个圆上,两条相交的弧所对的线段互为比例。

三、圆的应用1. 圆的周长和面积的应用圆的周长和面积是经常在实际生活中用到的数学概念。

比如在工程测量中,需要计算环形的周长和面积。

2. 圆的图形补充圆的图形补充,包括扇形、环形等概念,也是圆的知识点之一。

3. 圆的运动学应用在运动学中,圆的运动规律和路径也是一个重要的应用。

四、典型例题下面列举一些典型的中考圆的例题,帮助大家更好地复习和巩固知识。

1. 如果一条切线和一条半径分割了一个角为30度的圆心角,那么这条切线和半径的夹角是多少度?A. 60度B. 45度C. 30度D. 15度答案:A. 60度2. 已知圆的半径为8cm,求圆的面积和周长。

中考圆形知识点总结

中考圆形知识点总结

中考圆形知识点总结一、圆的定义圆是由平面上任意一点到圆心的距离都相等的一组点的集合,这个相等的距离就是圆的半径,用R或r表示。

如果把圆心用O表示,圆上一点用A表示,那么圆的表示就是O为圆心,R为半径的圆,通常写作O(R)。

二、圆的性质1. 圆的周长和面积圆的周长,即圆周长,也称为圆的周长。

由于圆是一个闭合曲线,所以圆的周长是指圆的周围的长度。

圆的周长L可以用公式L=2πr来表示,其中π取约等于3.14。

圆的面积A也和圆的半径r有关,圆的面积A=πr^2。

2. 圆的直径圆的直径是圆上任意两点之间经过圆心的线段的长度,它恰好是圆的半径的两倍,即d=2r。

3. 圆心角的度数圆心角是指以圆心为顶点的角,圆心角的度数可以用角度或弧度来表示。

圆心角的度数等于所对圆弧的中心角。

例如,一个圆的圆周角是360°,因此圆周角所对的圆弧的中心角也等于360°。

4. 圆锥相似圆锥相似是指对于两个圆,如果它们的半径之比相等,则这两个圆是相似的。

5. 圆内接四边形在一个圆中,如果一个四边形的四个顶点都在圆上,那么这个四边形叫做圆内接四边形。

在圆内接四边形中,相对的角相等,两对相对边之积相等。

6. 圆对称圆对称是指图形绕圆心旋转180°后,图形不变。

圆对称的图形具有很高的美感,例如很多具有圆对称的图案都可以被人们所接受和欣赏。

三、相关定理1. 圆心角定理圆心角定理是指圆心角的度数等于所对圆弧的中心角,即一个圆心角的度数等于它所对的圆弧的度数。

2. 弦长定理弦长定理是指一个圆上任意一条弦所对的两个弧的长度之和,等于这条弦的长度的平方。

3. 垂径定理垂径定理是指一个圆上的直径垂直于与之相交的弦,且中点与圆心和交点共线。

4. 弧长、扇形面积圆的弧长可以用弧度来表示,即弧长s=θr,其中r为半径,θ为圆心角的弧度。

圆的扇形面积也可以用弧度来表示,扇形的面积等于所对圆心角的弧度的一半乘以半径的平方。

四、计算题1. 计算圆的周长和面积计算圆的周长和面积是圆形题目中最基本的计算题,需要根据给定的半径或直径进行计算。

数学初三圆的知识点总结

数学初三圆的知识点总结

数学初三圆的知识点总结一、圆的概念1.1 圆的定义圆是平面上所有与一个给定点的距离相等的点的集合。

这个距离称为圆的半径,而给定的那个点叫做圆心。

1.2 相关术语(1)圆心:圆的中心点。

(2)半径:圆心到圆上任一点的距离。

(3)直径:通过圆心并且两端点在圆上的线段叫做圆的直径。

(4)弧长:圆上一部分的长度。

(5)圆周:圆的边界。

(6)扇形:由圆心和圆上两点组成的区域。

(7)弦:圆上连接两点的线段。

(8)切线:与圆相切的直线。

1.3 圆的元素圆的位置和形状是由圆心和半径共同决定的,而圆的面积则是与圆的半径有关。

二、圆的性质2.1 圆周率圆周率是圆的重要常数,通常用π表示。

它的值是一个无理数,约等于3.14159。

圆周率在数学中有广泛的应用,涉及到圆的面积、周长和体积等问题。

2.2 圆的面积和周长(1)圆的周长圆的周长公式为:C = 2πr,其中C表示圆的周长,r表示圆的半径,π表示圆周率。

(2)圆的面积圆的面积公式为:S = πr²,其中S表示圆的面积,r表示圆的半径,π表示圆周率。

2.3 圆的关系(1)直径与半径的关系圆的直径是圆的半径的两倍,即d = 2r。

(2)弧长与圆周角的关系弧长l与半径r和所对的圆周角θ之间有一个简单的关系:l = rθ。

(3)圆心角与圆周角的关系圆心角和它所对的圆周角是成等比关系的,即θ = 2α。

(4)弦的性质圆上的两条弦若相交,则交点至两条弦的两端的交点距离相等。

2.4 圆与直线的关系(1)切线定理切线定理指的是,若直线与圆相切,则该直线与圆心的连线和切点的连线是垂直的。

(2)弦切定理弦切定理是指,若一个直线既是弦又是切线,则该直线与圆心的连线和切点的连线也是垂直的。

三、圆的相关定理3.1 圆的基本定理(1)切线定理定理表明,切线与半径的夹角是直角,即触点与圆心与切点的连线共线。

(2)弦长定理定理表明,与直径垂直的弦,把弦分成的两段乘积等于圆的半径的平方。

中考圆的知识点总结

中考圆的知识点总结

中考圆的知识点总结一、圆的相关定义1. 圆的定义:圆是平面上到定点距离等于定长的点的集合。

2. 圆的要素:圆心、半径,圆周、圆内、圆外。

二、圆的相关定理1. 圆的周长和面积(1)周长:圆的周长等于圆的直径乘以π(π≈3.14)。

公式:周长=2πr(2)面积:圆的面积等于圆的半径平方乘以π。

公式:面积=πr²2. 圆心角和圆心角的度数(1)圆心角:以圆心为顶点的角叫做圆心角。

(2)度数:圆周的一份叫做圆周角,圆周角是度数。

一个完整的圆周角是360°。

3. 弧长和弧度(1)弧长:圆的一部分。

弧长的公式:弧长=2πr(圆的半径r乘以圆心角的度数除以360°)。

(2)弧度:圆心角所对应的弧长的长度。

1弧度=弧长/半径。

4. 直角三角形中的圆(1)直角三角形内切圆:直角三角形的内切圆的圆心在直角三角形的斜边上。

(2)直角三角形外切圆:直角三角形的外切圆的圆心在直角三角形的斜边上。

5. 圆与三角形的关系(1)正弦定理:a/sinA=b/sinB=c/sinC(2)余弦定理:a²=b²+c²−2bc⋅cosA(3)正弦定理:a/sinA=b/sinB6. 圆的相交和切线(1)相交:两个圆相交的情况有几种:相离(两个圆不相交)、内切(一个圆在另一个圆内部)、外切(一个圆在另一个圆外部)、内含(一个圆在另一个圆内部,但没有公共点)。

(2)切线:从圆外一点引一条与圆相切的线叫做切线。

7. 圆的应用(1)建筑中的圆:建筑中圆的形状、圆的结构。

(2)生活中的圆:轮胎、钟表、CD/DVD等。

三、圆的相关练习1. 计算圆的周长和面积。

2. 计算圆心角的度数和弧度。

3. 求解直角三角形内切圆和外切圆的问题。

4. 应用正弦定理、余弦定理和正切定理求解相关问题。

5. 求解相交圆的相交情况和切线的情况。

以上就是中考圆的相关知识点总结,希望对大家的学习有所帮助。

初中数学中考圆的知识点总结归纳(中考必备)

初中数学中考圆的知识点总结归纳(中考必备)

中考数学圆的知识点总结归纳一、圆的定义(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。

(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

二、圆心(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。

(3)圆任意两条对称轴的交点为圆心。

(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。

直径一般用字母d表示。

半径:连接圆心和圆上任意一点的线段,叫做圆的半径。

半径一般用字母r表示。

圆的直径和半径都有无数条。

圆是轴对称图形,每条直径所在的直线是圆的对称轴。

在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。

计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。

90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积。

πr^2,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

三、周长计算公式1.、已知直径:C=πd2、已知半径:C=2πr3、已知周长:D=c\π4、圆周长的一半:1\2周长(曲线)5、半圆的长:1\2周长+直径四、面积计算公式1、已知半径:S=πr平方2、已知直径:S=π(d\2)平方3、已知周长:S=π(c\2π)平方五、点、直线、圆和圆的位置关系1、点和圆的位置关系①点在圆内<=>点到圆心的距离小于半径②点在圆上<=>点到圆心的距离等于半径③点在圆外<=>点到圆心的距离大于半径2.过三点的圆不在同一直线上的三个点确定一个圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学圆的知识点总结归纳
一、圆的定义
(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。

(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

二、圆心
(1)如定义(1)中,该定点为圆心
(2)如定义(2)中,绕的那一端的端点为圆心。

(3)圆任意两条对称轴的交点为圆心。

(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示
直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。

直径一般用字母d表示。

半径:连接圆心和圆上任意一点的线段,叫做圆的半径。

半径一般用字母r表示。

圆的直径和半径都有无数条。

圆是轴对称图形,每条直径所在的直线是圆的对称轴。

在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。

计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。

90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积。

πr^2,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

三、周长计算公式
1.、已知直径:C=πd
2、已知半径:C=2πr
3、已知周长:D=c\π
4、圆周长的一半:1\2周长(曲线)
5、半圆的长:1\2周长+直径
四、面积计算公式
1、已知半径:S=πr平方
2、已知直径:S=π(d\2)平方
3、已知周长:S=π(c\2π)平方
五、点、直线、圆和圆的位置关系
1、点和圆的位置关系
①点在圆内<=>点到圆心的距离小于半径
②点在圆上<=>点到圆心的距离等于半径
③点在圆外<=>点到圆心的距离大于半径
2.过三点的圆不在同一直线上的三个点确定一个圆。

3.外接圆和外心经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。

外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。

4.直线和圆的位置关系
相交:直线和圆有两个公共点叫这条直线和圆相交,这条直线叫做圆的割线。

相切:直线和圆有一个公共点叫这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。

相离:直线和圆没有公共点叫这条直线和圆相离。

5.直线和圆位置关系的性质和判定
如果⊙O的半径为r,圆心O到直线l的距离为d,那么
①直线l和⊙O相交<=>d<r;
②直线l和⊙O相切<=>d=r;
③直线l和⊙O相离<=>d>r。

六、圆和圆定义
两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。

两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。

两个圆有两个交点,叫做两个圆的相交。

两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。

两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。

原理:圆心距和半径的数量关系:
两圆外离<=>d>R+r两圆外切<=>d=R+r两圆相交<=>R-r<d<R+r(R>=r)
两圆内切<=>d=R-r(R>r)两圆内含<=>d<R-r(R>r)
七、正多边形和圆
1、正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。

2、正多边形与圆的关系:
(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。

(2)这个圆是这个正多边形的外接圆。

3、正多边形的有关概念:
(1)正多边形的中心——正多边形的外接圆的圆心。

(2)正多边形的半径——正多边形的外接圆的半径。

(3)正多边形的边心距——正多边形中心到正多边形各边的距离。

(4)正多边形的中心角——正多边形每一边所对的外接圆的圆心角。

4、正多边形性质:
(1)任何正多边形都有一个外接圆。

(2)正多边形都是轴对称图形,当边数是偶数时,它又是中心对称图形,正n边形的对称轴有n条。

(3)边数相同的正多边形相似。

相关文档
最新文档