七年级数学下学期期中试卷含解析 青岛版

合集下载

2022-2023学年山东省青岛市市南区七年级(下)期中数学试卷(含解析)

2022-2023学年山东省青岛市市南区七年级(下)期中数学试卷(含解析)

2022-2023学年山东省青岛市市南区七年级(下)期中数学试卷一、选择题(每题3分,共24分)1.下列运算正确的是( )A.a2+a2=a4B.a3•a4=a12C.(a3)4=a12D.(ab)2=ab2 2.把0.00000156用科学记数法表示为( )A.156×108B.15.6×10﹣7C.1.56×10﹣5D.1.56×10﹣6 3.下列说法正确的是( )A.相等的角是对顶角B.在同一平面内,平行于同一直线的两条直线互相平行C.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离D.两条直线被第三条直线所截,同位角相等4.如图,在下列给出的条件中,不能判定AC∥DE的是( )A.∠1=∠A B.∠A=∠3C.∠3=∠4D.∠2+∠4=180°5.若一个三角形三个内角度数的比为2:3:5,那么这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形6.若(﹣2x+a)(x﹣1)的结果中不含x的一次项,则a的值为( )A.1B.﹣1C.2D.﹣27.从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个长方形(如图2),上述操作能验证的等式是( )A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)8.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A.B.C.D.二、填空题(每题3分,共24分)9.已知2x=8,4y=1,那么2x+2y的值是 .10.若x2+(m﹣1)x+16是完全平方式,则m的值是 .11.一个角的补角是它的余角的4倍,则这个角余角的度数是 .12.如图,AD是△ABC的中线,M是AC边上的中点,连接DM,若△ABC的面积为12cm2,则△ADM的面积为 cm2.13.如图,直线AB∥CD,点E,F分别在直线AB和直线CD上,点P在两条平行线之间,∠AEP和∠CFP的角平分线交于点H,已知∠P=78°,则∠H的度数为 .14.如图,某品牌自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm .(1)观察图形,填写如表;链条节数/x (节)2345…链条长度/y(cm ) 4.2 5.97.6 …(2)如果一辆自行车的链条(安装以后)共由60节链条组成,那么链条的总长度是 cm .15.如图,点C 是线段AB 上的一点,以AC ,BC 为边向两边作正方形,设AB =10,两正方形的面积和S1+S 2=52,则图中阴影部分面积是 .16.A 骑摩托车从甲地去乙地,B 开汽车从乙地去甲地,同时出发,匀速行驶,各自到达终点后停止,甲、乙两地间的距离为s (km )与甲行驶的时间为t (h )之间的关系如图所示.(1)甲、乙两地之间的路程为 千米;(2)甲出发 小时后甲、乙两地相距80千米.三.解答题(共72分)17.作图题.用圆规,直尺作图,不写作法,但要保留作图痕迹.已知:点C为线段AB外一点,求作直线CD,使CD∥AB.18.(20分)计算:(1)﹣14+(﹣2)3+(π﹣3.14)0+(﹣)﹣2;(2)(a2b)•(﹣2ab2)2÷(﹣0.5a4b5);(3)用乘法公式计算:20162﹣2018×2014.(4)(3x+y﹣2)(3x﹣y+2);(5)(4ab3﹣a2b﹣ab)÷(ab);19.先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=,y=3.20.已知:如图,△ABC中,AC⊥BC,若D、E在AB边上,点F在AC边上,DG⊥BC 于点G,∠1=∠2,求证:EF∥CD.将下列推理过程补充完整:证明:∵DG⊥BC,AC⊥BC,(已知),∴∠DGB=∠ACB=90°( ).∴DG∥AC( ).∴∠2= ( ).∵∠1=∠2,∴∠1= ( ).∴EF ∥CD ( ).21.某经销商销售了一种水果,进价是25元/千克,根据以往销售经验,每天的售价与销售量之间有如下关系:每千克售价x (元)...38373635 (25)每天销量y (千克)…50525456…76(1)从表格可以看出售价每下调1元销售量就增加 千克,每上涨1元销售量就减少 千克,直接写出每天销量y (千克)与每千克售价x (元)的函数关系式.(2)求出当售价从38元/千克调整到44元/千克时,求这一天的销售量是多少千克?利润多少元?22.如图,已知∠1=∠BDC ,∠2+∠3=180°.(1)问AD 与CE 平行吗?如果平行请说明理由.(2)若CE ⊥AE 于E ,DA 平分∠BDC ,∠FAB =68°,求∠1的度数.23.某数学兴趣小组在一组课题学习活动中以“钟表上时针与分针的重合时刻”为课题展开了研究.【问题提出】如图①是某钟表,图②是该钟表的简化平面示意图,设时针、分针所在直线在同一平面内,直线l表示钟表的数轴线.在1:00~1:15之间求时针与分针的重合时刻.【问题探究】设钟表中心为O,表示“12”的点为A,表示“1”的点为B,表示“3”的点为C,表示“6”的点为D,下面是小颖同学的研究过程:解题思路:建立函数关系的方法求解.(1)设自变量x和因变量y:设1:00后再经过xmin(0≤x≤15),时针、分针分别与OA所成夹角度数为y1°,y2°,直接写出y1,y2关于x的关系式.(2)求解:【问题解决】请按照小颖的思路解答此问题;【问题拓展】求该钟表在1:15~1:30之间,时针与分针所在直线互相垂直的时刻.24.已知直线MN∥PQ,点A在直线MN上,点B,C为平面内两点,AC⊥BC于点C.(1)如图1,当点B在直线MN上,点C在直线MN上方时,延长CB交直线PQ于点D,则∠CAB和∠CDP之间的数量关系是 ;(2)如图2,当点C在直线MN上且在点A左侧,点B在直线MN与PQ之间时,过点B作BD⊥AB交直线PQ于点D.为探究∠ABC与∠BDP之间的数量关系,小明过点B 作BF∥MN请根据他的思路,写出∠ABC与∠BDP的关系,并说明理由;(3)请从下面A,B两题中任选一题作答.A.如图3,在(2)的条件下,作∠ABD的平分线交直线MN于点E,当∠AEB=2∠ABC时直接写出∠ABC的度数;B.如图4,当点C在直线MN上且在点A左侧,点B在直线PQ下方时,过点B作BD⊥AB交直线PQ于点D,作∠ABD的平分线交直线MN于点E,当∠BDP=2∠BEN时,直接写出∠ABC的度数.参考答案一、选择题(每题3分,共24分)1.下列运算正确的是( )A.a2+a2=a4B.a3•a4=a12C.(a3)4=a12D.(ab)2=ab2【分析】根据合并同类项,同底数幂的乘法,幂的乘方与积的乘方运算法则求解即可.解:a2+a2=2a2,故A不符合题意;a3•a4=a7,故B不符合题意;(a3)4=a12,故C符合题意;(ab)2=a2b2,故D不符合题意,故选:C.【点评】本题考查了合并同类项,同底数幂的乘法,幂的乘方与积的乘方,熟练掌握这些知识是解题的关键.2.把0.00000156用科学记数法表示为( )A.156×108B.15.6×10﹣7C.1.56×10﹣5D.1.56×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.00000156=1.56×10﹣6,故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列说法正确的是( )A.相等的角是对顶角B.在同一平面内,平行于同一直线的两条直线互相平行C.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离D.两条直线被第三条直线所截,同位角相等【分析】根据对顶角性质、平行线的判定与性质判断求解即可.解:相等的角不一定是对顶角,故A错误,不符合题意;在同一平面内,不相交的两条直线必平行,故B正确,符合题意;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故C错误,不符合题意;两条平行直线被第三条直线所截,同位角相等,故D错误,不符合题意;故选:B.【点评】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.4.如图,在下列给出的条件中,不能判定AC∥DE的是( )A.∠1=∠A B.∠A=∠3C.∠3=∠4D.∠2+∠4=180°【分析】根据平行线的判定,逐项进行判断即可.解:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,故A 可以;当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故B不可以;当∠3=∠4时,可知是DE和AC被AB所截得到的内错角,可得DE∥AC,故C可以;当∠2+∠A=180°时,是一对同旁内角,可得DE∥AC;故D可以;故选:B.【点评】本题主要考查平行线的判定方法,掌握平行线的判定方法是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.5.若一个三角形三个内角度数的比为2:3:5,那么这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【分析】根据三角形内角和等于180°求出最大内角的度数,再得出选项即可.解:∵三角形三个内角度数的比为2:3:5,∴最大内角的度数是180=90°,∴此三角形是直角三角形,故选:A.【点评】本题考查了三角形内角和定理,能熟记三角形内角和定理是解此题的关键,注意:三角形内角和等于180°.6.若(﹣2x+a)(x﹣1)的结果中不含x的一次项,则a的值为( )A.1B.﹣1C.2D.﹣2【分析】根据多项式乘多项式的运算法则进行化简,然后令含x的一次项系数为零即可求出答案.解:原式=﹣2x2+(a+2)x﹣a,∴a+2=0,∴a=﹣2,故选:D.【点评】本题考查多项式乘多项式,解题的关键是熟练运用多项式乘多项式运算法则,本题属于基础题型.7.从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个长方形(如图2),上述操作能验证的等式是( )A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)【分析】分别求出从边长为a的正方形内去掉一个边长为b的小正方形后剩余部分的面积和拼成的矩形的面积,根据剩余部分的面积相等即可得出算式,即可选出选项解:∵从边长为a的正方形内去掉一个边长为b的小正方形,剩余部分的面积是:a2﹣b2,图2拼成的是长为a+b,宽为a﹣b的矩形,因此面积为(a+b)(a﹣b),∴根据剩余部分的面积相等得:a2﹣b2=(a+b)(a﹣b),故选:C.【点评】本题考查了平方差公式的运用,解此题的关键是用算式表示图形的面积,用的数学思想是转化思想,即把实际问题转化成用数学式子表示出来.8.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A.B.C.D.【分析】根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.解:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选:B.【点评】本题考查了函数的图象,解题的关键是分析函数图象的AB段.本题属于基础题,难度不大,解决该题型题目时,根据函数图象分析出大致的运动路径是关键.二、填空题(每题3分,共24分)9.已知2x=8,4y=1,那么2x+2y的值是 8 .【分析】利用同底数幂的乘法的法则及幂的乘方的法则对式子进行整理,再代入相应的值运算即可.解:∵2x=8,4y=1,2x+2y=2x×22y=2x×4y=8×1=8.故答案为:8.【点评】本题主要考查幂的乘方与积的乘方,同底数幂的乘法,熟练掌握以上知识是解题的关键.10.若x2+(m﹣1)x+16是完全平方式,则m的值是 9或﹣7 .【分析】根据完全平方公式即可求出答案.解:∵x2+(m﹣1)x+16=(x±4)2=x2±8x+16,∴m﹣1=±8,∴m=9或﹣7.故答案为:9或﹣7.【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.11.一个角的补角是它的余角的4倍,则这个角余角的度数是 30° .【分析】根据补角和余角的定义,利用“一个角的补角是它的余角的度数的3倍”作为相等关系列方程求解即可得出结果.解:设这个角的度数是x,则180°﹣x=4(90°﹣x),解得x=60°.∴这个角的余角=90°﹣60°=30.答:这个角的余角度数是30°.故答案为:30°.【点评】本题考查余角和补角的知识,设出未知数是解决本题的关键,要掌握解答此类问题的方法.12.如图,AD是△ABC的中线,M是AC边上的中点,连接DM,若△ABC的面积为12cm2,则△ADM的面积为 3 cm2.【分析】根据三角形中线平分三角形面积进行求解即可.解:∵AD是△ABC的中线,△ABC的面积为12cm2,∴S△ACD=S△ABC=6cm2,∵M是AC边上的中点,∴S△ADM=S△ACD=3cm2.故答案为:3.【点评】本题主要考查了三角形的面积,熟知三角形中线平分三角形面积是解题的关键.13.如图,直线AB∥CD,点E,F分别在直线AB和直线CD上,点P在两条平行线之间,∠AEP和∠CFP的角平分线交于点H,已知∠P=78°,则∠H的度数为 141° .【分析】过点P作PQ∥AB,过点H作HG//AB.根据平行线的性质得到∠EPF=∠BEP+∠DFP=78°,结合角平分线的定义得到∠AEH+∠CFH,同理可得∠EHF=∠AEH+∠CFH解:过点P作PQ//AB,过点H作HG//AB.∵AB//CD,∴PQ //CD ,HG //CD ,∴∠BEP =∠QPE ,∠DFP =∠QPF ,∵∠EPF =∠QPE +∠QPF =78°,∴∠BEP +∠DFP =78°,∴∠AEP +∠CFP =360°﹣78=282°,∵EH 平分∠AEP ,HF 平分∠CFP ,∴∠AEH +∠CFH =282°÷2=141°.故答案为:141°.【点评】本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相等得出结论.14.如图,某品牌自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm .(1)观察图形,填写如表;链条节数/x (节)2345…链条长度/y (cm ) 4.2 5.97.6 9.3 …(2)如果一辆自行车的链条(安装以后)共由60节链条组成,那么链条的总长度是 102.8 cm .【分析】(1)根据表格可知y 与x 的关系式,可知x =5时,y 的值;(2)将x =60代入(1)中函数关系式即可.解:(1)根据题意,得y =2.5+(2.5﹣0.8)(x ﹣1)=1.7x +0.8,当x =5时,y =1.7×5+0.8=9.3,故答案为:9.3;(2)当x =60时,y =1.7×60+0.8=102.8(cm ),故答案为:102.8.【点评】本题考查了图形的变化规律,函数关系式,根据表格信息表示出函数关系式是解题的关键.15.如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设AB=10,两正方形的面积和S1+S2=52,则图中阴影部分面积是 12 .【分析】设两个正方形的边长分别为a、b,则a+b=10,由S1+S2=52可得a2+b2=52,根据(a+b)2=a2+b2+2ab代入求出ab的值即可.解:设AC=a,BC=b,则a+b=AB=10,∵S1+S2=52,∴a2+b2=52,∵(a+b)2=a2+b2+2ab,∴102=52+2ab,∴ab=24,∴阴影部分的面积为ab=12,故答案为:12.【点评】本题考查完全平方公式的几何背景,掌握完全平方公式的结构特征是正确解答的前提.16.A骑摩托车从甲地去乙地,B开汽车从乙地去甲地,同时出发,匀速行驶,各自到达终点后停止,甲、乙两地间的距离为s(km)与甲行驶的时间为t(h)之间的关系如图所示.(1)甲、乙两地之间的路程为 240 千米;(2)甲出发 或 小时后甲、乙两地相距80千米.【分析】(1)由图象直接可得甲,乙两地之间的路程为240千米;(2)求出A的速度为:240÷6=40(千米/小时),B的速度为:240÷2﹣40=80(千米/小时),设A出发t小时,A,B相距80千米,分两种情况列方程,可解得答案.解:(1)由图象可得,当x=0时,y=240,∴甲,乙两地之间的路程为240千米;故答案为:240;(2)由图象可得:A的速度为:240÷6=40(千米/小时),B的速度为:240÷2﹣40=80(千米/小时),设A出发t小时,A,B相距80千米,由题意得:相遇前:80t+40t+80=240,解得t=,相遇后:80(t﹣2)+40(t﹣2)=80,解得t=,综上所述,A出发小时或小时后,A、B两人相距80千米.故答案为:或.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用函数的思想和数形结合的思想解答.三.解答题(共72分)17.作图题.用圆规,直尺作图,不写作法,但要保留作图痕迹.已知:点C为线段AB外一点,求作直线CD,使CD∥AB.【分析】过点C作直线CE交AB于点E,作∠TCE=∠CDB即可.解:如图,直线CD即为所求.【点评】本题考查作图﹣复杂作图,平行线的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.(20分)计算:(1)﹣14+(﹣2)3+(π﹣3.14)0+(﹣)﹣2;(2)(a2b)•(﹣2ab2)2÷(﹣0.5a4b5);(3)用乘法公式计算:20162﹣2018×2014.(4)(3x+y﹣2)(3x﹣y+2);(5)(4ab3﹣a2b﹣ab)÷(ab);【分析】(1)先算乘方,零指数幂,负整数指数幂,再算加减即可;(2)先算积的乘方,再算单项式乘单项式,最后算整式的除法即可;(3)利用平方差公式进行运算即可;(4)利用平方差公式及完全平方公式进行运算即可;(5)利用整式的除法的法则进行运算即可.解:(1)﹣14+(﹣2)3+(π﹣3.14)0+(﹣)﹣2=﹣1﹣8+1+9=1;(2)(a2b)•(﹣2ab2)2÷(﹣0.5a4b5)=(a2b)•(4a2b4)÷(﹣0.5a4b5)=a4b5÷(﹣0.5a4b5)=﹣2;(3)20162﹣2018×2014=20162﹣(2016+2)×(2016﹣2)=20162﹣(20162﹣4)=20162﹣20162+4=4;(4)(3x+y﹣2)(3x﹣y+2)=[3x+(y﹣2)][3x﹣(y﹣2)]=(3x)2﹣(y﹣2)2=9x2﹣(y2﹣4y+4)=9x2﹣y2+4y﹣4;(5)(4ab3﹣a2b﹣ab)÷(ab)=4ab3÷(ab)﹣a2b÷(ab)﹣ab÷(ab)=8b2﹣2a﹣1.【点评】本题主要考查整式的混合运算,解答的关键是对相应的运算法则的掌握.19.先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=,y=3.【分析】先利用完全平方公式和平方差公式计算,进一步合并,最后代入求得数值即可.解:原式=(4x2+4xy+y2﹣4x2+y2﹣6y)÷2y=(2y2+4xy﹣6y)÷2y=y+2x﹣3当x=,y=3时,原式=3+1﹣3=1.【点评】此题考查整式的化简求值,掌握计算公式和运算方法是解决问题的关键.20.已知:如图,△ABC中,AC⊥BC,若D、E在AB边上,点F在AC边上,DG⊥BC 于点G,∠1=∠2,求证:EF∥CD.将下列推理过程补充完整:证明:∵DG⊥BC,AC⊥BC,(已知),∴∠DGB=∠ACB=90°( 垂直定义 ).∴DG∥AC( 同位角相等,两直线平行 ).∴∠2= ∠DCA ( 两直线平行,内错角相等 ).∵∠1=∠2,∴∠1= ∠DCA ( 等量代换 ).∴EF∥CD( 同位角相等,两直线平行 ).【分析】首先证明∠2=∠DCA,然后根据∠1=∠2,可得∠DCA=∠1,再根据同位角相等,两直线平行可判定出EF∥DC.【解答】证明:∵DG⊥BC,AC⊥BC,(已知),∴∠DGC=∠ABC=90°(垂直定义),∴DG∥AC(同位角相等,两直线平行),∴∠2=∠DCA(两直线平行,内错角相等),∵∠1=∠2,∴∠1=∠DCA(等量代换),∴EF∥CD(同位角相等,两直线平行).故答案为:垂直定义;同位角相等,两直线平行;∠DCA;两直线平行,内错角相等;∠DCA;等量代换;同位角相等,两直线平行.【点评】本题主要考查了平行线的判定与性质定理,掌握平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系是解题的关键.21.某经销商销售了一种水果,进价是25元/千克,根据以往销售经验,每天的售价与销售量之间有如下关系:...38373635 (25)每千克售价x(元)...50525456 (76)每天销量y(千克)(1)从表格可以看出售价每下调1元销售量就增加 2 千克,每上涨1元销售量就减少 2 千克,直接写出每天销量y(千克)与每千克售价x(元)的函数关系式.(2)求出当售价从38元/千克调整到44元/千克时,求这一天的销售量是多少千克?利润多少元?【分析】(1)根据表格中的数据可得售价每下调1元销售量就增加2千克,每上涨1元销售量就增减少2千克,根据此关系可得当售价从38元/千克下调到x元/千克时,得出其销售量y,以此即可得到y与x的函数关系式;(2)将x=44代入(1)中求得的函数关系式中,求出这一天的销售量,再根据“利润=(售价﹣成本)×销售量”即可解答解:(1)从表格可以看出售价每下调1元销售量就增加2千克,每上涨1元销售量就增减少2千克,当售价从38元/千克下调到x元/千克时,y=50+2(38﹣x)=126﹣2x,∴每天销量y(千克)与每千克售价x(元)的函数关系式为y=126﹣2x;故答案为:2,2;(2)当售价从38元/千克调整到44元/千克时,y=126﹣2×44=38,∴这一天的销售量是38kg,∵这种水果进价是25元/千克∴利润为(44﹣25)×38=722(元).∴这一天的销售量是38kg,利润722元.【点评】本题主要考查一次函数的应用,解题关键是从表格中得出售价每下调1元销售量就增加2千克,每上涨1元销售量就增减少2千克.22.如图,已知∠1=∠BDC,∠2+∠3=180°.(1)问AD与CE平行吗?如果平行请说明理由.(2)若CE⊥AE于E,DA平分∠BDC,∠FAB=68°,求∠1的度数.【分析】(1)利用已知可得AB∥CD,从而可得∠2=∠ADC,进而可得∠3+∠ADC=180°,然后利用同旁内角互补,两直线平行可得AD∥CE,即可解答;(2)根据垂直定义可得∠CEA=90°,再利用(1)的结论可得∠CEA=∠DAF=90°,从而可得∠2=22°,然后利用(1)的结论可得∠2=∠ADC=22°,再利用角平分线的定义可得∠CDF=2∠ADC=44°,即可解答.解:(1)AD∥CE,理由:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,∵∠2+∠3=180°,∴∠3+∠ADC=180°,∴AD∥CE;(2)∵CE⊥AE,∴∠CEA=90°,∵CE∥AD,∴∠CEA=∠DAF=90°,∵∠FAB=68°,∴∠2=∠DAF﹣∠FAB=22°,∴∠2=∠ADC=22°,∵DA平分∠CDF,∴∠CDF=2∠ADC=44°,∴∠1=∠CDF=44°,∴∠1的度数为44°.【点评】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.23.某数学兴趣小组在一组课题学习活动中以“钟表上时针与分针的重合时刻”为课题展开了研究.【问题提出】如图①是某钟表,图②是该钟表的简化平面示意图,设时针、分针所在直线在同一平面内,直线l表示钟表的数轴线.在1:00~1:15之间求时针与分针的重合时刻.【问题探究】设钟表中心为O,表示“12”的点为A,表示“1”的点为B,表示“3”的点为C,表示“6”的点为D,下面是小颖同学的研究过程:解题思路:建立函数关系的方法求解.(1)设自变量x和因变量y:设1:00后再经过xmin(0≤x≤15),时针、分针分别与OA所成夹角度数为y1°,y2°,直接写出y1,y2关于x的关系式.(2)求解:【问题解决】请按照小颖的思路解答此问题;【问题拓展】求该钟表在1:15~1:30之间,时针与分针所在直线互相垂直的时刻.【分析】(1)根据分针每分钟转6°,时针每分钟转0.5°,根据题意列函数关系式,(2)根据分针每分钟转6°,时针每分钟转0.5°,根据题意列方程求解,(3)根据分针每分钟转6°,时针每分钟转0.5°,根据题意列方程求解.解:(1)y1=30+x;y2=6x.(2)根据题意得:6x=30+x,解得x=.答:在1:00到1:15之间时针秘分针重合时刻为1点分钟.(3)根据题意得:6x=30+x+90,解得x=.答:在1:15到1:30之间时针与分针所在直线互相垂直的时刻为1点分钟.【点评】本题考查了函数的图象和钟面角,一元一次方程的应用,数形结合思想是解题的关键.24.已知直线MN∥PQ,点A在直线MN上,点B,C为平面内两点,AC⊥BC于点C.(1)如图1,当点B在直线MN上,点C在直线MN上方时,延长CB交直线PQ于点D,则∠CAB和∠CDP之间的数量关系是 ∠CAB+∠CDP=90° ;(2)如图2,当点C在直线MN上且在点A左侧,点B在直线MN与PQ之间时,过点B作BD⊥AB交直线PQ于点D.为探究∠ABC与∠BDP之间的数量关系,小明过点B 作BF∥MN请根据他的思路,写出∠ABC与∠BDP的关系,并说明理由;(3)请从下面A,B两题中任选一题作答.A.如图3,在(2)的条件下,作∠ABD的平分线交直线MN于点E,当∠AEB=2∠ABC时直接写出∠ABC的度数;B.如图4,当点C在直线MN上且在点A左侧,点B在直线PQ下方时,过点B作BD⊥AB交直线PQ于点D,作∠ABD的平分线交直线MN于点E,当∠BDP=2∠BEN时,直接写出∠ABC的度数.【分析】(1)利用平行线的性质即可得出结论;(2)利用平行线的性质和角度的计算即可得出结论;(3)A题需要作出辅助线BF∥MN,即可求解;B题利用平行线的性质,用∠ABC表示出∠BDP,然后放在△ABC和△ABE中求解即可.解:(1)∵AC⊥BC,∴∠CAB+∠CBA=90°,∵MN∥PQ,∴∠CBA=∠CDP,∴∠CAB+∠CDP=90°,故答案为:∠CAB+∠CDP=90°;(2)∠ABC=∠BDP,理由如下:∵BF∥MN,MN∥PQ,∴BF∥PQ,∴∠NCB+∠CBF=180°,∠FBD=∠BDP,∵AC⊥BC,∴∠CBF=180°﹣90°=90°,∴∠ABC+∠ABF=90°,∵BD⊥AB,∴∠ABF+∠DBF=90°,∴∠ABC=∠FBD,∴∠ABC=∠BDP,(3)选择A,如图,过点B作BF∥MN,设∠ABC=x,则:∠AEB=∠EBF=2x,由(2)可得∠BDP=∠ABC=x,∴∠DBF=x,∠EBD=∠EBF+∠DBF=3x,∵BE平分∠ABD,∴∠ABD=6x,∵AB⊥BD,∴6x=90°,解得:x=15°,∴∠ABC=15°;选择B,设∠ABC=x,∵BA⊥AC,MN∥PQ,BC⊥PQ,∴∠QDB+∠DBC=90°,∵AB⊥BD,∴∠ABC+∠DBC=90°,∴∠ABC=∠QDB=x,∴∠BDP=180°﹣x,∵BE平分∠ABD,∴∠ABE=∠DBE=45°,在△ABC中,∠CAB=90°﹣x,在△ABE中,∠ABE=180°﹣∠ABE﹣∠CAB=180°﹣45°﹣(90°﹣x)=45°+x,∠BEN=45°+x,∵∠BDP=2∠BEN,∴180°﹣x=2(45°+x),解得:x=30°,∴∠ABC=30°.【点评】本题主要考查平行线的性质和角平分线的定义,本题的难点在于第三问A题中辅助线的做法.。

初中数学青岛版七年级下期中数学试卷(附答案)

初中数学青岛版七年级下期中数学试卷(附答案)

期中数学试卷一、选择题1.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A.B.C.D.2.已知,∠α与∠β互补,且∠α﹣∠β=30°,则∠α与∠β的大小关系依次为()A.110°,70°B.105°,75°C.100°,70°D.110°,80°3.下列计算正确的是()A.a2+a2=2a4B.(﹣a2b)3=﹣a6b3C.a2•a3=a6D.a8÷a2=a44.若A,B,C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线L的距离()A.等于3cm B.大于3cm而小于4cmC.不大于3cm D.小于3cm5.要使(y2﹣ky+2y)(﹣y)的展开式中不含y2项,则k的值为()A.﹣2B.0C.2D.36.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=32°,则∠2的度数为()A.25°B.28°C.30°D.32°7.用加减法解方程组时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()(1)(2)(3)(4)A.(1)(2)B.(2)(3)C.(3)(4)D.(4)(1)8.如图,直线AB、CD交于点O,OT⊥AB于O,CE∥AB交CD于点C,若∠ECO=30°,则∠DOT等于()A.30°B.45°C.60°D.120°9.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所托货物的袋数是()A.5B.6C.7D.810.若a=240,b=332,c=424,则下列关系正确的是()A.a>b>c B.b>c>a C.c>a>b D.c>b>a二、填空题11.若(m﹣3)x+2y|m﹣2|+8=0是关于x,y的二元一次方程,m=.12.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,用科学记数法表示是克.13.若x n﹣1•x n+5=x10,则n﹣2=.14.如图,在三角形ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=35°,∠C=65°,则∠EFD=.15.若实数m,m满足|m﹣2|+(n﹣2015)2=0,则m﹣1+n0=.16.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.17.若(2x+5)(4x﹣10)=8x2+px+q,则p=,q=.18.五一前夕,某超市促销,由顾客抽奖决定折扣,某顾客购买甲乙两种商品,分别抽到七折(按售价70%)和九折销售,共付款386元,这两种商品原销售之和为500元,则甲乙两种商品原销售价分别为、.三、解答题19.化简求值:(1)a3•a3+(﹣2a3)2+(﹣a2)3,其中a=﹣1.(2)4x(x﹣1)﹣(2x+1)(2x﹣1),其中x=﹣5.20.解方程组(1)(2).21.(1)一个角的余角与这个角的补角的和比平角的多1°,求这个角的度数.(2)已知5m=2,5n=3,求53m﹣2n.22.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF.(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数.(用含α的代数式表示)23.某开发区去年出口创汇额为25亿美元,今年达到30.55亿美元,已知今年上半年出口创汇额比去年同期增长18%,下半年比去年同期增长25%,求去年上半年和下半年的出口创汇额各是多少亿美元?24.已知如图,在三角形ABC中,AC⊥AB,DG⊥BC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系?并说明理由.25.小亮在做“化简(2x+k)(3x+2)﹣6x(x+3)+5x+16并求x=2时的值”一题时,错将x=2看成x=﹣2,但结果却和正确答案一样,由此,你能推算出k值吗?26.如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?参考答案一、选择题1.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选:D.2.【解答】解:∵∠α与∠β互为补角,∴∠α+∠β=180°,又∵∠α﹣∠β=30°,∴,解得:,故选:B.3.【解答】解:A、a2+a2=2a2B,故A错误;B、(﹣a2b)3=﹣a6b3,故B正确;C、a2•a3=a5,故C错误;D、a8÷a2=a6,故D错误;故选:B.4.【解答】解:根据点到直线的距离的定义,点P到直线L的距离即为点P到直线L的垂线段的长度,垂线段的长度不能超过PC的长.故选C.5.【解答】解:∵(y2﹣ky+2y)(﹣y)的展开式中不含y2项,∴﹣y3+ky2﹣2y2中不含y2项,∴k﹣2=0,解得:k=2.故选:C.6.【解答】解:过A作AE∥NM,∵NM∥GH,∴AE∥GH,∴∠3=∠1=32°,∵∠BAC=60°,∴∠4=60°﹣32°=28°,∵NM∥AE,∴∠2=∠4=28°,故选:B.7.【解答】解:把y的系数变为相等时,①×3,②×2得,,把x的系数变为相等时,①×2,②×3得,.故选:C.8.【解答】解:∵CE∥AB,∴∠DOB=∠ECO=30°,∵OT⊥AB,∴∠BOT=90°,∴∠DOT=∠BOT﹣∠DOB=90°﹣30°=60°.故选:C.9.【解答】解:设驴子原来驮x袋,根据题意,得到方程:2(x﹣1)﹣1﹣1=x+1,解得:x=5,答:驴子原来所托货物的袋数是5.故选:A.10.【解答】解:∵a=240=328,b=332=818,c=424=648,∴b>c>a,故选:B.二、填空题11.【解答】解:根据题意,得|m﹣2|=1且m﹣3≠0,解得m=1.故答案为:1.12.【解答】解:0.000000076=7.6×10﹣8.故答案为:7.6×10﹣8.13.【解答】解:由x n﹣1•x n+5=x10,得x2n+4=x10,即2n+4=10,解得n=3.n﹣2=3﹣2=,故答案为:.14.【解答】解:∵EF∥AC,∴∠EFB=∠C=65°,∵DF∥AB,∴∠DFC=∠B=35°,∴∠EFD=180°﹣65°﹣35°=80°,故答案为:80°.15.【解答】解:由m,m满足|m﹣2|+(n﹣2015)2=0,得m﹣2=0,n﹣2015=0.解得m=2,n=2015.m﹣1+n0=+1=,故答案为:.16.【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.17.【解答】解:已知等式整理得:8x2﹣50=8x2+px+q,则p=0,q=﹣50,故答案为:0,﹣5018.【解答】解:设甲、乙两商品的原价分别是x元,y元,则,解得.故答案为:320元;180元三、解答题19.【解答】解:(1)原式=a6+4a6﹣a6=4a6,当a=﹣1时,原式=4;(2)原式=4x2﹣4x﹣4x2+1=﹣4x+1,当x=﹣5时,原式=20+1=21.20.【解答】解:(1),①+②×4得:23x=23,即x=1,把x=1代入①得:y=2,则方程组的解为;(2),①×3+②得:14x=﹣14,即x=﹣1,把x=﹣1代入①得:y=3,则方程组的解为.21.【解答】解:(1)设这个角为x,根据题意得:90°﹣x+180°﹣x=180°×+1°,解得:x=67°,则这个角的度数为67°;(2)∵5m=2,5n=3,∴原式=(5m)3÷(5n)2=.22.【解答】解:(1)∵∠AOE+∠AOF=180°(互为补角),∠AOE=40°,∴∠AOF=140°;又∵OC平分∠AOF,∴∠FOC=∠AOF=70°,∴∠EOD=∠FOC=70°(对顶角相等);∵∠BOE=∠AOB﹣∠AOE=50°,∴∠BOD=∠EOD﹣∠BOE=20°;(2)∵∠AOE+∠AOF=180°(互为补角),∠AOE=α,∴∠AOF=180°﹣α;又∵OC平分∠AOF,∴∠FOC=∠AOF=90°﹣α,∴∠EOD=∠FOC=90°﹣α(对顶角相等);∵∠BOE=∠AOB﹣∠AOE=90°﹣α,∴∠BOD=∠EOD﹣∠BOE=α.23.【解答】解:设去年上半年出口创汇额为x亿美元,去年下半年的出口创汇额为y亿美元,则今年上半年出口创汇额为(1+18%)x=1.18x(亿美元),今年下半年的出口创汇额为(1+25%)y=1.25(亿美元),根据题意可列方程组,解得,答:去年上半年出口创汇额为10亿美元,去年下半年的出口创汇额为15亿美元.24.【解答】解:垂直.理由:∵AC⊥BC,DG⊥BC,∴AC∥DG,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴EF∥CD,∵EF⊥AB,∴CD⊥AB.25.【解答】解:原式=6x2+4x+3kx+2k﹣6x2﹣18x+5x+16=(3k﹣9)x+2k+16,由结果与x取值无关,得到3k﹣9=0,解得:k=3.26.【解答】解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据题意得:,解得:.答:工厂从A地购买了400吨原料,制成运往B地的产品300吨.(2)300×8000﹣400×1000﹣15000﹣97200=1887800(元).答:这批产品的销售款比原料费与运输费的和多1887800元.。

山东省青岛市南区2023-2024学年七年级下学期期中数学试题

山东省青岛市南区2023-2024学年七年级下学期期中数学试题

山东省青岛市南区2023-2024学年七年级下学期期中数学试题一、单选题1.下列运算正确的是( )A .(-a 5)2=a 10B .2a ·3a 2=6a 2C .a 8÷a 2=a 4D .-6a 6÷2a 2=-3a 3 2.下列各式中,一定成立的是A .()222x y x y +=+B .()()2x 6x 6x 6+-=-C .()()22x y y x -=-D .()()223x y 3x y 9x y --+=-3.正方形的边长增加了2cm ,面积相应增加了224cm ,则这个正方形原来的面积是( ) A .215cm B .225cm C .236cm D .249cm 4.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科学记数法表示为A .3.7×10﹣5克B .3.7×10﹣6克C .37×10﹣7克D .3.7×10﹣8克 5.如图,直线a 、b 都与直线c 相交,给出下列条件:①12∠=∠;②36∠=∠;③47180∠+∠=︒;④58∠=∠.其中能判断a b ∥的条件是( )A .①②B .③④C .①③④D .①②③ 6.如图,AB ∥CD ,BF 平分∠ABE ,且BF ∥DE ,则∠ABE 与∠D 的关系是( )A .∠ABE =3∠DB .∠ABE ﹢∠D =180°C .∠ABE -∠D =90°D .∠ABE =2∠D7.如图,直解三角板的直角顶点落在直尺边上,若∠1=56°,则∠2的度数为( )A .56°B .44°C .34°D .28°8.从甲地到乙地的铁路路程约为600千米,高铁速度为300千米/小时,中途不停;动车速度为200千米/小时,行驶180千米后,中途要停靠徐州6分钟,若动车先出发半小时,两车与甲地之间的距离y (千米)与动车行驶时间x (小时)之间的函数图象为( ) A . B .C .D .二、填空题9.如图,已知AB ∥CD ,∠1=130°,则∠2=.10.如图,沿虚线剪去长方形纸片相邻的两个角,使1115∠=︒,则2∠=11.已知2m n +=,2mn =-,则(1)(1)m n --=.12.已知2a =5,2b =10.2c =50,那么a 、b 、c 之间满足的等量关系是.13.定义ab cd 为二阶行列式,规定它的运算法则为ab ad bc cd =-.则二阶行列式3423x x x x ----的值为.14.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据图写出一个代数恒等式是:.15.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):当空气温度为10-℃时,声音经过5s 可以传播的路程是米.16.某车间的甲、乙两名工人分别同时生产同一种零件,每天完成规定工作量后即停止生产.开工两小时后,甲停下升级设备,乙每小时生产零件个数增加4个,他们一天生产零件的个数y 与生产时间t (时)的关系如图所示,根据图象,下列结论正确的是(填序号).①乙升级设备用了2小时;②一天中甲乙生产量最多相差6个;③图中的 3.2a =, 5.5b =;③甲比乙提前1小时完成工作.三、解答题17.作图题(1)在下面网格图中,A ,B 、M 为格点,画线段MP ⊥线段AB .(2)用圆规、直尺作图,不写作法,但要保留作图痕迹:已知,D 是ABC ∠的边AB 上一点,求作射线DE ,使DE BC ∥,交AC 于E .18.计算: (1)()20200411 3.14π2-⎛⎫-+--- ⎪⎝⎭ (2)()()()22322x y x y x y +-+-(3)2202320242022-⨯(4)()()2323a b c a b c ---+19.先化简,再求值:已知5x =,1y =-,求()()()()32322528x y x y x y x y x ⎡⎤⎣+--⎦-+÷的值20.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 相交于点H ,C EFG ∠=∠,BFG AEM ∠=∠,30D ∠=︒,求:AED ∠的度数.(完成下列填空)证明:∵BFG AEM ∠=∠(已知)且AEM BEC ∠=∠( )∴BEC BFG ∠=∠(等量代换)∴MC ∥ (___________)∴C FGD ∠=∠( )∵C EFG ∠=∠(已知)∴∠___________EFG =?,(等量代换)∴AB CD ∥( )∴ ___________ + ___________180=︒( )∵30D ∠=︒(已知)∴AED =∠___________21.如图,在一块正方形的钢板中挖去两个边长分别为a ,b 的小正方形()b a >.(1)求剩余钢板的面积;(2)若原钢板的周长是40,且5b a -=,求剩余钢板的面积.22.如图,AD BC ∥,1C ∠=∠,=60B ∠︒,DE 平分ADC ∠交BC 于点E .(1)求C ∠的度数;(2)试说明AB DE ∥.23.某城市居民用水实行阶梯收费,每户每月用水量如果未超过12吨,按每吨1.5元收费,如果超过12吨,未超过的部分仍按每吨1.5元收费,超过部分按每吨3元收费.设某户每月用水量为x 吨,应收水费为y 元.(1)分别写出当每月用水是未超过12吨和超过12吨时,y 与x 之间的函数表达式;(2)若该城市某用户6月份和7月份共用水30吨,且6月份的用水量不足12吨,两个月一共交水费57元,求该用户7月份用水多少吨?24.【问题初探】数学课上,老师和学生做数学书“做一做”的内容如图,打台球时,选择适当的方向击打白球,白球反弹后击打红球,红球会直接入袋,此时,2390+=︒∠∠,12∠=∠.(1)若160∠=︒,则3∠=______︒;(2)ADF ∠与BDE ∠的数量关系是______.【类比探究】(3)如图,在长方形的台球桌面上,选择适当的角度打击白球,可以使白球经过两次反弹后将黑球直接撞入袋中,此时12∠=∠,3=4∠∠,并且2390+=︒∠∠,4590∠+∠=︒;如果黑球与洞口的连线和台球桌面边缘的夹角540∠=︒,那么1∠=______度才能保证黑球准确入袋;【学科融合】(4)小明提出新的问题情境,在物理学中,光的反射跟台球的运动轨迹相似.光线反射时,反射光线、入射光线和法线在同一平面内,反射光线、入射光线分别在法线两侧,反射光线与法线的夹角(反射角)等于入射光线与法线的夹角(入射角);如图①,EF 为一镜面,AO为入射光线,入射点为点O ,ON 为法线(过入射点O 且垂直于镜面EF 的直线),OB 为反射光线,此时反射角BON ∠等于入射角AON ∠.现有一激光反光装置,AE 、BF 是两块可以分别绕A 、B 两点转动的镜面,O 点是激光发射装置,由O 点发出的激光照射在点A 和点B 处,AG 、BH 是两束反射光线.A 、B 处于同一水平高度,已知入射光线OA 和OB 与水平线MN 的夹角分别是10︒和20︒,镜面AE 与立杆的夹角45EAC ∠=︒,则反射光线AG 与水平面夹角GAN ∠=______︒;通过调节BF 的角度,当FBD ∠=______︒时,反射光线AG 和BH 平行.25.某校科技小组进行了机器人行走性能试验,在实验场地有、、A B C 三点顺次在同一笔直赛道上,A B 、两点之间的距离是90米,甲、乙两机器人分别从A B 、两点同时同向出发到终点C ,乙机器人始终以50米/分的速度行走,乙行走9分钟到达C 点,设两机器人出发时间为t 分钟,当3t =时,甲追上乙,前4分钟甲机器人的速度保持不变,在46t ≤≤时,甲的速度为另一数值,且甲乙两机器人之间的距离保持不变.(1)A C 、两点之间的距离是________米,在46t ≤≤时,甲机器人的速度________米/分;(2)求甲机器人前3分钟的速度为多少米/分?(3)求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后,甲机器人的速度又恢复为原来出发时的速度,直接写出甲乙两机器人之间的距离S (米)与行走时间t (分)之间的关系式.。

青岛版七年级下册数学期中考试题(附答案)

青岛版七年级下册数学期中考试题(附答案)

青岛版七年级下册数学期中考试题(附答案)学校:___________姓名: ___________班级: ___________考号: ___________评卷人得分一、选择题(题型注释)1.已知, 如图, 在△ABC中, OB和OC分别平分∠ABC和∠ACB, 过O作DE∥BC, 分别交AB.AC于点D.E, 若BD+CE=5, 则线段DE的长为( )A. 5B. 6C. 7D. 82.下列各图中, ∠1与∠2是对顶角的是()3.下列推理中, 错误的是()A. ∵AB=CD, CD=EF, ∴AB=EFB. ∵∠α=∠β, ∠β=∠γ, ∴∠α=∠γC. ∵a∥b, b∥c, ∴a∥cD. ∵AB⊥EF, EF⊥CD, ∴AB⊥CD4.如图, 已知AC⊥AB, ∠1=30°, 则∠2的度数是().A. 40°B. 50°C. 60°D. 70°5.某蔬菜公司收购到某种蔬菜140吨, 准备加工上市销售. 该公司的加工能力是: 每天可以精加工6吨或粗加工16吨. 现计划用15天完成加工任务, 该公司应按排几天精加工, 几天粗加工?设安排天精加工, 天粗加工. 为解决这个问题, 所列方程组正确的是()A............ B...C.15166140x yx y+=⎧⎨+=⎩D.15616140x yx y+=⎧⎨+=⎩6.若方程组的解中与的值相等, 则为()A. 4 B. 3 C. 2 D. 17.如图, , 的度数比的度数的两倍少, 设和的度数分别为, , 那么下面可以求出这两个角的度数的方程组是()A.B.得分二、填空题, 这个角等于______度.9.已知在△ABC 中, AC=3, BC=4, AB=5, 点P 是AB 上 (不与A.B 重合), 过P 作PE ⊥AC, PF ⊥BC, 垂足分别是E 、F, 连结EF, M 为EF 的中点, 则CM 的最小值为 .10.已知是二元一次方程mx+y=3的解, 则m 的值是__.11.方程+=5是二元一次方程, 则m=____, n=_____.12.某铁路桥长1750m, 现有一列火车从桥上通过, 测得该火车从开始上桥到完全过桥共用了80s, 整列火车完全在桥上的时间共60s ;设火车的速度为xm/s, 火车的长度为ym, 根据题意三、解答题 15.如图, 已知AB ∥CD, BE 平分∠ABC, DE 平分∠ADC, ∠BAD =80°, 试求:(1)∠EDC 的度数;(2)若∠BCD =n °, 试求∠BED 的度数。

(word版)七年级数学下学期期中试卷(含解析)青岛版1

(word版)七年级数学下学期期中试卷(含解析)青岛版1

2021-2021学年山东省泰安市肥城市七年级〔下〕期中数学试卷一、选择题:本大题共15小题,在每题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.1.以下四个角中,最有可能与70°角互补的是〔〕A. B. C.D.2.以下运算正确的选项是〔〕A.a3﹣a2=a B.a2?a3=a6C.〔2a3〕2=4a6D.a3+a2=a53.如图,AB∥CD,那么图中与∠1互补的角有〔〕A.2个B.3个C.4个D.5个4.〔﹣10〕?〔﹣×102〕?〔×105〕等于〔〕A.×108B.﹣×107C.×107D.﹣×1085.如图,BC⊥AE于点C,CD∥AB,∠B=55°,那么∠1等于〔〕A.35°B.45°C.55°D.65°6.以下方程组中,是二元一次方程组的是〔〕A. B.C. D.7.以下图形中,由∠1=∠2能得到AB∥CD的是〔〕A. B. C.D.18.老打算气球装扮学校“六一〞儿童活会,气球的种有笑和心两种,两种气球的价格不同,但同一种气球的价格相同,由于会布置需要,以一束〔4个气球〕位,第一、二束气球的价格如所示,第三束气球的价格〔〕A.19 B.18 C.16 D.159.如,直AB∥CD,∠A=70°,∠C=40°,∠E等于〔〕A.30°B.40°C.60°D.70°10.假设一多式除以2x23,得到的商式7x 4,余式5x+2,此多式何?〔〕A.14x38x226x+14B.14x38x226x 10C.10x3+4x28x 10 D.10x3+4x2+22x 1011.将一副直角三角尺如放置,假设∠AOD=20°,∠BOC的大小〔〕A.140°B.160°C.170°D.150°12.x a=3,x b=5,x3a﹣2b=〔〕A.52B.C.D.13.如,假设AB∥CD,∠1+∠2+∠3的〔〕A.90°B.180°C.210°D.270°14.当x=1,代数式ax33bx+4的是7,当x=1,个代数式的是〔〕A.7B.3C.1D.715.于某种菌来,一个菌,1分分裂2个,再1分,又分分裂2个,既共分裂4个,⋯,照的分裂速度,假设一个菌分裂成一小瓶恰好需要12小,同的菌,同的分裂速度,同的小瓶,如果开始瓶内装有2个菌,恰好分裂成一小瓶需要〔〕A.15分B.30分C.58分D.59分二、填空:本大共5小,只要求填写最后果.16.根据世界易〔WTO〕秘初步数据,到2021年中国物出口美元,超美国成世界第一物易大国,将个数据用科学数法可以______美元.17.如,直a∥b,点B在直b上,且AB⊥BC,∠1=55°,∠2的度数______.18.将87°18′54″化度的形式______°.19.如,大正方形的面1,很明,中的将正方形一分二,所以左的方形的面,同右方形中的横将方形又一分二,所以右下角正方形的面,⋯由此,可以推算出的果______.20.关于x,y的二元一次方程的解互相反数,k的是______.三、解答:本大共6小,解答写出必要的文字明、明程或演算步.21.算〔化〕以下各式:〔1〕〔1〕2021〔π〕0+〔〕﹣2;〔2〕〔3x5y〕;3〕〔2b3a〕〔3a2b〕+〔2a3b〕2.22.解以下方程3〔1〕;〔2〕.23.先化简,再求值:〔x+y〕〔x﹣y〕﹣〔4x3y﹣8xy3〕÷2xy,其中x=﹣1,y=.24.:如图,AD∥BE,∠1=∠2,那么∠A=∠E吗?请说明理由.25.完成下面的证明:,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD求证:∠EGF=90°证明:∵HG∥AB〔〕∴∠1=∠3______又∵HG∥CD〔〕∴∠2=∠4∵AB∥CD〔〕∴∠BEF+______=180°______又∵EG平分∠BEF〔〕∴∠1=∠______又∵FG平分∠EFD〔〕∴∠2=∠______∴∠1+∠2=〔______〕∴∠1+∠2=90°∴∠3+∠4=90°______即∠EGF=90°.26.某校举办八年级学生数学素养大赛,比赛共设四个工程:七巧板拼图,趣题巧解,数学应用,魔方复原,每个工程得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况〔单位:分〕七巧板拼趣题巧解数学应用魔方复4图原甲66898668乙66608068丙6680906820〔1〕比赛后,甲猜想七巧板拼图,趣题巧解,数学应用,魔方复原这四个工程得分分别按2110%,40%,20%,30%折算记入总分,根据猜想,求出甲的总分;222〕本次大赛组委会最后决定,总分为80分以上〔包含80分〕的学生获一等奖,现得悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是23分,问甲能否获得这次比赛的一等奖?52021-2021学年山东省泰安市肥城市七年级〔下〕期中数学试卷参考答案与试题解析一、选择题:本大题共15小题,在每题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.1.以下四个角中,最有可能与70°角互补的是〔〕A.B.C.D.【考点】余角和补角.【分析】根据互补的两个角的和等于180°求出70°角的补角,然后结合各选项即可选择.【解答】解:70°角的补角=180°﹣70°=110°,是钝角,结合各选项,只有D选项是钝角,所以,最有可能与70°角互补的是D选项的角.应选D.2.以下运算正确的选项是〔〕A.a3﹣a2=aB.a2?a3=a6C.〔2a3〕2=4a6D.a3+a2=a5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】直接利用幂的乘方运算法那么以及积的乘方运算法那么,结合合并同类项法那么求出答案.【解答】解:A、a3﹣a2,无法计算,故此选项错误;235B、a?a=a,故此选项错误;326C、〔2a〕=4a,正确;32D、a+a,无法计算,故此选项错误;3.如图, AB∥CD,那么图中与∠1互补的角有〔〕A.2个B.3个C.4个D.5个【考点】平行线的性质;余角和补角.【分析】由AB∥CD,根据两直线平行,同旁内角互补,即可得∠1+∠AEF=180°,由邻补角的定义,即可得∠1+∠EFD=180°,那么可求得答案.【解答】解:∵AB∥CD,∴∠1+∠AEF=180°,∵∠1+∠EFD=180°.∴图中与∠1互补的角有2个.应选A.4.〔﹣10〕?〔﹣×102〕?〔×105〕等于〔〕6A.×108B.﹣×107C.×107D.﹣×108【考点】单项式乘单项式;科学记数法—表示较大的数.【分析】直接利用单项式乘以单项式运算法那么求出答案.25【解答】解:〔﹣10〕?〔﹣×10〕?〔×10〕×107.应选:C.5.如图,BC⊥AE于点C,CD∥AB,∠B=55°,那么∠1等于〔〕A.35°B.45°C.55°D.65°【考点】平行线的性质;直角三角形的性质.【分析】利用“直角三角形的两个锐角互余〞的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠B=35°.【解答】解:如图,∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠A=35°.应选:A.6.以下方程组中,是二元一次方程组的是〔〕A.B.C.D.【考点】二元一次方程组的定义.【分析】二元一次方程满足的条件:为整式方程;含有2个未知数;未知数的项的次数是1;两个二元一次方程组合成二元一次方程组.【解答】解:A、第一个方程的最高次项的次数为2,不符合二元一次方程组的定义;B、第二个方程不是整式方程,不符合二元一次方程组的定义;C、符合二元一次方程组的定义;D、第一个方程的最高次项的次数为2,不符合二元一次方程组的定义.应选C.7.以下图形中,由∠1=∠2能得到AB∥CD的是〔〕7A.B.C.D.【考点】平行线的判定.【分析】利用平行线的判定方法判断即可.【解答】解:如下图:∵∠1=∠2〔〕,∴AB∥CD〔内错角相等,两直线平行〕,应选B8.陈老师打算购置气球装扮学校“六一〞儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购置时以一束〔4个气球〕为单位,第一、二束气球的价格如下图,那么第三束气球的价格为〔〕A.19B.18C.16D.15【考点】二元一次方程组的应用.【分析】设一个笑脸气球为x元,一个爱心气球为y元,根据图形找出等量关系:3个笑脸+一个爱心=14元,3个爱心+1个笑脸=18元,据此列方程组求出x和y的值,继而可求得第三束气球的价格.【解答】解:设一个笑脸气球为x元,一个爱心气球为y元,由题意得,,解得:,那么2x+2y=16.应选C.89.如图,直线AB∥CD,∠A=70°,∠C=40°,那么∠E等于〔〕A.30°B.40°C.60°D.70°【考点】三角形的外角性质;平行线的性质.【分析】先根据两直线平行,同位角相等求出∠1,再利用三角形的外角等于和它不相邻的两个内角的和即可求出∠E的度数.【解答】解:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠E=70°﹣40°=30°.应选:A.10.假设一多项式除以2x2﹣3,得到的商式为7x﹣4,余式为﹣5x+2,那么此多项式为何?〔〕A.14x3﹣8x2﹣26x+14B.14x3﹣8x2﹣26x﹣10C.﹣10x3+4x2﹣8x﹣10D.﹣10x3+4x2+22x﹣10【考点】整式的除法.【分析】根据题意列出关系式,计算即可得到结果.【解答】解:根据题意得:〔2x2﹣3〕〔7x﹣4〕+〔﹣5x+2〕=14x3﹣8x2﹣21x+12﹣5x+2=14x38x2﹣26x+14.应选A11.将一副直角三角尺如图放置,假设∠AOD=20°,那么∠BOC的大小为〔〕A.140°B.160°C.170°D.150°【考点】直角三角形的性质.【分析】利用直角三角形的性质以及互余的关系,进而得出∠COA的度数,即可得出答案.【解答】解:∵将一副直角三角尺如图放置,∠AOD=20°,∴∠COA=90°﹣20°=70°,∴∠BOC=90°+70°=160°.应选:B.912.x a=3,x b=5,那么x3a﹣2b=〔〕A.52B.C.D.【考点】同底数幂的除法.【分析】直接利用幂的乘方运算法那么以及同底数幂的除法运算法那么求出答案.a b3a﹣2b a3b2∴x=〔x〕÷〔x〕=27÷25=.13.如图,假设A B∥CD,那么∠1+∠2+∠3的值为〔〕A.90°B.180°C.210°D.270°【考点】平行线的性质.【分析】根据平行线的性质得到∠1=∠F,由对顶角的性质得到∠2=∠FED,根据三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠F,∵∠2=∠FED,∴∠1+∠2+∠3=∠F+∠FED+∠3=180°,应选B.14.当x=1时,代数式ax3﹣3bx+4的值是7,那么当x=﹣1时,这个代数式的值是〔〕A.7B.3C.1D.﹣710【考点】代数式求.【分析】把x=1代入代数式求出a、b的关系式,再把x= 1代入行算即可得解.【解答】解:x=1, ax33bx+4= a 3b+4=7,解得a 3b=3,当x= 1,ax33bx+4=a+3b+4= 3+4=1.故:C.15.于某种菌来,一个菌,1分分裂2个,再1分,又分分裂2个,既共分裂4个,⋯,照的分裂速度,假设一个菌分裂成一小瓶恰好需要1小,同的菌,同的分裂速度,同的小瓶,如果开始瓶内装有2个菌,恰好分裂成一小瓶需要〔〕A.15分B.30分C.58分D.59分【考点】有理数的乘方.【分析】根据意1分分裂成2个,2分分裂成4个,n分分裂成2n个,一个菌1小的繁殖充瓶子,假设开始就放2个菌只59分就能充瓶子.【解答】解:一个菌1分分裂成2个,2分分裂成4个,n分分裂成2n个,一个菌1小的繁殖能使瓶子充.如果开始就在瓶子里放入2个菌,繁殖的速度比原来快一分.故菌充瓶子所需要的59分.故:D.二、填空:本大共5小,只要求填写最后果.16.根据世界易〔WTO〕秘初步数据,到2021年中国物出口美元,超美国成世界第一物易大国,将个数据用科学数法可以×1012美元.【考点】科学数法—表示大的数.【分析】科学数法的表示形式a×10n的形式,其中1≤|a|<10,n整数.确定n的,要看把原数成a,小数点移了多少位,n的与小数点移的位数相同.当原数>1,n是正数;当原数的<1,n是数.【解答】解:将用科学数法表示:×1012.故答案:×1012.17.如,直a∥b,点B在直b上,且AB⊥BC,∠1=55°,∠2的度数35°.【考点】平行的性.【分析】根据平行的性求得∠3的度数,即可求得∠2的度数.【解答】解:∵a∥b,11∴∠3=∠1=55°,∴∠2=180°90°55°=35°.故答案是:35°.18.将87°18′54″化度的形式°.【考点】度分秒的算.【分析】根据小位化大位除以率,可得答案.【解答】解:87°18′54″化度的形式,故答案:.19.如,大正方形的面1,很明,中的将正方形一分二,所以左的方形的面,同右方形中的横将方形又一分二,所以右下角正方形的面,⋯由此,可以推算出的果.【考点】律型:形的化.【分析】仔察形的化,所有面的和等于位1减去最后一的面即可.【解答】解:=1=,故答案:.20.关于x,y的二元一次方程的解互相反数,k的是1.【考点】二元一次方程的解.【分析】将方程用k表示出x,y,根据方程的解互相反数,得到关于k的方程,即可求出k的.12【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.三、解答题:本大题共6小题,解容许写出必要的文字说明、证明过程或演算步骤.21.计算〔化简〕以下各式:〔1〕〔﹣1〕2021﹣〔﹣π〕0+〔〕﹣2;〔2〕〔﹣3x5y〕;3〕〔2b﹣3a〕〔﹣3a﹣2b〕+〔2a﹣3b〕2.【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】〔1〕原式利用乘方的意义,零指数幂、负整数指数幂法那么计算即可得到结果;2〕原式先利用幂的乘方与积的乘方运算法那么计算,再利用单项式乘以多项式,单项式乘以单项式法那么计算,即可得到结果;3〕原式利用平方差公式,完全平方公式化简,去括号合并即可得到结果.【解答】解:〔1〕原式=1﹣1+4=4;2〕原式=﹣x6y3+6x7y4﹣2x12y7;3〕原式=﹣4b2+9a2﹣12ab+4a2+9b2=13a2﹣12ab+5b2.22.解以下方程组〔1〕;〔2〕.【考点】解二元一次方程组.【分析】〔1〕方程组整理后,利用加减消元法求出解即可;〔2〕方程组整理后,利用加减消元法求出解即可.【解答】解:〔1〕方程组整理得:,①×3+②×2得:17x=102,即x=6,把x=6代入①得:y=24,那么方程组的解为;13〔2〕方程组整理得:,①﹣②×5得:14y=14,即y=1,把y=1代入②得:x=2,那么方程组的解为.23.先化简,再求值:〔x+y〕〔x﹣y〕﹣〔4x3y﹣8xy3〕÷2xy,其中x=﹣1,y=.【考点】整式的混合运算—化简求值.【分析】原式利用平方差公式,多项式除以单项式法那么计算,合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣y2﹣2x2+4y2=﹣x2+3y2,当x=﹣1,y=时,原式=﹣1+=﹣.24.:如图,AD∥BE,∠1=∠2,那么∠A=∠E吗?请说明理由.【考点】平行线的判定与性质.【分析】首先根据条件AD∥BE,可证出∠A=∠3,再证明DE∥CB,根据平行线的性质可得∠E=∠3,最后根据等量代换可以得到∠A=∠E.【解答】解:相等,理由:∵AD∥BE,∴∠A=∠3,∵∠1=∠2,∴DE∥BC,∴∠E=∠3,∴∠A=∠E.25.完成下面的证明:,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD求证:∠EGF=90°证明:∵HG∥AB〔〕∴∠1=∠3两直线平行、内错角相等又∵HG∥CD〔〕∴∠2=∠4∵AB∥CD〔〕∴∠BEF+∠EFD=180°两直线平行、同旁内角互补又∵EG平分∠BEF〔〕14∴∠1=∠∠BEF又∵FG平分∠EFD〔〕∴∠2=∠∠EFD∴∠1+∠2=〔∠BEF+∠EFD〕∴∠1+∠2=90°∴∠3+∠4=90°等量代换即∠EGF=90°.【考点】平行线的性质.【分析】此题首先由平行线的性质得出∠1=∠3,∠2=∠4,∠BEF+∠EFD=180°,再由EG平分∠BEF,FG平分∠EFD 得出∠1+∠2=90°,然后通过等量代换证出∠EGF=90°.【解答】解:∵HG∥AB〔〕∴∠1=∠3〔两直线平行、内错角相等〕又∵HG∥CD〔〕∴∠2=∠4∵AB∥CD〔〕∴∠BEF+∠EFD=180°〔两直线平行、同旁内角互补〕又∵EG平分∠BEF,FG平分∠EFD∴∠1=∠BEF,2=∠EFD,∴∠1+∠2=〔∠BEF+∠EFD〕,∴∠1+∠2=90°∴∠3+∠4=90°〔等量代换〕,即∠EGF=90°.故答案分别为:两直线平行、内错角相等,∠EFD,两直线平行、同旁内角互补,∠BEF,∠EFD,∠BEF+∠EFD,等量代换.26.某校举办八年级学生数学素养大赛,比赛共设四个工程:七巧板拼图,趣题巧解,数学应用,魔方复原,每个工程得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况〔单位:分〕七巧板拼趣题巧解数学应用魔方复图原甲6689866815乙66608068丙66809068〔1〕比赛后,甲猜想七巧板拼图,趣题巧解,数学应用,魔方复原这四个工程得分分别按10%,40%,20%,30%折算记入总分,根据猜想,求出甲的总分;2〕本次大赛组委会最后决定,总分为80分以上〔包含80分〕的学生获一等奖,现得悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是分,问甲能否获得这次比赛的一等奖?【考点】二元一次方程组的应用;加权平均数.【分析】〔1〕根据求加权平均数的方法就可以直接求出甲的总分;〔2〕设趣题巧解所占的百分比为x,数学运用所占的百分比为y,由条件建立方程组求出其解就可以求出甲的总分而得出结论.【解答】解:〔1〕由题意,得甲的总分为:66×10%+89×40%+86×20%+68×〔分〕;2〕设趣题巧解所占的百分比为x,数学运用所占的百分比为y,由题意,得,解得:,∴甲的总分为:20+89×0.3+86×>80,∴甲能获一等奖.16。

2023-2024学年山东省青岛市城阳区七年级(下)期中数学试卷(含解析)

2023-2024学年山东省青岛市城阳区七年级(下)期中数学试卷(含解析)

2023-2024学年山东省青岛市城阳区七年级(下)期中数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列运算正确的是( )A. a⋅a4=a4B. (3a)3=9a3C. a6−(a3)2=0D. a6÷a3=a22.下列说法正确的是( )A. 相等的角是对顶角B. 两点确定一条直线C. 一个角的补角一定大于这个角D. 两条直线被第三条直线所截,同位角相等3.“燕山雪花大如席,片片吹落轩辕台.”这是诗仙李白眼里的雪花.单个雪花的重量其实很轻,只有0.00003kg左右,0.00003用科学记数法可表示为( )A. 3×10−5B. 3×10−4C. 0.3×10−4D. 0.3×10−54.柿子熟了,从树上落下来.下面哪一幅图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况?( )A.B.C.D.5.若α=13°35′,则α的补角等于( )A. 76°25′B. 77°25′C. 167°25′D. 166°25′6.数学源于生活,用于生活,我们要会用数学的眼光观察现实世界,会用数学的思维思考现实世界,会用数学的语言表达现实世界,例如,生活中木匠弹墨线、打靶瞄准、拉绳插秧等场景,就反映了直线的一个基本事实是( )A. 经过两点,有且仅有一条直线B. 经过一点,有无数条直线C. 垂线段最短D. 两点之间,线段最短7.计算(−m2)3⋅(2m+1)的结果是( )A. −2m7−m6B. −2m6+m6C. −2m7−m5D. −2m6−m58.电动曲臂式高空作业车在高空作业时只需一个人就可操作机器连续完成升降、前进、后退、转向等动作,极大地减少了操作人员的数量和劳动强度.如图所示是一辆正在工作的电动曲臂式高空作业车,其中AB//CD//EF,BC//DE.若∠ABC=60°,则∠DEF的度数为( )A. 100°B. 120°C. 140°D. 160°9.如图,直线AB、CD交于点O,OE平分∠AOD,若∠1=36°,则∠COE等于( )A. 72°B. 95°C. 100°D. 108°10.研究表明,当潮水高度不低于260cm时,货轮能够安全进出该港口,海洋研究所通过实时监测获得6月份某天记录的港口湖水高度y(cm)和时间x(ℎ)的部分数据,绘制出函数图象如图:小颖观察图象得到了以下结论:①当x=18时,y=260;②当0<x<4时,y随x的增大而增大;③当x=14时,y有最小值为80;④当天只有在5≤x≤10时间段时,货轮适合进出此港口,以上结论正确的个数为( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共6小题,每小题3分,共18分。

七年级数学下学期期中试题(含解析)青岛版3

七年级数学下学期期中试题(含解析)青岛版3

2015-2016学年山东省聊城市莘县七年级(下)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.如图所示,能用∠AOB ,∠O ,∠1三种方法表示同一个角的图形是( )A .B .C .D .2.下列运算正确的是( )A .5m+2m=7m 2B .﹣2m 2•m 3=2m 5C .(﹣a 2b )3=﹣a 6b 3D .(b+2a )(2a ﹣b )=b 2﹣4a 23.下列说法:①对顶角相等;②过直线外一点有且只有一条直线与这条直线平行;③直线外一点与直线上各点连接的所有线段中,垂线段最短;④一个角的余角比它的补角大90°.其中正确的个数为( )A .4个B .3个C .2个D .1个4.在时刻8:30时,时钟上的时针与分针之间的所成的夹角是( )A .60°B .70°C .75°D .85°5.如图,下列推理中正确的是( )A .∵∠2=∠4,∴AD ∥BCB .∵∠4+∠D=180°,∴AD ∥BCC .∵∠1=∠3,∴AD ∥BC D .∵∠4+∠B=180°,∴AB ∥CD6.直线a 、b 、c 、d 的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于( )A.58° B.70° C.110°D.116°7.如图,能表示点到直线的距离的线段共有()A.2条B.3条C.4条D.5条8.如图,已知直线a∥b,点A、B、C在直线a上,点D、E、F在直线b上,AB=EF=2,若△CEF的面积为5,则△ABD的面积为()A.2 B.4 C.5 D.109.若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣110.根据如图提供的信息,可知一个热水瓶的价格是()A.7元B.35元C.45元D.50元11.若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定12.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1 B.2 C.3 D.4二、填空题(本大题共有5小题,每小题3分,共15分)13.计算:()﹣1+()2×(﹣2)3﹣(π﹣3)0=______.14.如图,把长方形纸片ABCD沿EF对折,若∠1=40°,则∠AEF=______.15.已知方程组的解满足x+y=3,则k的值为______.16.已知α=80°,β的两边与α的两边分别垂直,则β等于______.17.已知2x=3,2y=5,则22x+y﹣1=______.三、解答题(共69分)18.计算:(1)x3•x5﹣(2x4)2+x10÷x2;(2)先化简,再求值:(5x﹣y)(y+2x)﹣(3y+2x)(3y﹣x),其中x=1,y=2.19.解下列方程组:(1);(2).20.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,OF⊥CD,垂足为O,求∠EOF的度数.21.如图,AB∥CD,EF分别交AB、CD与M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠MGC的度数.22.莹莹在做“化简(3x+k)(2x+2)﹣6x(x﹣3)+6x+11,并求x=2时的值”一题时,错将x=2看成了x=﹣2,但结果却和正确答案一样.由此你能推算出k的值吗?23.一张方桌由一个桌面和四条桌脚组成,如果一立方米木材可制作方桌的桌面50个,或制作桌腿300条,现有5立方米木料,那么用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张?1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?25.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.2015-2016学年山东省聊城市莘县七年级(下)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()A.B.C.D.【考点】角的概念.【分析】根据角的四种表示方法和具体要求回答即可.【解答】解:A、以O为顶点的角不止一个,不能用∠O表示,故A选项错误;B、以O为顶点的角不止一个,不能用∠O表示,故B选项错误;C、以O为顶点的角不止一个,不能用∠O表示,故C选项错误;D、能用∠1,∠AOB,∠O三种方法表示同一个角,故D选项正确.故选:D.2.下列运算正确的是()A.5m+2m=7m2B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3D.(b+2a)(2a﹣b)=b2﹣4a2【考点】幂的乘方与积的乘方;合并同类项;单项式乘单项式;平方差公式.【分析】A、依据合并同类项法则计算即可;B、依据单项式乘单项式法则计算即可;C、依据积的乘方法则计算即可;D、依据平方差公式计算即可.【解答】解:A、5m+2m=(5+2)m=7m,故A错误;B、﹣2m2•m3=﹣2m5,故B错误;C、(﹣a2b)3=﹣a6b3,故C正确;D、(b+2a)(2a﹣b)=(2a+b)(2a﹣b)=4a2﹣b2,故D错误.故选:C.3.下列说法:①对顶角相等;②过直线外一点有且只有一条直线与这条直线平行;③直线外一点与直线上各点连接的所有线段中,垂线段最短;④一个角的余角比它的补角大90°.其中正确的个数为()A.4个B.3个C.2个D.1个【考点】余角和补角;对顶角、邻补角;垂线段最短;平行公理及推论.【分析】根据余角和补角的概念、对顶角的性质、垂线段最短、平行公理判断即可.【解答】解:对顶角相等,①正确;过直线外一点有且只有一条直线与这条直线平行,②正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,③正确;一个角的补角比它的余角大90°,④错误.故选:B.4.在时刻8:30时,时钟上的时针与分针之间的所成的夹角是()A.60° B.70° C.75° D.85°【考点】钟面角.【分析】利用钟表表盘的特征解答即可.【解答】解:8点30分,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴8点30分分针与时针的夹角是2.5×30°=75°,故选C.5.如图,下列推理中正确的是()A.∵∠2=∠4,∴AD∥BC B.∵∠4+∠D=180°,∴AD∥BCC.∵∠1=∠3,∴AD∥BC D.∵∠4+∠B=180°,∴AB∥CD【考点】平行线的判定.【分析】结合图形分析相等或互补的两角之间的关系,根据平行线的判定方法判断.【解答】解:A、∠2与∠4是AB,CD被AC所截得到的内错角,根据∠2=∠4,可以判定AB ∥CD,不能判定AD∥BC;B、∠4与∠D不可能互补,因而B错误;D、同理,D错误;C、正确的是C,根据是内错角相等,两直线平行.故选C.6.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58° B.70° C.110°D.116°【考点】平行线的判定与性质.【分析】根据同位角相等,两直线平行这一定理可知a∥b,再根据两直线平行,同旁内角互补即可解答.【解答】解:∵∠1=∠2=58°,∴a∥b,∴∠3+∠5=180°,即∠5=180°﹣∠3=180°﹣70°=110°,∴∠4=∠5=110°,故选C.7.如图,能表示点到直线的距离的线段共有()A.2条B.3条C.4条D.5条【考点】点到直线的距离.【分析】首先熟悉点到直线的距离的概念:直线外一点到这条直线的垂线段的长度,即为点到直线的距离.【解答】解:根据点到直线的距离定义,可判断:AB表示点A到直线BC的距离;AD表示点A到直线BD的距离;BD表示点B到直线AC的距离;CB表示点C到直线AB的距离;CD表示点C到直线BD的距离.共5条.故选D.8.如图,已知直线a∥b,点A、B、C在直线a上,点D、E、F在直线b上,AB=EF=2,若△CEF的面积为5,则△ABD的面积为()A.2 B.4 C.5 D.10【考点】平行线之间的距离;三角形的面积.【分析】△CEF与△ABD是等底等高的两个三角形,它们的面积相等.【解答】解:∵直线a∥b,点A、B、C在直线a上,∴点D到直线a的距离与点C到直线B的距离相等.又∵AB=EF=2,∴△CEF与△ABD是等底等高的两个三角形,∴S△ABD=S△CEF=5,故选:C.9.若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣1【考点】解二元一次方程组;同类项.【分析】利用同类项的定义列出方程组,求出方程组的解即可得到a与b的值.【解答】解:∵单项式2x2y a+b与﹣x a﹣b y4是同类项,∴,解得:a=3,b=1,故选A.10.根据如图提供的信息,可知一个热水瓶的价格是()A.7元B.35元C.45元D.50元【考点】二元一次方程组的应用.【分析】仔细观察图形,可知本题存在两个等量关系,即一个水壶的价格+一个杯子的价格=52,三个水壶的价格+两个杯子的价格=149.根据这两个等量关系可列出方程组.【解答】解:设水壶单价为x元,杯子单价为y元,则有,解得.答:一个热水瓶的价格是45元.故选C.11.若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定【考点】二元一次方程组的解;二元一次方程的解.【分析】方程组中两方程相加表示出x+y,根据x+y=0求出a的值即可.【解答】解:方程组两方程相加得:4(x+y)=2+2a,将x+y=0代入得:2+2a=0,解得:a=﹣1.故选:A.12.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1 B.2 C.3 D.4【考点】多项式乘多项式.【分析】拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.【解答】解:(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3张.故选:C.二、填空题(本大题共有5小题,每小题3分,共15分)13.计算:()﹣1+()2×(﹣2)3﹣(π﹣3)0= ﹣.【考点】负整数指数幂;零指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,乘方的意义,非零的零次幂等于1,可得答案.【解答】解:原式=3+﹣8+1=﹣.故答案为:﹣.14.如图,把长方形纸片ABCD沿EF对折,若∠1=40°,则∠AEF= 110°.【考点】平行线的性质;翻折变换(折叠问题).【分析】先根据折叠的性质得∠2=∠3,利用平角的定义计算出∠2=70°,然后根据平行线的性质得到∠AEF+∠2=180°,再利用互补计算∠AEF的度数.【解答】解:如图,∵长方形纸片ABCD沿EF对折,∴∠2=∠3,∵∠2+∠3+∠1=180°,∴∠2==70°,∵AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=180°﹣70°=110°.故答案为110°.15.已知方程组的解满足x+y=3,则k的值为8 .【考点】二元一次方程组的解.【分析】解方程组,把解代入x+2y=k即可求解.【解答】解:解方程组,①﹣②得:x=﹣2,把x=﹣2代入②得:﹣2+y=3,解得:y=5则方程组的解是:,代入x+2y=k得:﹣2+10=k,则k=8,故答案是:8.16.已知α=80°,β的两边与α的两边分别垂直,则β等于80°或100°.【考点】垂线.【分析】若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【解答】解:∵β的两边与α的两边分别垂直,∴α+β=180°,故β=100°,在上述情况下,若反向延长∠β的一边,那么∠β的补角的两边也与∠α的两边互相垂直,故此时∠β=180°﹣100°=80°;综上可知:∠β=80°或100°,故答案为80°或100°.17.已知2x=3,2y=5,则22x+y﹣1= .【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,可得答案.【解答】解:22x+y﹣1=22x×2y÷2=(2x)2×2y÷2=9×5÷2=,故答案为:.三、解答题(共69分)18.计算:(1)x3•x5﹣(2x4)2+x10÷x2;(2)先化简,再求值:(5x﹣y)(y+2x)﹣(3y+2x)(3y﹣x),其中x=1,y=2.【考点】整式的混合运算—化简求值;整式的混合运算.【分析】(1)先算乘方,再算乘除,最后算加减即可;(2)先根据整式混合运算的法则把原式进行化简,再把x、y的值代入进行计算即可.【解答】解:(1)原式=x3•x5﹣4x8+x10÷x2;=x8﹣4x8+x8=﹣2x8;(2)原式=(5xy+10x2﹣y2﹣2xy)﹣(9y2﹣3xy+6xy﹣2x2)=5xy+10x2﹣y2﹣2xy﹣9y2+3xy﹣6xy+2x2=12x2﹣10y2.当x=1,y=2时,原式=12×1﹣10×4=12﹣40=﹣28.19.解下列方程组:(1);(2).【考点】解二元一次方程组.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),①×2+②得:7x=14,即x=2,把x=2代入①得:y=﹣3,则方程组的解为;(2)②×3﹣①得:11y=22,即y=2,把y=2代入②得:x=1,则方程组的解为.20.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,OF⊥CD,垂足为O,求∠EOF的度数.【考点】对顶角、邻补角;角平分线的定义;垂线.【分析】由∠BOD=∠AOC=72°,OF⊥CD,求出∠BOF=90°﹣72°=18°,再由OE平分∠BOD,得出∠BOE=∠BOD=36°,因此∠EOF=36°+18°=54°.【解答】解:∵直线AB和CD相交于点O,∴∠BOD=∠AOC=72°,∵OF⊥CD,∴∠BOF=90°﹣72°=18°,∵OE平分∠BOD,∴∠BOE=∠BOD=36°,∴∠EOF=36°+18°=54°.21.如图,AB∥CD,EF分别交AB、CD与M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠MGC的度数.【考点】平行线的性质.【分析】先根据补角的定义得出∠BMF的度数,再由MG平分∠BMF得出∠BMG的度数,根据平行线的性质即可得出结论.【解答】解:∵∠EMB=50°,∴∠BMF=180°﹣50°=130°.∵MG平分∠BMF,∴∠BMG=∠BMF=65°.∵AB∥CD,∴∠MGC=∠BMG=65°.22.莹莹在做“化简(3x+k)(2x+2)﹣6x(x﹣3)+6x+11,并求x=2时的值”一题时,错将x=2看成了x=﹣2,但结果却和正确答案一样.由此你能推算出k的值吗?【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,根据已知题意得出关于k的方程,求出方程的解即可.【解答】解:(3x+k)(2x+2)﹣6x(x﹣3)+6x+11=6x2+6x+2kx+2k﹣6x2+18x+6x+11=(30+2k)x+2k+11,∵代入x=2或x=﹣2时,结果是一样的,∴30+2k=0,解得:k=﹣15.23.一张方桌由一个桌面和四条桌脚组成,如果一立方米木材可制作方桌的桌面50个,或制作桌腿300条,现有5立方米木料,那么用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张?【考点】二元一次方程组的应用.【分析】本题的等量关系为:做桌面的木料+做桌腿的木料=5;桌面数量×4=桌腿数量.【解答】解:桌面用木料x立方米,桌腿用木料y立方米,则解得50x=150.答:桌面3立方米,桌腿2立方米,方桌150张.1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【考点】二元一次方程组的应用.【分析】(1)设七年级(1)班有x人、七年级(2)班有y人,根据如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元建立方程组求出其解即可;(2)用一张票节省的费用×该班人数即可求解.【解答】解:(1)一共支付1118元;可得人数大于90,只需花费816元,可知人数大于100的,设七年级(1)班有x人、七年级(2)班有y人,由题意,得,解得:.答:七年级(1)班有49人、七年级(2)班有53人;(2)七年级(1)班节省的费用为:(12﹣8)×49=196元,七年级(2)班节省的费用为:(10﹣8)×53=106元.25.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.【考点】平行线的性质.【分析】此题三个小题的解题思路是一致的,过P作直线l1、l2的平行线,利用平行线的性质得到和∠1、∠2相等的角,然后结合这些等角和∠3的位置关系,来得出∠1、∠2、∠3的数量关系.【解答】证明:(1)过P作PQ∥l1∥l2,由两直线平行,内错角相等,可得:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPE+∠QPF,∴∠3=∠1+∠2.(2)关系:∠3=∠2﹣∠1;过P作直线PQ∥l1∥l2,则:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPF﹣∠QPE,∴∠3=∠2﹣∠1.(3)关系:∠3=360°﹣∠1﹣∠2.过P作PQ∥l1∥l2;同(1)可证得:∠3=∠CEP+∠DFP;∵∠CEP+∠1=180°,∠DFP+∠2=180°,∴∠CEP+∠DFP+∠1+∠2=360°,即∠3=360°﹣∠1﹣∠2.。

山东省青岛第三十九中学2022-2023学年七年级下学期数学期中试题(含部分答案)

山东省青岛第三十九中学2022-2023学年七年级下学期数学期中试题(含部分答案)

2022-2023学年度第二学期期中质量检测七年级数学试题(满分:120分 时间:120分钟)说明:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共24题,第Ⅰ卷为选择题,共8小题,24.分;第Ⅱ卷为填空题、作图题、解答题,共16小题,96分.2.所有题目均在答题卡上作答,在试题上作答无效.第Ⅰ卷(共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.计算所得结果是( )A. B.2023C.D.2.生物具有遗传多样性,遗传信息大多储存在DNA 分子上,一个DNA 分子直径约为0.0000002cm ,这个数量用科学记数法可表示为( )A. B. C. D.3.下表是研究弹簧长度与所挂物体质量关系的实验表格:所挂物体重量x (kg )12345弹簧长度y (cm )1012141618则弹簧不挂物体时的长度为( ).A.4cmB.6cmC.8cmD.10cm4.下列图形中,线段AD 的长表示点A 到直线BC 距离的是()A. B.C. D.5.如图,为估计池塘岸边A 、B 两点的距离,小林在池塘的一侧选取一点O ,测得米,米,则A 、B 间的距离不可能是()112023-⎛⎫ ⎪⎝⎭2023-12023-1202360.210cm-⨯6210cm-⨯70.210cm-⨯7210cm-⨯10OA =7OB =A.4米B.9米C.15米D.18米6.如图,点E 在.AD 延长线上,下列条件中不能判定的是()A. B.C. D.7.如图,将一块含30°的三角板叠放在直尺上。

若,则()A.45°B.50°C.60°D.70°8.如图1,正方形ABCD 的边BC 上有一定点E ,连接AE ,动点P 从正方形的顶点A 出发,沿A →D →C 以1cm/s 的速度匀速运动到终点C 图2是点P 运动时,的面积y ()随时间x (s )变化的全过程图象,则EC 的长度为()图1图2A.2cmB.2.5cmC.3cmD.3.5cm第Ⅱ卷(共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.计算;______.10.若,,则______.//BC AD 12∠=∠C CDE ∠=∠34∠=∠180C ADC ∠+∠=︒140∠=︒2∠=APE △2cm 53a a ÷=2212x y -=6x y +=x y -=11.如图所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、G 在小正方形的顶点上,则的重心是点______.12.青岛与济南两地相距350千米,若汽车以平均80千米/小时的速度从青岛开往济南,则汽车距济南的路程y (千米)与行驶的时间x (小时)之间的关系式为______.13.已知,,则的值是______.14.如图,在中,AD 是角平分线,AE 是高,若,,则______.15.如图,,BF 平分,DF 平分,,那的度数为______°16.我们知道下面的结论:若(,且),则,利用这个结论解决下列问题:设,,.现给出m ,n ,p 三者之间的三个关系式:①,②;③.其中正确的是______.(填编号)三、作图题(本题满分4分)17.已知:如图,直线AB 和点P.ABC △210a b -=5ab =224a b +ABC △50B ∠=︒70C ∠=︒DAE ∠=//AB CD ABE ∠CDE ∠35BFD ∠=︒BED ∠m n a a =0a >1a ≠m n =23m =26n =212p =2m p n +=23m n p +=-²1n mp -=求作:直线CD ,使,且CD 经过点P .四、解答题(本题共7道小题,满分68分)18.计算(本题满分20分,每小题4分)(1);(2);(3)(用乘法公式);(4);(5).19.(本小题满分6分)先化简,再求值:,其中,.20.(本小题满分6分)如图,直线AB 、BC 、AC 两两相交,交点分别为点A 、B 、C ,点D 在线段AB 上,过点D 作交AC 于点E ,过点E 作交BC 于点F .若,求的度数.请将下面的解答过程补充完整.解:①______(②_________________)∴③______(④_________________)(⑤_________________)⑥______°21.(本小题满分6分)小明家距离学校8千米,今天早晨,小明骑车上学途中,自行车出现故障,恰好路边有便民服务点,几分钟后车修好了,他增加速度骑车到校.我们根据小明的这段经历画了一幅图象(如图),该图描绘了小明行的路程s 与他所用的时间t 之间的关系.//CD AB ()()25344a a a-⋅+-3211322ab a b ab ab ⎛⎫⎛⎫ ⎪-+⎪ ⎝⎭⎝÷⎭-99.9100.1⨯()()()423241x x x x -+-+()()22a b c a b c +--+()()()2123222x y x y x y y ⎛⎫⎡⎤---+÷⎪⎣⎦⎝⎭2x =3y =//DE BC //EF AB 40ABC ∠=︒DEF ∠//DE BCDEF ∴∠=//EF ABABC =∠DEF ABC ∴∠=∠40ABC =︒DEF ∴∠=请根据图象,解答下列问题:(1)小明行了______千米时,自行车出现故障;小明共用了______分钟到学校.(2)小明修车用了多长时间?(3)如果自行车未出现故障,小明一直用修车前的速度行驶,那么他比实际情况早到或晚到多少分钟?22.(本小题满分8分)如图,已知,.(1)请你判断DA 与CE 的位置关系,并说明理由;(2)若DA 平分,于E ,,则______°.23.(本小题满分10分)【知识回顾】我们在学习代数式求值时,遇到这样一类题:代数式的值与x 的取值无关,求a 的值.通常的解题思路是:把x 、y 看作字母,a 看作系数,合并同类项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年山东省菏泽市定陶县七年级(下)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A. B. C. D.2.已知,∠α与∠β互补,且∠α﹣∠β=30°,则∠α与∠β的大小关系依次为()A.110°,70°B.105°,75°C.100°,70°D.110°,80°3.下列计算正确的是()A.a2+a2=2a4B.(﹣a2b)3=﹣a6b3C.a2•a3=a6D.a8÷a2=a44.若A,B,C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线L的距离()A.等于3cm B.大于3cm而小于4cmC.不大于3cm D.小于3cm5.要使(y2﹣ky+2y)(﹣y)的展开式中不含y2项,则k的值为()A.﹣2 B.0 C.2 D.36.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=32°,则∠2的度数为()A.25° B.28° C.30° D.32°7.用加减法解方程组时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()(1)(2)(3)(4)A.(1)(2)B.(2)(3)C.(3)(4)D.(4)(1)8.如图,直线AB、CD交于点O,OT⊥AB于O,CE∥AB交CD于点C,若∠ECO=30°,则∠DOT等于()A.30° B.45° C.60° D.120°9.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所托货物的袋数是()A.5 B.6 C.7 D.810.若a=240,b=332,c=424,则下列关系正确的是()A.a>b>c B.b>c>a C.c>a>b D.c>b>a二、填空题(共8小题,每小题3分,满分24分)11.若(m﹣3)x+2y|m﹣2|+8=0是关于x,y的二元一次方程,m= .12.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,用科学记数法表示是克.13.若x n﹣1•x n+5=x10,则n﹣2= .14.如图,在三角形ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=35°,∠C=65°,则∠EFD= .15.若实数m,m满足|m﹣2|+(n﹣2015)2=0,则m﹣1+n0= .16.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.17.若(2x+5)(4x﹣10)=8x2+px+q,则p= ,q= .18.五一前夕,某超市促销,由顾客抽奖决定折扣,某顾客购买甲乙两种商品,分别抽到七折(按售价70%)和九折销售,共付款386元,这两种商品原销售之和为500元,则甲乙两种商品原销售价分别为、.三、解答题(共8小题,满分66分)19.化简求值:(1)a3•a3+(﹣2a3)2+(﹣a2)3,其中a=﹣1.(2)4x(x﹣1)﹣(2x+1)(2x﹣1),其中x=﹣5.20.解方程组(1)(2).21.一个角的余角与这个角的补角的和比平角的多1°,求这个角的度数.(2)已知5m=2,5n=3,求53m﹣2n.22.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF.(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数.(用含α的代数式表示)23.某开发区去年出口创汇额为25亿美元,今年达到30.55亿美元,已知今年上半年出口创汇额比去年同期增长18%,下半年比去年同期增长25%,求去年上半年和下半年的出口创汇额各是多少亿美元?24.已知如图,在三角形ABC中,AC⊥AB,DG⊥BC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系?并说明理由.25.小亮在做“化简(2x+k)(3x+2)﹣6x(x+3)+5x+16并求x=2时的值”一题时,错将x=2看成x=﹣2,但结果却和正确答案一样,由此,你能推算出k值吗?26.如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?2015-2016学年山东省菏泽市定陶县七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A. B. C. D.【考点】角的概念.【分析】根据角的表示方法和图形选出即可.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选D.【点评】本题考查了角的表示方法的应用,主要考查学生的理解能力和观察图形的能力.2.已知,∠α与∠β互补,且∠α﹣∠β=30°,则∠α与∠β的大小关系依次为()A.110°,70°B.105°,75°C.100°,70°D.110°,80°【考点】余角和补角.【分析】首先根据互补得出∠α+∠β=180°,再根据∠α﹣∠β=30°组成方程组,即可求出∠α与∠β的大小.【解答】解:∵∠α与∠β互为补角,∴∠α+∠β=180°,又∵∠α﹣∠β=30°,∴,解得:,故选B.【点评】此题考查了余角和补角,解题时要根据若两个角互补,则两个角的和等于180°列出方程组是本题的关键.3.下列计算正确的是()A.a2+a2=2a4B.(﹣a2b)3=﹣a6b3C.a2•a3=a6D.a8÷a2=a4【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法、合并同类项以及积的乘方和幂的乘方进行计算即可.【解答】解:A、a2+a2=2a2B,故A错误;B、(﹣a2b)3=﹣a6b3,故B正确;C、a2•a3=a5,故C错误;D、a8÷a2=a6,故D错误;故选B.【点评】本题考查了同底数幂的乘除法、合并同类项以及积的乘方和幂的乘方,是基础知识要熟练掌握.4.若A,B,C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线L的距离()A.等于3cm B.大于3cm而小于4cmC.不大于3cm D.小于3cm【考点】点到直线的距离.【分析】根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”可知垂线段的长度不能超过PC的长.【解答】解:根据点到直线的距离的定义,点P到直线L的距离即为点P到直线L的垂线段的长度,垂线段的长度不能超过PC的长.故选C.【点评】本题主要考查了从直线外一点到这条直线上各点所连的线段中,垂线段最短的性质.5.要使(y2﹣ky+2y)(﹣y)的展开式中不含y2项,则k的值为()A.﹣2 B.0 C.2 D.3【考点】单项式乘多项式.【分析】直接利用单项式乘以多项式运算法则求出答案.【解答】解:∵(y2﹣ky+2y)(﹣y)的展开式中不含y2项,∴﹣y3+ky2﹣2y2中不含y2项,∴k﹣2=0,解得:k=2.故选:C.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.6.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=32°,则∠2的度数为()A.25° B.28° C.30° D.32°【考点】平行线的性质.【分析】首先过A作AE∥NM,然后判定AE∥GH,根据平行线的性质可得∠3=∠1=35°,再计算出∠4的度数,再根据平行线的性质可得答案.【解答】解:过A作AE∥NM,∵NM∥GH,∴AE∥GH,∴∠3=∠1=32°,∵∠BAC=60°,∴∠4=60°﹣32°=28°,∵NM∥AE,∴∠2=∠4=28°,故选B.【点评】此题主要考查了平行线的判定与性质,关键是掌握两直线平行,内错角相等.7.用加减法解方程组时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()(1)(2)(3)(4)A.(1)(2)B.(2)(3)C.(3)(4)D.(4)(1)【考点】解二元一次方程组.【分析】根据加减消元法适用的条件将方程进行适当变形,使方程中同一个未知数的系数相等或互为相反数即可.【解答】解:把y的系数变为相等时,①×3,②×2得,,把x的系数变为相等时,①×2,②×3得,.故选C.【点评】此题比较简单,考查的是用加减消元法求二元一次方程组的解时对方程进行合理变形的方法.8.如图,直线AB、CD交于点O,OT⊥AB于O,CE∥AB交CD于点C,若∠ECO=30°,则∠DOT等于()A.30° B.45° C.60° D.120°【考点】平行线的性质.【分析】由CE∥AB,根据两直线平行,同位角相等,即可求得∠BOD的度数,又由OT⊥AB,求得∠BOT的度数,然后由∠DOT=∠BOT﹣∠DOB,即可求得答案.【解答】解:∵CE∥AB,∴∠DOB=∠ECO=30°,∵OT⊥AB,∴∠BOT=90°,∴∠DOT=∠BOT﹣∠DOB=90°﹣30°=60°.故选C.【点评】此题考查了平行线的性质,垂直的定义.解题的关键是注意数形结合思想的应用,注意两直线平行,同位角相等.9.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所托货物的袋数是()A.5 B.6 C.7 D.8【考点】一元一次方程的应用.【专题】应用题.【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【解答】解:设驴子原来驮x袋,根据题意,得到方程:2(x﹣1)﹣1﹣1=x+1,解得:x=5,答:驴子原来所托货物的袋数是5.故选A.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.若a=240,b=332,c=424,则下列关系正确的是()A.a>b>c B.b>c>a C.c>a>b D.c>b>a【考点】幂的乘方与积的乘方.【分析】利用幂的乘方运算法则将a,b,c化为指数相同的数字,进而比较底数得出答案.【解答】解:∵a=240=328,b=332=818,c=424=648,∴b>c>a,故选B.【点评】本题考查了幂的乘方与积的乘方,解答本题的关键在于正确利用幂的乘方运算法则对各数进行化简.二、填空题(共8小题,每小题3分,满分24分)11.若(m﹣3)x+2y|m﹣2|+8=0是关于x,y的二元一次方程,m= 1 .【考点】二元一次方程的定义.【分析】根据二元一次方程满足的条件,即只含有2个未知数,未知数的项的次数是1的整式方程,即可求得m的值.【解答】解:根据题意,得|m﹣2|=1且m﹣3≠0,解得m=1.故答案为:1.【点评】二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数的项的最高次数为一次;(3)方程是整式方程.12.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,用科学记数法表示是7.6×10﹣8克.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000076=7.6×10﹣8.故答案为:7.6×10﹣8.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.若x n﹣1•x n+5=x10,则n﹣2= .【考点】同底数幂的乘法.【分析】根据同底数幂的乘法底数不变指数相加,可得关于n的方程,根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:由x n﹣1•x n+5=x10,得x2n+4=x10,即2n+4=10,解得n=3.n﹣2=3﹣2=,故答案为:.【点评】本题考查了同底数幂的乘法,利用同底数幂的乘法得出关于n的方程是解题关键.14.如图,在三角形ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=35°,∠C=65°,则∠EFD= 80°.【考点】平行线的性质.【分析】根据EF∥AC,求出∠EFB=∠C=65°,再根据DF∥AB,求出∠DFC=∠B=35°,根据平角的定义即可得到结论.【解答】解:∵EF∥AC,∴∠EFB=∠C=65°,∵DF∥AB,∴∠DFC=∠B=35°,∴∠EFD=180°﹣65°﹣35°=80°,故答案为:80°.【点评】本题考查了平行线的性质,找到平行线、得到相应的同位角或内错角是解题的关键.15.若实数m,m满足|m﹣2|+(n﹣2015)2=0,则m﹣1+n0= .【考点】负整数指数幂;非负数的性质:绝对值;非负数的性质:偶次方;零指数幂.【分析】根据非负数的和为零,可得每个非负数同时为零,根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.【解答】解:由m,m满足|m﹣2|+(n﹣2015)2=0,得m﹣2=0,n﹣2015=0.解得m=2,n=2015.m﹣1+n0=+1=,故答案为:.【点评】本题考查了非负数的性质,利用非负数的和为零得出每个非负数同时为零是解题关键,又利用了负整数指数幂、非零等零次幂.16.已知关于x,y的二元一次方程组的解互为相反数,则k的值是﹣1 .【考点】二元一次方程组的解.【分析】将方程组用k表示出x,y,根据方程组的解互为相反数,得到关于k的方程,即可求出k 的值.【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.【点评】此题考查方程组的解,关键是用k表示出x,y的值.17.若(2x+5)(4x﹣10)=8x2+px+q,则p= 0 ,q= ﹣50 .【考点】多项式乘多项式.【专题】计算题;整式.【分析】已知等式左边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出p与q的值即可.【解答】解:已知等式整理得:8x2﹣50=8x2+px+q,则p=0,q=﹣50,故答案为:0,﹣50【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.18.五一前夕,某超市促销,由顾客抽奖决定折扣,某顾客购买甲乙两种商品,分别抽到七折(按售价70%)和九折销售,共付款386元,这两种商品原销售之和为500元,则甲乙两种商品原销售价分别为320元、180元.【考点】二元一次方程组的应用.【分析】根据题意可知,本题中的等量关系是:以7折优惠价购买甲种商品所付钱数+以9折优惠价购买乙种商品所付钱数=386元,甲种商品原价+乙种商品原价=500元.根据这两个等量关系可以列出方程组,然后求解即可.【解答】解:设甲、乙两商品的原价分别是x元,y元,则,解得.故答案为:320元;180元【点评】本题主要考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.三、解答题(共8小题,满分66分)19.化简求值:(1)a3•a3+(﹣2a3)2+(﹣a2)3,其中a=﹣1.(2)4x(x﹣1)﹣(2x+1)(2x﹣1),其中x=﹣5.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,合并得到最简结果,把a的值代入计算即可求出值;(2)原式利用单项式乘以多项式,平方差公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=a6+4a6﹣a6=4a6,当a=﹣1时,原式=4;(2)原式=4x2﹣4x﹣4x2+1=﹣4x+1,当x=﹣5时,原式=20+1=21.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.解方程组(1)(2).【考点】解二元一次方程组.【专题】计算题.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),①+②×4得:23x=23,即x=1,把x=1代入①得:y=2,则方程组的解为;(2),①×3+②得:14x=﹣14,即x=﹣1,把x=﹣1代入①得:y=3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(1)一个角的余角与这个角的补角的和比平角的多1°,求这个角的度数.(2)已知5m=2,5n=3,求53m﹣2n.【考点】同底数幂的除法;幂的乘方与积的乘方;余角和补角.【专题】计算题;实数.【分析】(1)设这个角为x,根据题意列出关于x的方程,求出方程的解即可得到结果;(2)原式利用幂的乘方及同底数幂的除法法则变形,将已知等式代入计算即可求出值.【解答】解:(1)设这个角为x,根据题意得:90°﹣x+180°﹣x=180°×+1°,解得:x=67°,则这个角的度数为67°;(2)∵5m=2,5n=3,∴原式=(5m)3÷(5n)2=.【点评】此题考查了同底数幂的除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.22.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF.(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数.(用含α的代数式表示)【考点】垂线;角平分线的定义;对顶角、邻补角.【分析】(1)根据平角的性质求得∠AOF,又由角平分线的性质求得∠FOC;然后根据对顶角相等求得∠EOD=∠FOC;∠BOE=∠AOB﹣∠AOE,∠BOD=∠EOD﹣∠BOE;(2)根据平角的性质求得∠AOF,又由角平分线的性质求得∠FOC;然后根据对顶角相等求得∠EOD=∠FOC;∠BOE=∠AOB﹣∠AOE,∠BOD=∠EOD﹣∠BOE.【解答】解:(1)∵∠AOE+∠AOF=180°(互为补角),∠AOE=40°,∴∠AOF=140°;又∵OC平分∠AOF,∴∠FOC=∠AOF=70°,∴∠EOD=∠FOC=70°(对顶角相等);∵∠BOE=∠AOB﹣∠AOE=50°,∴∠BOD=∠EOD﹣∠BOE=20°;(2)∵∠AOE+∠AOF=180°(互为补角),∠AOE=α,∴∠AOF=180°﹣α;又∵OC平分∠AOF,∴∠FOC=∠AOF=90°﹣α,∴∠EOD=∠FOC=90°﹣α(对顶角相等);∵∠BOE=∠AOB﹣∠AOE=90°﹣α,∴∠BOD=∠EOD﹣∠BOE=α.【点评】本题考查了垂线,利用垂直的定义,对顶角和互补的性质计算,要注意领会由垂直得直角这一要点.23.某开发区去年出口创汇额为25亿美元,今年达到30.55亿美元,已知今年上半年出口创汇额比去年同期增长18%,下半年比去年同期增长25%,求去年上半年和下半年的出口创汇额各是多少亿美元?【考点】二元一次方程组的应用.【分析】设去年上半年出口创汇额为x亿美元,去年下半年的出口创汇额为y亿美元,可表示出今年的上半年和下半年的出口创汇额,由条件可列出方程,求解即可.【解答】解:设去年上半年出口创汇额为x亿美元,去年下半年的出口创汇额为y亿美元,则今年上半年出口创汇额为(1+18%)x=1.18x(亿美元),今年下半年的出口创汇额为(1+25%)y=1.25(亿美元),根据题意可列方程组,解得,答:去年上半年出口创汇额为10亿美元,去年下半年的出口创汇额为15亿美元.【点评】本题主要考查了二元一次方程组的应用,根据题意正确表示出种植两种作物的费用是解题关键.24.已知如图,在三角形ABC中,AC⊥AB,DG⊥BC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系?并说明理由.【考点】平行线的判定与性质.【分析】由AC⊥BC,DG⊥BC,可证得AC∥DG,又由∠1=∠2,易证得EF∥CD,继而证得结论.【解答】解:垂直.理由:∵AC⊥BC,DG⊥BC,∴AC∥DG,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴EF∥CD,∵EF⊥AB,∴CD⊥AB.【点评】此题考查了平行线的判定与性质.注意证得AC∥DG是关键.25.小亮在做“化简(2x+k)(3x+2)﹣6x(x+3)+5x+16并求x=2时的值”一题时,错将x=2看成x=﹣2,但结果却和正确答案一样,由此,你能推算出k值吗?【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用多项式乘以多项式,单项式乘以多项式法则计算,去括号合并后根据结果与x取值无关,求出k的值即可.【解答】解:原式=6x2+4x+3kx+2k﹣6x2﹣18x+5x+16=(3k﹣9)x+2k+16,由结果与x取值无关,得到3k﹣9=0,解得:k=3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.26.如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【考点】二元一次方程组的应用.【专题】应用题.【分析】(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,利用两个等量关系:A地到长青化工厂的公路里程×1.5x+B地到长青化工厂的公路里程×1.5y=这两次运输共支出公路运输费15000元;A地到长青化工厂的铁路里程×1.2x+B地到长青化工厂的铁路里程×1.2y=这两次运输共支出铁路运输费97200元,列出关于x与y的二元一次方程组,求出方程组的解得到x与y的值,即可得到该工厂从A地购买原料的吨数以及制成运往B地的产品的吨数;(2)由第一问求出的原料吨数×每吨1000元求出原料费,再由这两次运输共支出公路运输费15000元,铁路运输费97200元,两运费相加求出运输费之和,由制成运往B地的产品的吨数×每吨8000元求出销售款,最后由这批产品的销售款﹣原料费﹣运输费的和,即可求出所求的结果.【解答】解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,依题意得:,整理得:,①×12﹣②得:13y=3900,解得:y=300,将y=300代入①得:x=400,∴方程组的解为:,答:工厂从A地购买了400吨原料,制成运往B地的产品300吨;(2)依题意得:300×8000﹣400×1000﹣15000﹣97200=1887800(元),答:这批产品的销售款比原料费与运输费的和多1887800元.【点评】此题考查了二元一次方程组的应用,是一道与实际密切相关的热点考题,解答此类题时,要弄清题中的等量关系,列出相应的方程组,进而得到解决问题的目的.。

相关文档
最新文档