平方根与立方根检测

合集下载

初中数学平方根立方根综合练习题12(附答案)

初中数学平方根立方根综合练习题12(附答案)

初中数学平方根立方根综合练习题一、单选题1.一个数的立方根是它本身,则这个数是( )A.0B.1,0C.1,-1D.1,-1或02.有下列说法:①负数没有立方根;②一个数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号,0的立方根是0;④如果一个数的立方根是这个数本身,那么这个数必是1或0.其中错误的是( )A.①②③B.①②④C.②③④D.①③④ 3.下列各式中,正确的是( )A.2(9= 2=- 3=- D.3=±4.下列命题:①过一点有且只有一条直线与已知直线平行;②一个实数的立方根不是正数就是负数;③如果一个数的平方根是这个数本身,那么这个数是1或0;④两条直线被第三条直线所截,同位角相等.其中假命题的个数有( )A.4个B.3个C.2个D.1个5.下列说法:①任何正数的两个平方根的和等于0;②任何实数都有一个立方根;③无限小数都是无理数;④实数和数轴上的点一一对应.其中正确的有( )A.1个B.2个C.3个D.4个( )A.8B.4C.2D.-2二、解答题7.求下列各式中x 的值:(1)22320x -=;(2)3440()6x ++=.8.观察以下各式:①2=3=4=④5=,. 1. 请写出第5个等式;2. 用n(n 为大于1的整数)表示出你所发现的规律.三、计算题9.实数计算:1. ()239627----; 2. ()3238231-++-; 10.计算: 0318(2016)--+-;四、填空题11.-27的立方根是________.12.若x ,y 满足()323|94|0x y ++-=,则xy 的立方根为 .13.用教材中的计算器进行计算,开机后依次按下. 把显示结果输人下侧的程序中,则输出的结果是__________. 14.设实数x,y,z 适合333987x y z ==,9871x y z ++=,则2223(9)(8)(7)x y z ++=4449(9)(8)(7)x y z ++=__________.参考答案1.答案:D解析:立方根是它本身有3个,分别是±1,0.故选D.2.答案:B解析:正数的立方根是正数,负数的立方根是负数,0的立方根是0.立方根等于它本身的数有0,1和−1.所以①②④都是错误的,③正确.故选:B.3.答案:D解析:A.原式3=,错误;B.原式22=-=,错误;3399-=-D.原式3=±,正确,故选:D.4.答案:A解析:5.答案:C解析:6.答案:C64=8,即8的立方根等于2,故选C7.答案:(1)22320x -=,2232x =,216x =,4x =±,∴14x =,24x =-;(2)()34640x ++=, ()3464x +-=,44x +=-,8x =-.解析:8.答案:1.6=2.n =解析:9.答案:1.0; 2. 解析:10.答案:0解析:11.答案:-3解析:-27的立方根是-3,故答案为-3.12.答案:32-解析:()323|94|0x y ++-=39230,940,,24x y x y ∴+=-==-=解得 3927248xy ∴=-⨯=- 32xy ∴-的立方根是13.答案:34+解析:14.答案:; 解析:。

平方根立方根基础训练及答案

平方根立方根基础训练及答案

平方根立方根基础训练姓名: 速度: 一.判断正误(1) 5是25的算术平方根.( ) (2)4是2的算术平方根.( )(3)6.( ) (4)37是237⎛⎫- ⎪⎝⎭的算术平方根.( ) (5)56-是2536的一个平方根.( ) (6)81的平方根是9.( ) (7)9的平方根是3 ( ) (8)8的立方根是2 ( )(9)-0.027的立方根是-0.3( ) (10)31271±的立方根是 ( ) (11)-9的平方根是-3 ( ) (12)-3是9的平方根 ( )二.选择题1的值为 ( ).(A )6- (B )6 (C )8± (D )362.一个正数的平方根是a ,那么比这个数大1的数的平方根是( ).(A )2a 1- (B )(C (D )30.1311==,则x 等于( ).(A )0.0172 (B )0.172 (C )1.72 (D )0.0017242=,则()2m 2+的平方根是( ).(A )16 (B )16± (C )4± (D )2±5.立方根等于本身的数是 ( )A .±1 B.1,0 C .±1,0 D .以上都不对6.若一个数的算术平方根等于这个数的立方根,则这个数是( )A .±1 B.±1,0 C .0 D .0,17.下列说法正确的是( )A .1的立方根与平方根都是1B .233a a =C .38的平方根是2±D .252128183=+=+8.一个数的算术平方根是a ,则比这个数大2的数是( )A .2a +B 2C 2D .22a + 9.下列运算中,错误的是( )①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ A .1个 B .2个 C . 3个 D . 4个10.8的立方根是( )A .2B .2-C .±2D 11.下列运算正确的是 ( )A .3311--=-B .3333=-C .3311-=-D .3311-=-12 ).A ..13.如果a 是实数,则下列各式中一定有意义的是( ).A B14的大小估计正确的是( ).A .在4~5之间B .在5~6之间C .在6~7之间D .在7~8之间15.若a ,b为实数,且43b a =++,则a b +的值为( ). A .-1 B .1 C .1或7 D .716.实数a ,b||a b +的结果是( ). A .2a b + B .b C .b - D .2a b -+三.填空题1.若4-m 没有算术平方根,则m 的取值范围是_______.2.749±=±的意义是 .3.如果一个数的平方等于a ,这个数就叫做 .4.一个正数的平方根有 个,它们互为 .5. 0的平方根是 ,0的算术平方根是 .6.一个数的平方为719,这个数为 . 7.若x 的一个平方根,则这个数是 .8.比3的算术平方根小2的数是 .9.若a 9-的算术平方根等于6,则a= .10.已知2y x 3=-,且y 的算术平方根是4,则x= .11的平方根是 .12.已知1y 3=,则x= ,y= . 13. 64的平方根是 ,立方根是 ,算术平方根是 14. =31-,=3216125 ,15.若==m m 则,10 ,若的平方根是,则m m 43= 16.8的立方根与25的平方根之差是17.若==m m m 则,3182=_____________________. 19.已知一个正数的平方根是3x-2和5x+6,则这个数是 .20.若a 、b 互为相反数,c 、d互为负倒数,则______3=++cd b a ;21= .22.若13是的一个平方根,则m 的另一个平方根为 .23.比较大小π, 24.满足不等式x <<x 共有 个.25.若实数x 、y0=,则x 与y 的关系是 . 26.-64 .27.(1)3027.0-- =(2)3125216-= (3= (4+= 28.求下列各式中的x .(1) 364125x = (2) 31(23)18x -=b a 0平方根、立方根基础训练答案一.判断正误 (1) 5是25的算术平方根.( √ ) (2)4是2的算术平方根.( × )(3)6.( × ) (4)37是237⎛⎫- ⎪⎝⎭的算术平方根.( √ ) (5)56-是2536的一个平方根.( √ ) (6)81的平方根是9.( × ) (7)9的平方根是3 ( × ) (8)8的立方根是2 ( √ )(9)-0.027的立方根是-0.3( √ ) (10)31271±的立方根是 ( × ) (11)-9的平方根是-3 ( × ) (12)-3是9的平方根 ( √ )二.选择题1的值为 ( B ).(A )6- (B )6 (C )8± (D )362.一个正数的平方根是a ,那么比这个数大1的数的平方根是( D ).(A )2a 1- (B )(C (D )30.1311==,则x 等于( A ).(A )0.0172 (B )0.172 (C )1.72 (D )0.0017242=,则()2m 2+的平方根是( C ).(A )16 (B )16± (C )4± (D )2±5.立方根等于本身的数是 ( C )A .±1 B.1,0 C .±1,0 D .以上都不对6.若一个数的算术平方根等于这个数的立方根,则这个数是( D )A .±1 B.±1,0 C .0 D .0,17.下列说法正确的是( C )A .1的立方根与平方根都是1B .233a a =C .38的平方根是2±D .252128183=+=+8.一个数的算术平方根是a ,则比这个数大2的数是( D )A .2a +B 2C 2D .22a + 9.下列运算中,错误的是( D )①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ A .1个 B .2个 C . 3个 D . 4个10.8的立方根是( A )A .2B .2-C .±2D 11.下列运算正确的是 ( D )A .3311--=-B .3333=-C .3311-=-D .3311-=-12 C ).A ..13.如果a 是实数,则下列各式中一定有意义的是( D ).A B14的大小估计正确的是( D ).A .在4~5之间B .在5~6之间C .在6~7之间D .在7~8之间15.若a ,b为实数,且43b a =++,则a b +的值为( D ). A .-1 B .1 C .1或7 D .716.实数a ,b||a b +的结果是( A ). A .2a b + B .b C .b - D .2a b -+三.填空题1.若4-m 没有算术平方根,则m 的取值范围是4m <.2.749±=±的意义是 49的平方根是±7 .3.如果一个数的平方等于a ,这个数就叫做 a 的平方根 .4.一个正数的平方根有 两 个,它们互为 相反数 .5. 0的平方根是 0 ,0的算术平方根是 0 .6.一个数的平方为719,这个数为43± . 7.若x 的一个平方根,则这个数是 3 .8.比3的算术平方根小2的数是2 .9.若a 9-的算术平方根等于6,则a= 45 .10.已知2y x 3=-,且y 的算术平方根是4,则x= .11的平方根是12.已知1y 3=,则x=12,y= 13. 13. 64的平方根是 ±8 ,立方根是 4 ,算术平方根是 8 14. =31- -1,=3216125 56,3833= 32 15.若==m m 则,10 100 ,若的平方根是,则m m 43= ±8 16.8的立方根与25的平方根之差是 7或-317.若==m m m 则,3 ±1,0182=____6___________. 19.已知一个正数的平方根是3x-2和5x+6,则这个数是494. 20.若a 、b 互为相反数,c 、d1=-;213.22.若13是m 的一个平方根,则m的另一个平方根为 -13 .23.比较大小2π, 24.满足不等式x <<x 共有 3 个. 25.互为相反数26. -6或-2 .27.(1)3027.0-- = 0.3 (2)3125216-=65-(323=-(415= 28. (1) 54x = (2) 52x = b a 0。

平方根、立方根综合探究

平方根、立方根综合探究

平方根、立方根综合探究思维启动传说很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,于是大家一起到神庙里去向神祈求.神说“我之所以不给你们降水,是因为你们给我做的这个正方体的祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降下雨水.”如果原祭坛的棱长为1,现在要做一个体积是原来2倍的新祭坛,它的棱长应该是多少?综合探究探究一 有关立方根和平方根的综合性问题若A 2a b -=3a b +的算术平方根,B 2a -=为21a -的立方根,试求A +B 的平方根.1.由2a -3a b +的算术平方根,可以得出什么?________________________________________________________.2.由2a -21a -的立方根,可以得出什么?_____________________________________________________.3.由1,2你能求出a 、b 的值吗?___________________________________________________________.4.讨论总结:求A +B 的平方根.________________________________________________________. 探究二 利用平方根、立方根求解简易方程的解1.9x 2=1 ∴x 2= ,∴x = 381250x -=,∴3x =__________,∴x =____________.2.求x 的值:()3527x +=._____________________________________________________. 探究三 有关平方根、立方根规律性问题2.上表中已知数a 的小数点的移动与它的平方根a 的小数点的移动间有何规律? ______________________________________________________________3.利用规律计算:已知2=1.414,则200= ;0002.0-=2.上表中已知数a 何规律?_______________________________________________________________.3.利用规律计算:b =m =n =,求m ,n 的值(用b 来表示)._______________________________________________________________. 探究四 互为相反数的两个方根的规律1=____________=______________.2.据1m ==______________.3x 的值._____________________________________________________________.4x y +的值.______________________________________________________________.5.讨论总结:对比3,4,你能得到什么样的规律?______________________________________________________________. 随堂反馈1.下列语句正确的是( )A .-3是-27的立方根,-27的立方根是-3B .2是4的平方根,4的平方根是2C .一个数的立方根一定小于它本身D .一定是非负数20=,则x 与y 的关系是( )A .0x y ==B .x 与y 相等C .x 与y 互为相反数D .x 与y 互为倒数 3.下列各数中,立方根一定是负数的是( ) A .a - B .2a - C .21a -- D .21a -+4x 的取值范围是( )A .0.5x ≥B .1x ≤C .0.51x <<D .所有数5.立方根等于它本身的数有________.平方根等于它本身的数有6____________的立方根是7.如果519x +的立方根是4,那么27x +的平方根是______________.8x-y 的值.9.求x 的值:(1)()3427x +=. (2)(x+4)2=4。

七年级数学下册《立方根》单元测试卷(附答案)

七年级数学下册《立方根》单元测试卷(附答案)

七年级数学下册《立方根》单元测试卷(附答案)一、单选题1.下列说法正确的是( )A .0的立方根和平方根都是0B .1的平方根和立方根都是1C .﹣1的平方根和立方根都是﹣1D .0.01是0.1的平方根2.立方根与它本身相同的数是( )A .0或±1B .0或1C .0或-1D .03.若a 的算术平方根为17.25,b 的立方根为−8.69;x 的平方根为±1.725,y 的立方根为86.9,则()A .x =1100a,y =−1000bB .x =1100a,y =100bC .x =100a,y =1100aD .x =11000a,y =−100b4.立方根等于3的数是( )A .9B .±9C .27D .±275.一个数的算术平方根是8,则这个数的立方根是( )A .8或-8B .4或-4C .-4D .46.下列说法正确的是( )A .负数没有立方根B .8的立方根是±2C .√−83=−√83D .立方根等于本身的数只有17.下列各式中运算正确的是( )A .√(−2)2=−2B .−√273=−3C .√49=±7D .√(−8)33=88.下列计算正确的是( ).A .−√81=−9B .√16=±4C .√93=3D .√(−2)2=−29.若实数m ,n 满足(m +12)2+√n +15=0,则n −m 的立方根为( )A .−3B .3C .±3D .√3310.下列说法正确的是( )A .如果一个数的立方根等于它本身,那么这个数一定为零B .如果一个数有立方根,那么这个数也一定有平方根C .任何数的立方根都只有一个D .负数没有立方根二、填空题11.已知x 3+1=−63,则x =_______3的算术平方根是______.12.√16413.已知x没有平方根,且|x|=27,则x的立方根为________.14.已知2−5n的立方根是−2,则n=____________.15.根据图中呈现的运算关系,可知a=______,b=______.三、解答题16.已知正数a+b−5的平方根是±3,a−b+4的立方根是2.(1)求a和b的值.(2)求5a+4b−1的立方根.17.求下列各式中的x:(1)4x2−25=0;(2)(x+1)3−8=0.18.已知:3a+21的立方根是3,4a﹣b﹣1的算术平方根是2,c的平方根是它本身.(1)求a,b,c的值;(2)求3a+10b+c的平方根.19.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出:39.你知道他是怎么快速准确地计算出来的吗?请研究解决下列问题:(1)已知x3=10648,且x为整数.∵1000=103<10648<1003=1000000,∴x一定是一个两位数;∵10648的个位数字是8,∴x的个位数字一定是______;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是______;∴x=______.(2)y 3=614125,且y 为整数,按照以上思考方法,请你求出y 的值.20.把三个半径分别是3,4,5的铅球熔化后做一个更大的铅球,这个大铅球的半径是多少?(球的体积公式是V =43πR 3,其中R 是球的半径.)参考答案:1.A2.A3.A4.C5.D6.C7.B8.A9.D10.C11.−412.1213.−314.215. -2020 -202016.(1)a =9,b =5(2)417.(1)x =52或x =−52(2)x =118.(1)a =2,b =3,c =0(2)3a +10b +c 的平方根为±619.(1)解:∵x 3=10648,且x 为整数.∵1000=103<10648<1003=1000000,∴x 一定是一个两位数;∵10648的个位数字是8,∴x 的个位数字一定是2;划去10648后面的三位648得10,∵8=23<10<33=27,∴x 的十位数字一定是2;∴x =22.故答案为:2,2,22.(2)∵1000=103<614125<1003=100000,∴y 一定是两位数;∵614125的个位数字是5,∴y 的个位数字一定是5;划去614125后面的三位125得614,∵512=83<614<93=729,∴y的十位数字一定是8;∴y=85.20.大铅球的半径是6.。

平方根与立方根练习题及答案

平方根与立方根练习题及答案

平方根与立方根练习题及答案平方根与立方根练习题及答案数字是数学世界中最基本的元素,它们无处不在,无论是日常生活还是学术研究都离不开数字的存在。

其中,平方根和立方根是我们常见的数学概念之一。

平方根表示一个数的平方等于该数的正平方根,而立方根则表示一个数的立方等于该数的正立方根。

在这篇文章中,我们将介绍一些关于平方根和立方根的练习题,并提供相应的答案。

练习题一:求平方根1. 求下列数的平方根:a) 4b) 9c) 16d) 25e) 36答案:a) 2b) 3c) 4d) 5e) 6解析:对于一个数的平方根,我们需要找到一个数,使得这个数的平方等于给定的数。

例如,对于4来说,2的平方等于4,所以4的平方根为2。

同样地,9的平方根为3,16的平方根为4,25的平方根为5,36的平方根为6。

练习题二:求立方根2. 求下列数的立方根:a) 8b) 27c) 64d) 125e) 216答案:a) 2b) 3c) 4d) 5e) 6解析:与求平方根类似,对于一个数的立方根,我们需要找到一个数,使得这个数的立方等于给定的数。

例如,对于8来说,2的立方等于8,所以8的立方根为2。

同样地,27的立方根为3,64的立方根为4,125的立方根为5,216的立方根为6。

练习题三:混合练习3. 求下列数的平方根和立方根:a) 1b) 64c) 100d) 729e) 1000答案:a) 平方根为1,立方根为1b) 平方根为8,立方根为4c) 平方根为10,立方根为5d) 平方根为27,立方根为9e) 平方根为31.62(保留两位小数),立方根为10解析:有些数既有平方根又有立方根,我们可以通过前面的求解方法得到它们的值。

例如,对于1来说,1的平方根和立方根都为1;对于64来说,64的平方根为8,立方根为4;对于100来说,100的平方根为10,立方根为5;对于729来说,729的平方根为27,立方根为9;对于1000来说,1000的平方根为31.62(保留两位小数),立方根为10。

平方根立方根测试题

平方根立方根测试题

平方根立方根测试题一、选择题1. 计算下列各数的平方根:(a) 9(b) 64(c) 0.012. 求解以下方程:(a) \( x^2 - 5x + 6 = 0 \)(b) \( (x - 2)^2 = 9 \)3. 计算下列各数的立方根:(a) 27(b) -8(c) 04. 判断题:负数没有平方根。

(对/错)5. 求解以下方程:(a) \( x^3 - 27 = 0 \)(b) \( (x + 3)^3 = -64 \)二、填空题1. 一个正数的平方根有两个,它们互为__________。

2. 一个正数的立方根是__________的。

3. 求一个数 \( a \) 的平方根的运算,叫做__________。

4. 求一个数 \( a \) 的立方根的运算,叫做__________。

三、解答题1. 已知 \( a \) 是一个正数,求 \( a^2 \) 和 \( a^3 \) 的值。

2. 某数的平方根加上 2 等于 5,求这个数。

3. 一个正方体的体积是 64 立方厘米,求它的边长。

4. 一个立方体的体积是 -27 立方厘米,讨论其可能的边长。

四、应用题1. 一个容器的容积是 125 立方厘米,求容器内部尺寸的长、宽和高。

2. 一块土地的面积是 36 平方米,如果用边长为 1 米的正方形地砖铺地,需要多少块地砖?3. 一个立方体的表面积是 54 平方厘米,求立方体的体积。

4. 一个球的半径是 3 厘米,求球的体积。

五、综合题1. 一个长方体的长、宽、高分别是 \( a \)、\( b \) 和 \( c \),如果它的体积是 \( V \) 立方厘米,求 \( a^2 + b^2 + c^2 \) 的值。

2. 一个正方体的表面积是 150 平方厘米,求它的对角线长度。

3. 一个球的体积是 1000 立方厘米,求球的表面积。

4. 一个圆柱的底面半径是 5 厘米,高是 10 厘米,求圆柱的体积和表面积。

算术平方根、平方根与立方根练习题

算术平方根、平方根与立方根练习题

算术平方根、平方根与立方根练习题 姓名:‗‗‗‗‗‗‗‗‗1、一般地,如果一个正数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个正数x 叫做a 的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗,读作‗‗‗‗‗‗‗‗‗‗,a 叫做‗‗‗‗‗‗‗‗‗,如3²=9,则3是9的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。

0的算术平方根是‗‗‗‗‗‗;1的算术平方根是‗‗‗‗‗。

‗‗‗‗‗‗‗‗数没有算术平方根;被开方数是‗‗‗‗‗‗‗数;算术平方根是‗‗‗‗‗‗‗数。

2、算术平方根等于它本身的数是‗‗‗‗‗‗‗‗‗。

被开方数越大,对应的算术平方根也‗‗‗‗‗。

3、(-5)²的算术平方根是‗‗‗‗‗;0.49的算术平方根的相反数是‗‗‗‗‗‗。

4、81的算术平方根是‗‗‗‗‗。

16的算术平方根是‗‗‗‗‗。

5、求下列各数的算术平方根。

(1)0.0625; (2)0; (3)2)41(-; (4)16、计算(1)41.4 (2)25111(3)151722-7、已知35.14=3.788,x =378.8,则x=‗‗‗‗‗‗‗‗‗。

8、已知a ,b 为两个连续整数,且a <7<b ,则a+b=‗‗‗‗‗。

比较大小:215-‗‗‗21。

9、(1)(-3)²=‗‗‗‗‗;(2))3(2π-=‗‗‗‗‗‗‗‗‗‗;(3)若4-x =3,则x=‗‗‗‗‗。

10、若x ,y 为实数,且2+x +2-y =0,则)2016(y x 的值为‗‗‗‗‗‗‗‗。

平方根:1、一般地,如果一个数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个数x 叫做a 的‗‗‗‗‗‗‗‗‗或‗‗‗‗‗‗‗‗‗,数a 的平方根可记作‗‗‗‗‗‗,如)3(2±=9,所以‗‗‗‗‗是9的平方根,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。

正数有‗‗‗‗个平方根,它们‗‗‗‗‗‗‗‗‗,0的平方根是‗‗‗。

平方根_立方根综合练习(二) (1)

平方根_立方根综合练习(二) (1)

第十章 平方根 立方根综合练习(二)一 平方根【例题精选】: 例1:求下列各数的平方根: (1)81 (2)1625(3)214 (4)0.49解:(1)∵()±=9812,∴81的平方根是±9,即:±=±819(2)∵±⎛⎝ ⎫⎭⎪=4516252,∴1625的平方根是±45,即:±=±162545(3)∵2149432942=±⎛⎝ ⎫⎭⎪=,,∴214的平方根是±32,即:±=±=±2149432(4)∵()±=070492..,∴0.49的平方根是±07.,即:±=±04907..例2:下列各数有平方根吗?如果有,求出它的平方根;如果没有,要说明理由。

(1)-64(2)0(3)()-142 (4)102-解:(1)因为-64是负数,所以-64没有平方根。

(2)0有一个平方根,它是0。

(3)∵()-=>1419602,所以()-142有两个平方根,且()±-=±=±14196142(14)因为10110022-=>,所以102-有两个平方根,且±=±⎛⎝ ⎫⎭⎪=±-1011011022例3:求下列各数的算术平方根: (1)25 (2)4964(3)0.81 (4)81解:(1)∵5252=∴25的算术平方根是5即:255=(2)∵7849642⎛⎝ ⎫⎭⎪=,∴4964的算术平方根是78即:496478= (3)∵090812..=∴0.81的算术平方根是0.9即:08109..=(4)∵819=(注:计算81的算术平方根,也就是计算9的算术平方根。

) ∵9的算术平方根是3∴81的算术平方根是3例4:求下列各式的值:(1)144(2)-36121 (3)±00001.(4)214116+解:(1)∵121442=,∴14412=(2)∵611361212⎛⎝ ⎫⎭⎪=,∴-=-36121611 (3)∵()001000012..=,∴±=±00001001..(4)21411694116321474+=+=+= 例5:(1)已知正方形的边长为5cm ,求这个正方形的面积;(2)已知正方形的面积是25cm 2,求这个正方形的边长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方根与立方根
一、填空题:
1、144的算术平方根是 ,16的平方根是 ;
2、327= , 64-的立方根是 ;
3、7的平方根为 ,21.1= ;
4、一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ;
5、平方数是它本身的数是 ;平方数是它的相反数的数是 ;
6、当x= 时,13-x 有意义;当x= 时,325+x 有意义;
7、若164=x ,则x= ;若813=n ,则n= ;
8、若3x x =,则x= ;若x x -=2,则x ;
9、若0|2|1=-++y x ,则x+y= ;
10、计算:381264
273292531+-+= ; 二、选择题
11、若a x =2,则( )
A 、x>0
B 、x ≥0
C 、a>0
D 、a ≥0
12、一个数若有两个不同的平方根,则这两个平方根的和为( )
A 、大于0
B 、等于0
C 、小于0
D 、不能确定
13、一个正方形的边长为a ,面积为b ,则( )
A 、a 是b 的平方根
B 、a 是b 的的算术平方根
C 、b a ±=
D 、a b =
14、若a ≥0,则24a 的算术平方根是( )
A 、2a
B 、±2a
C 、a 2
D 、| 2a |
15、若正数a 的算术平方根比它本身大,则( )
A 、0<a<1
B 、a>0
C 、a<1
D 、a>1
16、若n 为正整数,则121+-n 等于( )
A 、-1
B 、1
C 、±1
D 、2n+1
17、若a<0,则a
a 22
等于( ) A 、21 B 、2
1- C 、±21 D 、0 18、若x-5能开偶次方,则x 的取值范围是( )
A 、x ≥0
B 、x>5
C 、x ≥5
D 、x ≤5
三、计算题
19、2228-+ 20、49.0381003⨯-⨯
21、9
14420045243⨯
⨯⨯ 22、83122)10(973.0123+--⨯-
四、解答题
23、解方程:0324)1(2=--x 24、解方程:x x 1225)32(2-=-
25、若312-a 和331b -互为相反数,求b a 的值。

相关文档
最新文档