梁的变形及刚度条件
合集下载
材料力学第9章--梁挠度和刚度计算

qx4
ql 12
x3
C x D 1
1
C 材料力学方程和挠曲线方程
EIq 1 qx3 ql x2 ql3
6
4 24
EIw 1 qx4 ql x3 ql3 x 24 12 24
6 梁的最大挠度:根据对称性
E Iw m a x E Iw |2 l 2 1 4 q 2 l 4 1 q 2 l 2 l 3 q 2 l4 3 2 l 3 5 8 q 4 lE 2 I
第9章 平面弯杆弯 曲 变 形与刚度计算 9.1 挠曲线 挠度和转角 9.2 挠曲线近似微分方程 9.3 积分法求梁的变形 9.4 叠加法求梁的变形 9.5 梁的刚度条件与合理刚度设计 9.6 用变形比较法解简单超静定梁
材料力学第9章--梁挠度和刚度计算
9.1 挠曲线 挠度和转角
1、梁的变形特点
平面假设
1 M z (x)
EI z * 思考:
1、若M常量
2、 若MM(x)
材料力学第9章--梁挠度和刚度计算
9.3 积分法求梁的变形
1、挠曲线方程(弹性曲线)
EIw (x)M (x)
EIw (x)M (x)dxC 1
E Iw (x ) (M (x )d x )d x C 1 x C 2
材料力学第9章--梁挠度和刚度计算
q
小变形(小挠度)
C
挠曲线
P x
w(x)
w(x)
C1
挠曲线:梁弯曲后,梁轴线所成的曲线
挠曲线方程
挠度:梁截面形心在垂直于梁的初始轴线方向的位移 w w(x)
转角:梁截面相对于变形前的位置转过的角度 qtanqdwx
材料力学第9章--梁挠度和刚度计算
dx
梁弯曲的强度条件和刚度条件及应用

范中查到。
在梁的设计计算中,通常是根据强度条件确定截面尺寸,然
后用刚度条件进行校核。具体过程参看下面例题。
工程力学
梁弯曲的强度条件和刚度条件及应用
(1)小跨度梁或荷载作用在支座附近的梁。此时梁的Mm ax可能较小而FSmax较大。
(2)焊接的组合截面(如工字形)钢梁。当梁截面的腹板厚 度与高度之比小于型钢截面的相应比值时,横截面上可能产 生较大的切应力τmax。
(3)木梁。木梁在顺纹方向的抗剪能力差,可能沿中性层 发生剪切破坏。
梁弯曲的强度条件和刚度条件及应用
2. 强度条件的应用 【例8-6】
梁弯曲的强度条件和刚度条件及应用
(2)内力分析。绘制内力图如图8-27(b)和(c)所示, 确定最大剪力、弯矩为
FSmax=60 kN,Mmax=18 kN·m (3)根据正应力强度条件选择截面。由式(8-26)得
查附录型钢表,可选用16号工字钢,其抗弯截面系数 Wz=141 cm3,高h=16 cm,腿厚t=9.9 mm,腹板厚b1= 6 mm。
梁弯曲的强度条件和刚度条件及应用
图8-27
梁弯曲的强度条件和刚度条件及应用
1.2 弯曲梁的刚度条件
梁除满足强度条件外,还应满足刚度要求。根据工程实际的
需要,梁的最大挠度和最大(或指定截面的)转角应不超过某一规
定值,由此梁的刚度条件为
ymax≤y
(8-28)
θmax≤θ
(8-29)
式中,许可挠度y和许可转角θ的大小可在工程设计的有关规
工程力学
ห้องสมุดไป่ตู้
梁弯曲的强度条件和刚度条件及应用
1.1 梁弯曲的强度条件及应用 1. 强度条件
由于梁弯曲变形时横截面上即有正应力又有切应力,因此强度条 件应为两个。当弯曲梁横截面上最大正应力不超过材料的许用正应力, 最大切应力不超过材料的许用切应力时,梁的强度足够,即
梁的弹性弯曲变形与刚度计算问题

qx 3 2 3 w (l 2lx x ) 24 EI
由对称性可知, 在两 端支座 x = 0 和 x = l 处, 转角的绝对值相 等且都是最大值
y q A
A
wmax B
B
x
l/2
max
3 A ql B 24 EI
q w (l 3 6lx 2 4 x3 ) 24 EI
ql FA FB 2
q 2 EIw M ( x) (lx x ) 2
(b)
y FA A x l
q
FB B x
q EIw M ( x) (lx x 2 ) 2
(b)
积分两次
q lx 2 x3 EIw ( ) C1 2 2 3 3 4 q lx x EIw ( ) C1 x C2 2 6 12 (c)
y A C C1 B x
w
挠度符号?
挠度
B'
挠度(w): 横截面形心(即轴线上的点)在垂直于x轴方 向的线位移, 称为该截面的挠度(Deflection) 。
y A
C
C1 B
转角
x
转角符号?
B'
转角 (): 横截面绕中性轴(即 Z轴 )转过的角度(或 角位移), 称为该截面的转角(Slope rotation angle) 。
9.1 工程实际中的弯曲变形问题
7-1
9.1 工程实际中的弯曲变形问题
但在另外一些情况下,有时却要求构件具有较大
的弹性变形,以满足特定的工作需要。
例如,车辆上的板弹簧,要求有足够大的变形, 以缓解车辆受到的冲击和振动作用。
9.1 工程实际中的弯曲变形问题
梁的变形与刚度计算

(e) 结果(转角和挠度方程)。 AC段
ቤተ መጻሕፍቲ ባይዱ
Pb 2 2 EIv1 ' EI 1 (l b 2 3x1 ) 6l (0 x1 a) EIv Pb (l 2 b 2 x 2 ) 1 1 6l
CB段
Pb 2 2 3l 2 2 EIv2 ' EI 2 6l l b 3x b x 2 a (a x 2 l ) EIv Pb l 2 b 2 x 2 x l x a 3 2 2 2 6l b
例9-4。图示杆系中,AB和CD梁的抗弯为EI,BD杆的拉压刚度是EA,不计剪切变形的影响,求BD
杆的内力。
A
B l/2
解(a) 确定静不定梁的基本结构 取D为多余约束
A
R'D
B
C
l
D
D (1)
RD
C
(2)
D
(b) 求变形几何关系
vD1 vD2
(c) 求物理关系
l 3 RD l 2 R l l D 3EI EA 3EI 2 EA R' D l 3 ql 4 8 EI 3EI
第 9 章
梁的变形与刚度设计
DESIGN OF BEAMS FOR BENDING DEFLECTIONS
一。 弯曲变形概念
y
θ
P
受载荷作用后,梁的轴线将弯曲成为一条光滑的连续曲线 在平面弯曲的情况下,这是一条位于载荷所在平面内的平 面曲线。梁弯曲后的轴线称为挠曲线。
x
O
v
梁截面有沿垂直方向的线位移v,称为挠度;相对于原截面转过的角位移θ,称为转角 挠曲线是一条连续光滑平面曲线,其方程是
梁的变形及刚度条件

f
三、梁的刚度条件
• 1、最大挠度:在建筑工程中,通常只校核 梁的挠度,不校核梁的转角,一般用f表示 梁的最大挠度。 • 2、许用挠度:用[f ]梁的允许挠度,通常用 允许挠度和跨长的比值 作为校核标准, • 3、刚度条件:梁在荷载作用下产生的最大 挠度与跨长的比值不能超过许用的单位长 度的挠度来表示刚度条件:
• 梁的变形与跨长l的三次或四次冪成正比,设法减小梁的跨度,将 会有效地减小梁的变形 • 1、将简支梁的支座向中间适当移动, • 2、在梁的中间增加支座。
(三)改善荷载的分布情况
• 1、将集中力分散作用 • 2、改为分布荷载
第七节梁的变形
• 一、挠度与转角
• 1、挠曲线:梁在荷载作用下产生弯曲变形后, 其轴线为一条光滑的平面曲线; • 2、挠度:梁任一横截面形心在垂直于杆轴方向 竖向位移CC'; • 3、转角:梁内任一横截面在梁变形后,绕中性 轴转过的角度,称为该截面的转角, • 4、挠度与转角的关系:
二、用叠加法求梁的变形
• 一般钢筋混凝土梁的
• 钢筋混凝土吊车梁的
例题9-25
• 一简支梁由№28b工字钢制成,跨中承受一集中 荷载,已知F=20kN,l=9m,E=210Gpa,[] =170MPa, 。试校核梁正应力强度和 刚度。
•最大弯矩
•查表№28b工字钢 •强弯曲刚度EI • 1、由于同类材料的E值相差不多; • 2、增大惯性矩 I • 使材料尽量分布在远离中性轴的地方 • 通常采用工字形、箱形、圆环形截面 (二)减小梁的跨度
• 1、根据:由于梁的变形与荷载成线性关系。 所以,可以用叠加法计算梁的变形。 • 2、方法:即先分别计算每一种荷载单独作 用时所引起梁的挠度和转角,然后再将它 们代数相加,就得到梁在几种荷载共同作 用下的挠度或转角。
梁的变形分析与刚度问题

w A
F C EI B
F (2l)3 Fl3
wC1 48EI
6EI
l
wC1 l
x 2.AB刚化,BD变形
例题
例 题 13-10
D
wC1
F (2l)3 48EI
Fl 3 6EI
w
F
EA l
A
C EI
2.AB刚化,BD变形
l
wC 2
wC2
wB2 2
l
lBD 2
Bx wB2
FNBDl 2EA
BD杆轴向拉伸:
Fl 2
Fl
2EA 4EA
wC
wC1
wC 2
Fl 3 6EI
Fl 4EA
(负号表达
)
例题
例 题 13-11
已知梁旳直径d 及 a, E,G
求 fC ? C ?
解:(1)AB刚化BC变形
z
a
Ax
y
F
fC1
Fa3 3EI
C1
Fa 2 2EI
()
B
a
B
(C截面绕 x 轴转过旳角度)
3l 2 4x2
q0l 240EI
例题
例 题 13-9
求 fC ?
q
AC EI B ll22
fC2 0
q
q
2
2
fC1
fC2
q 2
fC
fC1
5 q 2 l 384EI
4
例题
例 题 13-9
3.求构造位移旳变形叠加法——分段刚化法
q
(1) q
A
EI F
B
C
A
l
f B1 cq
梁的变形分析与刚度问题

在小变形情形下,上述位移中,水平位移u与挠度w 相比为高阶小量,故通常不予考虑。
在Oxw坐标系中,挠度与转角 存在下列关系:
dw tan
dx
在小变形条件下,挠曲线较为
平坦,即很小,因而上式中 tan。于是有
dw
dx
w= w(x),称为挠度方程(deflection equation)。
梁的变形分析与刚度问题
wD0,D0
wC wC
光滑条件: C C 或 写C左 成C右
梁的变形分析与刚度问题
小挠度微分方程的积分与积分常数的确定
适用于小变形情况下、线弹性材料、细长构件平面弯曲。 可应用于求解承受各种载荷的等截面或变截面梁的位移。
积分常数由挠曲线变形的几何相容条件(边界条件、连续 条件)确定。
优点:使用范围广,直接求出较精确; 缺点:计算较繁。
梁的变形分析与刚度问题
梁的曲率与位移
根据上一章所得到 的结果,弹性范围内的挠 度曲线在一点的曲率与这 一点处横截面上的弯矩、 弯曲刚度之间存在下列关 系:
1= M
EI
梁的变形分析与刚度问题
挠度与转角的相互关系
梁在弯曲变形后,横截面的 位置将发生改变,这种位置的 改 变 称 为 位 移 ( displacement)。 梁的位移包括三个部分:
另一方面,某些机械零件或部件,则要求有较大的 变形,以减少机械运转时所产生的振动。汽车中的钣簧 即为一例。这种情形下也需要研究变形。
此外,求解静不定梁,也必须考虑梁的变形以建立补 充方程。
梁的变形分析与刚度问题
梁的位移分析与刚度问题
本章将在上一章得到的曲率公式的基础上, 建立梁的挠度曲线微分方程;进而利用微分方 程的积分以及相应的边界条件确定挠度曲线方 程。在此基础上,介绍工程上常用的计算梁变 形的叠加法。此外,还将讨论简单的静不定梁 的求解问题。
在Oxw坐标系中,挠度与转角 存在下列关系:
dw tan
dx
在小变形条件下,挠曲线较为
平坦,即很小,因而上式中 tan。于是有
dw
dx
w= w(x),称为挠度方程(deflection equation)。
梁的变形分析与刚度问题
wD0,D0
wC wC
光滑条件: C C 或 写C左 成C右
梁的变形分析与刚度问题
小挠度微分方程的积分与积分常数的确定
适用于小变形情况下、线弹性材料、细长构件平面弯曲。 可应用于求解承受各种载荷的等截面或变截面梁的位移。
积分常数由挠曲线变形的几何相容条件(边界条件、连续 条件)确定。
优点:使用范围广,直接求出较精确; 缺点:计算较繁。
梁的变形分析与刚度问题
梁的曲率与位移
根据上一章所得到 的结果,弹性范围内的挠 度曲线在一点的曲率与这 一点处横截面上的弯矩、 弯曲刚度之间存在下列关 系:
1= M
EI
梁的变形分析与刚度问题
挠度与转角的相互关系
梁在弯曲变形后,横截面的 位置将发生改变,这种位置的 改 变 称 为 位 移 ( displacement)。 梁的位移包括三个部分:
另一方面,某些机械零件或部件,则要求有较大的 变形,以减少机械运转时所产生的振动。汽车中的钣簧 即为一例。这种情形下也需要研究变形。
此外,求解静不定梁,也必须考虑梁的变形以建立补 充方程。
梁的变形分析与刚度问题
梁的位移分析与刚度问题
本章将在上一章得到的曲率公式的基础上, 建立梁的挠度曲线微分方程;进而利用微分方 程的积分以及相应的边界条件确定挠度曲线方 程。在此基础上,介绍工程上常用的计算梁变 形的叠加法。此外,还将讨论简单的静不定梁 的求解问题。
梁的弯曲-变形刚度计算

一、梁的变形度量——挠度与转角
x
1 1'
F
A
C
B
x
y
C'
y
1'
1
Байду номын сангаас
y f ( x)
——挠曲线方程
一、梁的变形度量——挠度与转角
x
1 1'
F
A
C
B
x
y
1'
y
C'
1
在小变形下: 即:
dy y tan dx
——转角方程
任一横截面的转角 = 挠曲线在该截面形心处切线的斜率
2
9 ql 2 128
M max
1 2 M A ql 8
例 14 试作图示超静定梁的剪力图和弯矩图。
q
5.讨论 设MA为多余约束力 列变形几何方程
A Aq AM 0
A
A l
B 原结构
q MA A B 静定基
查表
Aq
ql M Al , AM A 24 EI 3 EI
5Fl 3 Fl 2 Fl 3 l 6 EI 3 EI 2 EI
F A l C l
Me B
yBM
A F A C B
e
BM
B
e
Me
BF
yBF
3. Me和F共同作用时
2 M e l Fl 2 B BM e BF EI 2 EI 2 M e l 2 5Fl 3 y B y BM e y BF EI 6 EI
2.确定积分常数
FBy=
l
Me l
由 y x 0 0, D 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七节梁的变形
• 一、挠度与转角
• 1、挠曲线:梁在荷载作用下产生弯曲变形后, 其轴线为一条光滑的平面曲线; • 2、挠度:梁任一横截面形心在垂直于杆轴方向 竖向位移CC'; • 3、转角:梁内任一横截面在梁变形后,绕中性 轴转过的角度,称为该截面的转角, • 4、挠度与转角的关系:
二、用叠加法求梁的变形
f
三、梁的刚度条件
• 1、最大挠度:在建筑工程中,通常只校核 梁的挠度,不校核梁的转角,一般用f表示 梁的最大挠度。 • 2、许用挠度:用[f ]梁的允许挠度,通常用 允许挠度和跨长的比值 作为校核标准, • 3、刚度条件:梁在荷载作用下产生的最大 挠度与跨长的比值不能超过许用的单位长 度的挠度来表示刚度条件:
• 一般钢筋混凝土梁的
• 钢筋混凝土吊车梁的Fra bibliotek例题9-25
• 一简支梁由№28b工字钢制成,跨中承受一集中 荷载,已知F=20kN,l=9m,E=210Gpa,[] =170MPa, 。试校核梁正应力强度和 刚度。
•最大弯矩
•查表№28b工字钢 •强度校核
四、提高梁刚度的措施
• (一)提高梁的弯曲刚度EI • 1、由于同类材料的E值相差不多; • 2、增大惯性矩 I • 使材料尽量分布在远离中性轴的地方 • 通常采用工字形、箱形、圆环形截面 (二)减小梁的跨度
• 梁的变形与跨长l的三次或四次冪成正比,设法减小梁的跨度,将 会有效地减小梁的变形 • 1、将简支梁的支座向中间适当移动, • 2、在梁的中间增加支座。
(三)改善荷载的分布情况
• 1、将集中力分散作用 • 2、改为分布荷载
• 1、根据:由于梁的变形与荷载成线性关系。 所以,可以用叠加法计算梁的变形。 • 2、方法:即先分别计算每一种荷载单独作 用时所引起梁的挠度和转角,然后再将它 们代数相加,就得到梁在几种荷载共同作 用下的挠度或转角。
例题9-24
• 试用叠加法计算简支梁的跨中截面挠度yC 与A截面的转角A
例题9-24
• 一、挠度与转角
• 1、挠曲线:梁在荷载作用下产生弯曲变形后, 其轴线为一条光滑的平面曲线; • 2、挠度:梁任一横截面形心在垂直于杆轴方向 竖向位移CC'; • 3、转角:梁内任一横截面在梁变形后,绕中性 轴转过的角度,称为该截面的转角, • 4、挠度与转角的关系:
二、用叠加法求梁的变形
f
三、梁的刚度条件
• 1、最大挠度:在建筑工程中,通常只校核 梁的挠度,不校核梁的转角,一般用f表示 梁的最大挠度。 • 2、许用挠度:用[f ]梁的允许挠度,通常用 允许挠度和跨长的比值 作为校核标准, • 3、刚度条件:梁在荷载作用下产生的最大 挠度与跨长的比值不能超过许用的单位长 度的挠度来表示刚度条件:
• 一般钢筋混凝土梁的
• 钢筋混凝土吊车梁的Fra bibliotek例题9-25
• 一简支梁由№28b工字钢制成,跨中承受一集中 荷载,已知F=20kN,l=9m,E=210Gpa,[] =170MPa, 。试校核梁正应力强度和 刚度。
•最大弯矩
•查表№28b工字钢 •强度校核
四、提高梁刚度的措施
• (一)提高梁的弯曲刚度EI • 1、由于同类材料的E值相差不多; • 2、增大惯性矩 I • 使材料尽量分布在远离中性轴的地方 • 通常采用工字形、箱形、圆环形截面 (二)减小梁的跨度
• 梁的变形与跨长l的三次或四次冪成正比,设法减小梁的跨度,将 会有效地减小梁的变形 • 1、将简支梁的支座向中间适当移动, • 2、在梁的中间增加支座。
(三)改善荷载的分布情况
• 1、将集中力分散作用 • 2、改为分布荷载
• 1、根据:由于梁的变形与荷载成线性关系。 所以,可以用叠加法计算梁的变形。 • 2、方法:即先分别计算每一种荷载单独作 用时所引起梁的挠度和转角,然后再将它 们代数相加,就得到梁在几种荷载共同作 用下的挠度或转角。
例题9-24
• 试用叠加法计算简支梁的跨中截面挠度yC 与A截面的转角A
例题9-24