利用空间向量知识求空间中的二面角PPT课件

合集下载

利用空间向量知识求空间中的二面角

利用空间向量知识求空间中的二面角
ຫໍສະໝຸດ 故所求两平面所成角的余弦值为
所以 cos〈n1,n2〉=
所以n1=(1,1,1).同理可求得平面BMN的一个法向量n2=(1,-1,-1).
令x=1,解得y=1,z=1,
方法二:设平面AMN的法向量n1=(x,y,z).
故所求两平面所成角的余弦值为
练习:如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC,PD,BC的中点.
易知 =(0,0,1), =(1,0,0), =(-2,1,-1),
01
设平面DFG的法向量m=(x1,y1,z1),
02
则 解得 令x1=1,得m=(1,2,0)是平面DFG的一个法向量.
03
01
设平面EFG的法向量n=(x2,y2,z2),
05
所以cos θ=
03
因为cos〈m,n〉=
01
知识点:二面角
01
用向量方法求二面角 平面α与β相交于直线l,平面α的法向量为n1,平面β的法向量为n2,<n1,n2>=θ,则二面角α-l-β为θ或π-θ.设二面角大小为φ,则|cosφ|=__________=__________.
|cosθ|
01
02
利用向量法求二面角的两种方法
例题讲解:正方体ABEF-DCE′F′中, M,N分别为AC,BF的中点(如图),求平面MNA与平面MNB所成角的余弦值.
【解析】方法一:设正方体棱长为1.以B为坐标原点,BA,BE,BC所在直线分别为x轴,y轴,z轴建立空间直角坐标系B-xyz,则A(1,0,0),B(0,0,0).取MN的中点G,连接BG,AG,则 因为△AMN,△BMN为等腰三角形, 所以AG⊥MN,BG⊥MN.所以∠AGB为 二面角的平面角或其补角. 因为 所以

空间向量应用-二面角

空间向量应用-二面角

04
二面角的应用
在几何学中的应用
向量投影
在求解向量的投影时,可以利用二面 角的概念,通过计算向量在某一平面 上的投影长度,来得到该向量与该平 面的夹角。
向量夹角
二面角的概念可以用于计算两个向量 的夹角,通过比较两个向量的夹角与 二面角的夹角,可以判断两个向量的 方向关系。
在物理学中的应用
力的合成与分解
建筑设计
在建筑设计中,利用二面角的概念可以确定建筑物的位置、方向和高度等信息, 以保证建筑物的安全和稳定性。
05
空间向量与二面角的关系
向量与二面角的关联
向量是既有大小又有方向的量,其大 小和方向可以用来表示二面角的大小 和方向。
二面角的大小和方向可以通过两个向 量的夹角来描述,这个夹角就是二面 角的平面角。
二面角的向量定义
总结词
二面角的向量定义是通过向量的投影 和叉积来定义的,它是一个标量值, 其大小等于两个向量的叉积的绝对值 再除以两向量的模的乘积。
详细描述
二面角的向量定义是通过向量的投影和叉积来 描述的。设两非零向量a和b分别属于两个半平 面,那么二面角θ的大小可以用公式 ∣a×b∣/∣a∣∣b∣表示,其中a×b表示向量a和b 的叉积,∣a∣和∣b∣分别表示向量a和b的模。这 个标量值的大小就等于二面角θ的大小。
二面角的性质
总结词
二面角具有一些重要的性质,如二面角的取值范围是[0,π],二面角的大小与观察方向有关,以及二面角的补角等 于其平面角的补角等。
详细描述
首先,二面角的取值范围是[0,π],这是由其几何定义直接得出的。其次,二面角的大小与观察方向有关,即观察 方向的不同可能导致二面角的大小发生变化。最后,二面角的补角等于其平面角的补角,这是由向量的性质得出 的。

用空间向量求空间角课件(共22张PPT)

用空间向量求空间角课件(共22张PPT)

向量的加法与数乘
向量的加法满足平行四边形法则或三 角形法则,即$vec{a} + vec{b} = vec{b} + vec{a}$。
数乘是指实数与向量的乘积,满足分 配律,即$k(vec{a} + vec{b}) = kvec{a} + kvec{b}$。
向量的数量积
向量的数量积定义为$vec{a} cdot vec{b} = left| vec{a} right| times left| vec{b} right| times cos theta$,其中$theta$为两 向量的夹角。
数量积满足交换律和分配律,即$vec{a} cdot vec{b} = vec{b} cdot vec{a}$和$(lambdavec{a}) cdot vec{b} = lambda(vec{a} cdot vec{b})$。
03 向量的向量积与混合积
向量的向量积
定义
两个向量a和b的向量积是一个向量,记作a×b,其模长为 |a×b|=|a||b|sinθ,其中θ为a与b之间的夹角。
适用范围
适用于直线与平面不垂直的情况。
利用向量的混合积求二面角
1 2 3
定义
二面角是指两个平面之间的夹角。
计算公式
cosθ=∣∣a×b×c∣∣∣∣a∣∣∣∣b∣∣∣∣c∣∣,其中a、 b和c分别是三个平面的法向量,θ是两个平面之 间的夹角。
适用范围
适用于两个平面不平行的情况。
06 案例分析
案例一:利用空间向量求线线角
定义
线线角是指两条直线之间的夹角。
计算公式
cosθ=∣∣a⋅b∣∣∣∣a∣∣∣∣b∣∣∣, 其中a和b是两条直线的方向向量,

立体几何中的向量方法求空间角 ppt课件

立体几何中的向量方法求空间角 ppt课件

a, b
rr
结论:cos |cosa,b|

(2011·陕西卷)如图,在△ABC中,∠ABC
=60°,∠BAC=90°,AD是BC上的高,沿AD 把△ABD折起,使∠BDC=90°.
• 设E为BC的中点,求AE与DB夹角的余弦值.
z
y
x
易得D(0,0,0),B(1,0,0),C(0,3,0),
r uuur n, BA
2
r uuur n, BA
B
2
B
r
ruuu r n
结论:sin |cosn,AB|
• 1.若直线l的方向向量与平面α的法向量的夹 角等于120°,则直线l与平面α所成的角等于(
)

A.120°
B.60°

C.30°
D.60°或30°
• 解析: 由题意得直线l与平面α的法向量所在 直线的夹角为60°,∴直线l与平面α所成的角
b Br
An
sin | cosn,AB|
3.二面角:
B
O
①方向向量法:
r n
B
A
C
l
D
②法向量法:
【注意】法向量的方向:一
coscosu A uB ur,C uuD ur uu A uuu B rurC uuuu D uu rr
进一出,二面角等于法向量 夹角;同进同出,二面角等
ABCD 于法向量夹角的补角。
• (2)分别在二面角的两个平面内找到与棱垂直 且以垂足出发的两个向量,则这两个向量的夹 角的大小就是二面角的大小.
• 以上两种方法各有利弊,要善于结合题目的特 点选择适当的方法解题.
rC
rD
1.异面直线所成r r角: a

人教B版高中数学选择性必修第一册精品课件 第1章 空间向量与立体几何 1.2.4 二面角

人教B版高中数学选择性必修第一册精品课件 第1章 空间向量与立体几何 1.2.4 二面角
θ=<n1,n2>或π-<n1,n2>,特别地,sin θ=sin<n1,n2>.
3.设a=(0,1,1),b=(1,0,1)分别是平面α,β的两个法向量,则锐二面角α-l-β的大
小是(
)
A.45° B.90°
C.60°D.120°
解析:设锐二面角α-l-β的大小是θ,
|·|
1
1
则 cos θ=|||| =
= .

答案:B

2
)
2.在正四面体ABCD中,二面角A-BC-D的余弦值为(
1
A.2
1
B.3
3
C. 3
)
3
D. 2
解析:如图,设BC的中点为E,底面正三角形BCD的中心为O,则∠AEO就是二
面角A-BC-D的平面角.
3
3
1
在 Rt△AOE 中,AE= 2 AB,EO= 6 AB,则 cos∠AEO= = 3.
二面角B-AP-C的大小.
解:如图,过点B作BM⊥AC交AC于点M,过点M作MN⊥AP交AP于点N,连接
BN,由三垂线定理知BN⊥PA.
∴∠MNB为所求二面角的平面角.
设AB=BC=AC=PC=1,
3
2
∴BM= ,MN= ,
2
4
3
∴tan∠MNB= 2 = √6.故∠MNB=arctan√6,
2
4
APC的一个法向量.
·
∵cos<a,n>=||||=0,∴<a,n>=90°,
∴二面角A-PC-B为90°.
用法向量法求二面角的大小的优点是不需要确定二面角的平面角,缺点是
计算量大.若二面角两个半平面的法向量分别是n1,n2,设二面角的大小为θ,

向量法-求二面角大小

向量法-求二面角大小

空间向量法---求二面角的大小
运用“空间向量法”---求“二面角的大小”的解题步骤:
① 建立空间直角坐标系; ② 求出所需各点的坐标; ③ 求出两个平面的法向量; ④ 求出两个法向量的夹角; ⑤ 写出所求二面角的大小。
空间向量法---求二面角的大小
运用“空间向量法”---求“二面角的大小”的解题步骤:
(1) 证明: AN⊥平面PAD .
(2) 求二面角C-AM-N的大小 .
P
M
A
D
B
NC
【练习3】 如图, 在四棱锥P-ABCD中, 底面是边长为2的菱形, ∠ABC=60O , PA⊥底面ABCD,PA=2, M,N分别为PC,BC的中点.
(1) 证明: AN⊥平面PAD .
(2) 求二面角C-AM-N的大小 .
∴ cosq =
6
3
得 tanq =
2
2

所求面SCD与面SBA所成二面角的正切值是22
【练习2】 已知点E、F分别是正方体ABCD-A1B1C1D1的棱BB1、 CC1上的点, 且 BE1=2EB, CF=2FC1 .
(1) 求面AEF与面ABC所成二面角的正切值 .
【练习3】 如图, 在四棱锥P-ABCD中, 底面是边长为2的菱形, ∠ABC=60O , PA⊥底面ABCD,PA=2, M,N分别为PC,BC的中点.
=
3 3
由条件知,二面角A-CD-E为锐角,∴
所求二面角的余弦值为
3 3
【练习1】 如下图, 在底面是直角梯形的四棱锥S-ABCD中,
∠ABC=90O
,
SA⊥面ABCD,SA=AB=BC=1,
AD=
1 2
.

高中数学第二章空间向量与立体几何夹角的计算空间向量求二面角的方法素材

高中数学第二章空间向量与立体几何夹角的计算空间向量求二面角的方法素材

空间向量求二面角的方法方法一:先作出二面角的平面角,再利用向量的内积公式求解:设∠AOB 是二面角l αβ--的一个平面角,则向量OA 与OB 所成的角就是所求的二面角的大小.例1 正四面体ABCD 中,求相邻两个面所成的二面角.解析:如图1,取BC 边的中点E,连结AE 、DE ,则AE⊥BC,DE⊥BC,所以∠AED 就是正四面体的两个相邻面ABC 与DBC 所成二面角的平面角,且BC⊥平面ADE ,∴BC⊥AD,∴0EC DA =.设正四面体棱长为1.∵()()ED EA EC CD EC CD DA =+++ =222EC EC CD EC DA CD DA CD ++++ 11121cos120011cos1201424=+⨯⨯⨯++⨯⨯+=. 又在△ABC 与△BCD 中,可求得32ED EA ==, ∴cos ED EAED EA ED EA =,11433322==⨯. 故正四面体的两个相邻面所成的二面角大小为1arccos3.方法二:利用法向量求解:设1n 是平面α的法向量,2n 是平面β的法向量.①若两个平面的二面角如图2所示的示意图,则1n 与2n 之间的夹角θ就是欲求的二面角;②若两个平面的二面角如图3所示的示意图,设1n 与2n 之间的夹角为θ.则两个平面的二面角为πθ-. 例2 如图4,△ABC 是以∠B 为直角的直角三角形,SA⊥平面ABC ,SA=BC=2,AB=4,D 、N 分别是BC 、AB 的中点.求二面角S —ND-A 的余弦值.解析:平面ABC 的法向量是AS ,设平面SND 的法向量为BC AB AS λμ=++n .∵SA⊥平面ABC ,∴SA⊥BC,SA⊥AB,∴0AS BD =,0AS BN =,0AS BC =,0AS AB = 又AB⊥BC,∴0BC BN =,0AB BD =,0BC NA =. 由()()ND BC AB AS BD BN λμ=++-n 280BC BD AB BN λμλμ=-=+=。

第7讲 利用空间向量求空间角、空间距离

第7讲 利用空间向量求空间角、空间距离

[注意] 直线与平面所成角的范围为[0,π2],而向量之间的夹角的范围为 [0,π],所以公式中要加绝对值.
6
利用空间向量求空间角、空间距离
《高考特训营》 ·数学 返 回
3.二面角
(1)若 AB,CD 分别是二面角α­l-β 的两个平面内与棱 l 垂直的异面直线,
则二面角(或其补角)的大小就是向量A→B与C→D的夹角,如图①.
逻辑推理
的距离问题和简单夹角问题.
2.平面与平面的夹 数学运算
2.了解向量方法在研究立体几何问题中 角(二面角)
直观想象
的作用
3.距离问题
2
利用空间向量求空间角、空间距离
《高考特训营》 ·数学 返 回
01 02
知识特训 能力特训
3
利用空间向量求空间角、空间距离
《高考特训营》 ·数学 返 回
01
知识特训
范围为(0,π),所以公式中要加绝对值.
5
利用空间向量求空间角、空间距离
《高考特训营》 ·数学 返 回
2.直线与平面所成角 如图所示,设 l 为平面α的斜线,l∩α=A,a 为 l 的方向向量,n 为平面α 的法向量,θ为 l 与α所成的角,则 sin θ=|cos 〈a,n〉|=||aa|·|nn||.
(3)点到平面的距离
《高考特训营》 ·数学 返 回
如 B 到图平所面示,α 已的知距离AB为为|B→平O|面=_α_|A的→_B_|n一_·_| 条_n_| 斜__线__段.,n 为平面 α 的法向量,则点
11
利用空间向量求空间角、空间距离
《高考特训营》 ·数学 返 回
[记结论·提速能] 【记结论】
9
利用空间向量求空间角、空间距离
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例题讲解:正方体ABEF-DCE′F′中, M,N分别为 AC,BF的中点(如图),求平面MNA与平面MNB所成 角的余弦值.
第七章 空间中的向量方法
【解析】方法一:设正方体棱长为1.以B为坐标原点,
BA,BE,BC所在直线分别为x轴,y轴,z轴建立
空间直角坐标系B-xyz,则A(1,0,0),B(0,0, 0).取MN的中点G,连接BG,AG,G(则1,1,1 ). 因为△AMN,△BMN为等腰三角形, 2 4 4
利用向量法求二面角的两种方法
(两1个)若平A面B,的CD夹分角别的是大两小个就平是面向α量,β内与与AuuBur棱的l垂夹Cu直uDur角的,如异图面①直.线,则 (2)设n1,n2分别是平面α,β的法向量,则向量n1与n2的夹角(或 其补角)就是两个平面夹角的大小,如图②
第七章 空间中的向量方法
1 8 3
=-1. 33
88
第七章 空间中的向量方法
故所求两平面所成角的余弦值为 1 .
3
方法二:设平面AMN的法向量n1=(x,y,z).
A u u M u u r= (- 1 , 0 , 1 ), A u u N u r= (- 1 , 1 , 0 ) .
22
22
uuuur
AM uuur
gn1
0,
AN gn1 0,
1 2
x
1 2
z
0,
1 2
x
1 2
y
0.
令x=1,解得y=1,z=1,
所以n1=(1,1,1).同理可求得平面BMN的一个法向
所量以n2=co(1s〈,n-1,1,n2-〉1=).n n11gn n22
= 1 3
=-1. 33
故所求两平面所成角的余弦值为 1 .
3
第七章 空间中的向量方法
第七章 空间中的向量方法
3.用向量方法求二面角 平面α与β相交于直线l,平面α的法向量为n1,平面β的
法 面角向大量小为为n2,φ,<n则1,|cons2φ>||c==os_θθ_,|__则__二__面__角||n=n1α1|··_n|-n_22|_|l-__β_为__θ_或_.π-θ.设二
第七章 空间中的向量方法
第七章 空间中的向量方法
所以AG⊥MN,BG⊥MN.所以∠AGB为
二面角的平面角或其补角.
因为 G uuA ur= (1, - 1, - 1),
244
G uuB u r= (- 1, - 1, - 1),
所以
cos〈 G uuA ur, G uu2 B ur〉=4 uG uuuA uurrgG uuuu4 B uurr= GAGB
第七章 空间中的向量方法
课后训练: (1)在一个二面角的两个面内都和二面角的棱垂直的两个 向量分别为 (0,-1,3), (2,2,4), 则这个二面角的余弦值为( )
A .1 5 B . - 1 5 C .1 5 D . 以 上 都 不 对
6
6
3Байду номын сангаас
(2)PA⊥平面ABC,AC⊥BC,PA=AC=1,BC2=. 求二面角A-PB-C的余弦值.
uuur

m
gD F uuur
解 0,得
m gFG 0,
z12x10,y1 z1 0.
令x1=1,得m=(1,2,0)是平面DFG的一个法向 量.
第七章 空间中的向量方法
设平面EFG的法向量n=(x2,y2,z2), 同理可得n=(0,1,1)是平面EFG的一个法向量. 因为cos〈m,n〉=|m m |g g |n n|=52 g2=1 20=5 10, 设二面角D-FG-E的平面角为θ,由图可知θ=π- 〈m,n〉, 所以cos θ=- 1 0 , 所以二面角D-F5 G-E的余弦值- 为51 0 , .
F(0,0,1),G(-2,1,0).
(1)证明:由于
uuur PA
=(0,2,-2),
u ur EF
=(1,0,0),
则 P uuA urg=E uuF r1×0+0×2+(-2)×0=0,
所以PA⊥EF.
第七章 空间中的向量方法
(2)易知 Du=uuFr (0,0,1), =EuuFr(1,0,0), =FuuG(ur-2, 1,-1), 设平面DFG的法向量m=(x1,y1,z1),
练习:如图所示,四棱锥P-ABCD中,底面ABCD为 正方形,PD⊥平面ABCD,PD=AB=2,E,F,G 分别为PC,PD,BC的中点. (1)求证:PA⊥EF. (2)求二面角D-FG-E的余弦值.
第七章 空间中的向量方法
【解析】以D为坐标原点,建立如图所示的空间直角坐标系
D-xyz,D(0,0,0),A(0,2,0),C(-2,0,0),P(0,0,2),E(-1,0,1),
第七章 空间中的向量方法
课堂小结:利用空间向量求二面角的方法 (1)若AB,CD分别是两个平面α,β内与棱l垂直的异面直 线,则两个平面的夹角的大小就是向量AuuBur 与CuuDur 的夹角。。。。 (2)设n1,n2分别是平面α,β的法向量,则向量n1与n2的夹角(或其 补角)就是两个平面夹角的大小。
第八章 第七讲 立体几何中的向量方法
第3课时 利用向量知识求空间二面角
第七章 空间中的向量方法
掌握利用向量方法解决面面的夹角的求法. 重点:二面角与向量夹角的关系. 难点:如何用直线的方向向量和平面的法向量来表 达线面角和二面角.
第七章 空间中的向量方法
知识点:二面角 温故知新 1.回顾复习二面角及其平面角的定义,求法. 思维导航 2.怎样用空间向量来求二面角的大小?
相关文档
最新文档