基于密度方法的聚类精品PPT课件
聚类分析PPT

系统聚类 K-均值聚类
THANKS
感谢您的聆听!
聚类分析主要用于探索性研究,其分析结果可提供多个可能的解,最终解的选择需 要研究者的主观判断和后续分析
聚类分析的解完全依赖于研究者所选择的聚类变量,增加或删除一些变量对最终解 都可能产生实质性的影响
不管实际数据中是否存在不同的类别,利用聚类分析都能得到分成若干类别的解
聚类分析的概述
1.概念 2.分类 3.注意点
对样本进行分类称为Q型聚类分析 对指标进行分类称为R型聚类分析
聚类分析的概述
1.概念
2.分类
3.注意点 4.操作步骤
从数据挖掘的角度看,又可以大致分为四种:
划分聚类(代表是K-Means算法,也称K-均值聚类算法) 层次聚类 基于密度的聚类 基于网格的聚类
聚类分析的概述
1.概念
2.分类
3.注意点 4.操作步骤
聚类分析的概述
1.概念
2.分类 3.注意点 4.操作步骤
三个特征:
(1)适用于没有先验知识的分类。 (2)可以处理多个变量决定的分类。 (3)是一种探索性分析方法。
聚类分析的概述
1.概念
2.分类
3.注意点 4.操作步骤
从数据分析的角度看,它是对多个样本进行定量分析的多元统计分析方法,可以分为两种:
聚类分析的概述
1.概念
2.分类 3.注意点 4.操作步骤
两个距离概念 按照远近程度来聚类需要明确两个概念: ✓ 点和点念
2.分类 3.注意点 4.操作步骤
在商业上,其被用来发现不同的客户群,并且通过购买模式刻画不同的客户群的特征; 在生物上,其被用来动植物分类和对基因进行分类,获取对种群固有结构的认识; 在电子商务上,聚类分析在电子商务中网站建设数据挖掘中也是很重要的一个方面, 通过分组聚类出具有相似浏览行为的客户,并分析客户的共同特征,可以更好的帮助 电子商务的用户了解自己的客户,向客户提供更合适的服务; 在因特网应用上,聚类分析被用来在网上进行文档归类来修复信息。
数据挖掘2015最新精品课程完整课件(第14讲)---基于密度的聚类.

28
OPTICS:通过点排序识别聚类结构
基于密度方法的聚类- DBSCAN
DBSCAN 算法根据以上的定义在数据库中发现簇和噪声 。簇可等价于集合D中簇核心对象密度可达的所有对象的 集合。 DBSCAN通过检查数据集中每个对象的ε-邻域来寻找聚类 。如果一个点p的ε-邻域包含多于MinPts个对象,则创建 一个p作为核心对象的新簇C。然后,DBSCAN从C中寻找 未被处理对象q的ε-邻域,如果q的ε-邻域包含多MinPts个 对象,则还未包含在C中的q的邻点被加入到簇中,并且 这些点的ε-邻域将在下一步中进行检测。这个过程反复执 行,当没有新的点可以被添加到任何簇时,该过程结束。 具体如下:
OPTICS:通过点排序识别聚类结构
算法思路 首先检查数据对象集合D中任一个对象的E—邻域。设定其 可达距离为“未定义”,并确定其核心距离,然后将对象及其 核心距离和可达距离写入文件。 如果P是核心对象,则将对象P的E—邻域内的对象N (P)插 入到一个种子队列中,包含在种子队列中的对象p’按到其直 接密度可达的最近的核心对象q的可达距离排序。 种子队列中具有最小可达距离的对象被首先挑选出来,确 定该对象的E一邻域和核心距离, 然后将其该对象及其核心距离和可达距离写入文件中,如 果当前对象是核心对象,则更多的用于扩展的后选对象被插入 到种子队列中。 这个处理一直重复到再没有一个新的对象被加入到当前的 种子队列 中。
顶点数
p q
MinPts = 5
Eps = 1 cm
4
DBSCAN
密度 = 制定半径 (Eps)内点的个数 如果一个对象的 Eps 邻域至少包含最小数目 MinPts 个对象,则称该对象为核心对象(Core point) 如果一个对象是非核心对象, 但它的邻域中有核 心对象,则称该对象为边界点( Border point ) 除核心对象和边界点之外的点是噪声点( Noise point )
聚类分析(五)——基于密度的聚类算法OPTICS

聚类分析(五)——基于密度的聚类算法OPTICS 1 什么是OPTICS算法在前⾯介绍的DBSCAN算法中,有两个初始参数E(邻域半径)和minPts(E邻域最⼩点数)需要⽤户⼿动设置输⼊,并且聚类的类簇结果对这两个参数的取值⾮常敏感,不同的取值将产⽣不同的聚类结果,其实这也是⼤多数其他需要初始化参数聚类算法的弊端。
为了克服DBSCAN算法这⼀缺点,提出了OPTICS算法(Ordering Points to identify theclustering structure)。
OPTICS并不显⽰的产⽣结果类簇,⽽是为聚类分析⽣成⼀个增⼴的簇排序(⽐如,以可达距离为纵轴,样本点输出次序为横轴的坐标图),这个排序代表了各样本点基于密度的聚类结构。
它包含的信息等价于从⼀个⼴泛的参数设置所获得的基于密度的聚类,换句话说,从这个排序中可以得到基于任何参数E和minPts的DBSCAN算法的聚类结果。
2 OPTICS两个概念核⼼距离:对象p的核⼼距离是指是p成为核⼼对象的最⼩E’。
如果p不是核⼼对象,那么p的核⼼距离没有任何意义。
可达距离:对象q到对象p的可达距离是指p的核⼼距离和p与q之间欧⼏⾥得距离之间的较⼤值。
如果p不是核⼼对象,p和q之间的可达距离没有意义。
例如:假设邻域半径E=2, minPts=3,存在点A(2,3),B(2,4),C(1,4),D(1,3),E(2,2),F(3,2)点A为核⼼对象,在A的E领域中有点{A,B,C,D,E,F},其中A的核⼼距离为E’=1,因为在点A的E’邻域中有点{A,B,D,E}>3;点F到核⼼对象点A的可达距离为,因为A到F的欧⼏⾥得距离,⼤于点A的核⼼距离1.3 算法描述OPTICS算法额外存储了每个对象的核⼼距离和可达距离。
基于OPTICS产⽣的排序信息来提取类簇。
算法描述如下:算法:OPTICS输⼊:样本集D, 邻域半径E, 给定点在E领域内成为核⼼对象的最⼩领域点数MinPts输出:具有可达距离信息的样本点输出排序⽅法:1 创建两个队列,有序队列和结果队列。
数据挖掘--聚类课件ppt

混合变量相异度计算
p
d(f) ij
d (i, j) 1
p
其中
d
( ij
f
) 为单个类型变量定义的距离;
p为变量的个数。
聚类分析中的数据类型
向量对象的距离算法
0 1 2 2
在某些应用中,如信息
0
4
3
0
检索,文本文档聚类,生 .......... .........
物学分类中,需要对大量
主要聚类方法的分类
划分聚类方法
划分方法将给定的数据集划分成k份,每份为一个簇。 划分方法通常采用迭代重定位技术,尝试通过对象 在簇之间的移动在改进划分。
主要聚类方法的分类
层次聚类方法
层次聚类方法创建给定数据 对象集的层次分解。一般可 以分为凝聚法与分裂法。
凝聚法:也称为自底向上的 方法,开始将每个对象形成 单独的簇,然后逐次合并相 近的对象或簇,直到满足终 止条件。
计算欧几里得距离与曼哈顿距离
聚类分析中的数据类型
二元变量
0 1
属性的取值仅为0或1, 0表示该变量不会出现,
1
1
..........
1表示该变量出现。
..........
设二q元为变对量象相i与异j度都计取算1的变量的 ..个.....数...
0 1
0
0
.........
.........
(6) UNTIL E不再明显地发生变化。
k-means算法
1. 初始化聚类中心 (k=3);
2. 根据每个样本到各个中 心的距离,计算k个簇。
3. 使用每个簇的样本,对 每个簇生成新的中心。
.......
4
基于密度的聚类和基于网格的两大聚类算法

DENCLUE:基于密度分布函数的聚类
2
DBSCAN
基于密度的簇是密度相连的点的集合 主要思想
寻找被低密度区域分离的高密度区域 只要临近区域的密度(单位大小上对象或数据点的数
目)超过某个阈值,就继续聚类
13
OPTICS:通过点排序识别聚类结构
数据集的排序可以用图形描述,有助于可视化和理解数据集 中聚类结构,例如下图是一个简单的二维数据集的可达图。 其中三个高斯“凸起”反映数据集中比较稠密的部分。
14
OPTICS:通过点排序识别聚类结构
Step 1:有序种子队列初始为空.结果队列初始为空 ; Step 2:如果所有点处理完毕.算法结束;否则选择一个未处理对象( 即不在结果队列中)放人有序种子队列: Step 3:如果有序种子队列为空,返回Step 2,否则选择种子队列中的 第一个对象P进行扩张: Step 3.1:如果P不是核心节点.转Step 4;否则,对P 的E邻域内任一 未扩张的邻居q 进行如下处理 Step 3.1.1:如果q已在有序种子队列中且从P到 q的可达距离小于旧值 ,则更新q的可达距离,并调整q到相应位置以保证队列的有序性; Step 3.1.2:如果q不在有序种f队列中,则根据P 到q的可达距离将其插 入有序队列; Step 4:从有序种子队列中删除P.并将P写入结果队列中,返回Step 3
Step4 否则(即p为核心对象),给 Neps(p)中的所有对象打上一个新的类标签 newid,然后将这些对象压入堆栈的Seeds中; Step5 让CurrentObject = Seeds.top;然后检索属于Neps(CurrentObject) 的 所有对象;如果| Neps(CurrentObject) |>MinPts,则剔除已经打上标记的 对象,将余下的未分类对象打上类标签newid,然后压入堆栈; Step6 Seeds.pop,判断Seeds是否为空,是,则执行Step1 ,否则执行Step5。
常用聚类算法(基于密度的聚类算法

常⽤聚类算法(基于密度的聚类算法前⾔:基于密度聚类的经典算法 DBSCAN(Density-Based Spatial Clustering of Application with Noise,具有噪声的基于密度的空间聚类应⽤)是⼀种基于⾼密度连接区域的密度聚类算法。
DBSCAN的基本算法流程如下:从任意对象P 开始根据阈值和参数通过⼴度优先搜索提取从P 密度可达的所有对象,得到⼀个聚类。
若P 是核⼼对象,则可以⼀次标记相应对象为当前类并以此为基础进⾏扩展。
得到⼀个完整的聚类后,再选择⼀个新的对象重复上述过程。
若P是边界对象,则将其标记为噪声并舍弃缺陷:如聚类的结果与参数关系较⼤,导致阈值过⼤容易将同⼀聚类分割,或阈值过⼩容易将不同聚类合并固定的阈值参数对于稀疏程度不同的数据不具适应性,导致密度⼩的区域同⼀聚类易被分割,或密度⼤的区域不同聚类易被合并DBSCAN(Density-Based Spatial Clustering of Applications with Noise)⼀个⽐较有代表性的基于密度的聚类算法。
与层次聚类⽅法不同,它将簇定义为密度相连的点的最⼤集合,能够把具有⾜够⾼密度的区域划分为簇,并可在有“噪声”的空间数据库中发现任意形状的聚类。
基于密度的聚类⽅法是以数据集在空间分布上的稠密度为依据进⾏聚类,⽆需预先设定簇的数量,因此特别适合对于未知内容的数据集进⾏聚类。
⽽代表性算法有:DBSCAN,OPTICS。
以DBSCAN算法举例,DBSCAN⽬的是找到密度相连对象的最⼤集合。
1.DBSCAN算法⾸先名词解释:ε(Eps)邻域:以给定对象为圆⼼,半径为ε的邻域为该对象的ε邻域核⼼对象:若ε邻域⾄少包含MinPts个对象,则称该对象为核⼼对象直接密度可达:如果p在q的ε邻域内,⽽q是⼀个核⼼对象,则说对象p从对象q出发是直接密度可达的密度可达:如果存在⼀个对象链p1 , p2 , … , pn , p1=q, pn=p, 对于pi ∈D(1<= i <=n), pi+1 是从 pi 关于ε和MinPts直接密度可达的,则对象p 是从对象q关于ε和MinPts密度可达的密度相连:对象p和q都是从o关于ε和MinPts密度可达的,那么对象p和q是关于ε和MinPts密度相连的噪声: ⼀个基于密度的簇是基于密度可达性的最⼤的密度相连对象的集合。
数据仓库与数据挖掘PPT第10章 聚类方法

3. 连通性相似性度量
数据集用图表示,图中结点是对象,而边代表对象之 间的联系,这种情况下可以使用连通性相似性,将簇定义 为图的连通分支,即图中互相连通但不与组外对象连通的 对象组。
也就是说,在同一连通分支中的对象之间的相似性度 量大于不同连通分支之间对象的相似性度量。
某种距离函数
4. 概念相似性度量
值ε,即:
k
SSE
| o mx |2
x1 oCx
k-均值算法示例
【例10.3】如图10.4所示是二维空间中的10个数据点 (数据对象集),采用欧几里得距离,进行2-均值聚类。其 过程如下:
初始的10个点
(1)k=2,随机选择两个点作为质心,假设选取的质 心在图中用实心圆点表示。
(2)第一次迭代,将所有点按到质心的距离进行划分, 其结果如图10.5所示。
10.1.6 聚类分析在数据挖掘中的应用
① 聚类分析可以用于数据预处理。 ② 可以作为一个独立的工具来获得数据的分布情况。 ③ 聚类分析可以完成孤立点挖掘。
10.1.7 聚类算法的要求
① 可伸缩性。 ② 具有处理不同类型属性的能力。 ③ 能够发现任意形状的聚类。 ④ 需要(由用户)决定的输入参数最少。 ⑤ 具有处理噪声数据的能力。 ⑥ 对输入记录顺序不敏感。 ⑦ 具有处理高维数据的能力。 ⑧ 支持基于约束的聚类。 ⑨ 聚类结果具有好的可解释性和可用性。
只有在簇的平均值被定义的情况下才能使用,那当涉 及有分类属性的数据时该怎么办?
需要事先给出k,即簇的数目 不能处理噪声数据和孤立点 不适合发现非凸面形状的簇
5. 二分k-均值算法
二分k-均值算法是基本k-均值算法的直接扩充,它基于 一种简单的想法:为了得到k个簇,将所有点的集合分为两 个簇,从这些簇中选取一个继续分裂,如此下去,直到产 生k个簇。
《数据挖掘》课程PPT-聚类分析

图像处理
1 2 3
图像分割
在图像处理中,聚类分析可以用于将图像分割成 多个区域或对象,以便进行更细致的分析和处理。
特征提取
通过聚类分析,可以提取图像中的关键特征,如 颜色、形状、纹理等,以实现图像分类、识别和 检索。
图像压缩
通过聚类分析,可以将图像中的像素进行聚类, 从而减少图像数据的维度和复杂度,实现图像压 缩。
03 推荐系统
利用聚类分析对用户和物品进行分类,为用户推 荐相似或相关的物品或服务。
02
聚类分析的常用算法
K-means算法
• 概述:K-means是一种基于距离的聚类算法,通过迭代将数据划分为K个集群,使得每个数 据点与其所在集群的中心点之间的距离之和最小。
• · 概述:K-means是一种基于距离的聚类算法,通过迭代将数据划分为K个集群,使得每个数 据点与其所在集群的中心点之间的距离之和最小。
03 基于模型的聚类
根据某种模型对数据进行拟合,将数据点分配给 不同的模型,常见的算法有EM算法、高斯混合模 型等。
聚类分析的应用场景
01 客户细分
将客户按照其特征和行为划分为不同的细分市场, 以便更好地了解客户需求并提供定制化服务。
02 异常检测
通过聚类分析发现数据中的异常值或离群点,以 便及时发现潜在的问题或风险。
生物信息学
基因表达分析
在生物信息学中,聚类分析可以用于分析基因表达数据, 将相似的基因聚类在一起,以揭示基因之间的功能关联和 调控机制。
蛋白质组学分析
通过聚类分析,可以研究蛋白质之间的相互作用和功能模 块,以深入了解生物系统的复杂性和动态性。
个性化医疗
通过聚类分析,可以根据个体的基因型、表型等特征进行 分类,为个性化医疗提供依据和支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于密度方法的聚类- DBSCAN 所用到的基本术语
定义 密度可达的:如果存在一个对象链p1,p2,…,pn,p1=q, pn=p,对pi∈D,(1<=i<=n),pi+1是从pi关于ε和MitPts直接密度 可达的,则对象p是从对象q关于ε和MinPts密度可达的。
例 在下图中,ε=1cm,MinPts=5,q是一个核心对象,p1是 从q关于ε和MitPts直接密度可达,p是从p1关于ε和MitPts直接密度 可达,则对象p从对象q关于ε和MinPts密度可达的
件不满足则回到步骤2。
k-means优缺点
➢ 主要优点: 是解决聚类问题的一种经典算法,简单、快速。 对处理大数据集,该算法是相对可伸缩和高效率的。 当结果簇是密集的,它的效果较好。
➢ 主要缺点 在簇的平均值被定义的情况下才能使用。 必须事先给出k(要生成的簇的数目),而且对初值敏感,对于不 同的初始值,可能会导致不同结果。 不适合于发现非凸面形状的簇或者大小差别很大的簇。而且,它 对于“躁声”和孤立点数据是敏感的。
密度可达
基于密度方法的聚类- DBSCAN 所用到的基本术语
定义 密度相连的: 如果对象集合D中存在一个对象o,使得对象p 和q是从o关于ε和MinPts密度可达的,那么对象p和q是关于 ε和MinPts密度相连的。
图 密度相连
定义 噪声: 一个基于密度的簇是基于密度可达性的最大的密度相 连对象的集合。不包含在任何簇中的对象被认为是“噪声”。
传统的密度定义:基于中心的方法
➢ 传统基于中心的密度定义为: 数据集中特定点的密度通过该点ε半径之内的点计数(包括本身)来估计。 显然,密度依赖于半径。
基于密度方法的聚类- DBSCAN 所用到的基本术语
定义 对象的ε-邻域:给定对象在半径ε内的区域。 定义 核心对象:如果一个对象的ε-邻域至少包含最小数目MinPts个
边界点:边界点不是核心点,但落在某个核心点的邻域内。 噪声就是那些既不是边界点也不是核心点的对象
图 噪声
DBSCAN算法概念示例 ➢ 如图所示, ε 用一个相应的半径表示,设MinPts=3,请分
析Q,M,P,S,O,R这5个样本点之间的关系。
“直接密度可达”和“密度可达”概念示意描述
解答:根据以上概念知道:由于有标记的各点M、P、O和R的 ε 近邻均包含 3个以上的点,因此它们都是核对象;M是从P“直接密度可达”;而Q则是 从M“直接密度可达”;基于上述结果,Q是从P“密度可达”;但P从Q无 法“密度可达”(非对称)。类似地,S和R从O是“密度可达”的;O、R和S 均是“密度相连”的。
对象,则称该对象为核心对象。
例 下图中,ε=1cm,MinPts=5,q是一个核心对象。 定义 直接密度可达:给定一个对象集合D,如果p是在q的ε-邻域内,而
q是一个核心对象,我们说对象p从对象q出发是直接密度可达的。 例 在下图中,ε=1cm,MinPts=5 ,q是一个核心对象,对象 p1从对象q出发是直接密度可达的。
➢ 层次凝聚的代表是AGNES算法。层次分裂的代表是DIANA算法。
层次聚类优缺点
➢ 层次聚类方法是不可逆的,也就是说,当通过凝聚式的方 法将两组合并后,无法通过分裂式的办法再将其分离到之 前的状态,反之亦然。
➢ 另外,层次聚类过程中调查者必须决定聚类在什么时候停 止,以得到某个数量的分类。
➢ 在不必要的情况下应该小心使用层次聚类方法。
层次聚类方法
➢ 层次聚类方法对给定的数据集进行层次的分解,直到某种条件满足为 止。具体又可分为: 凝聚的层次聚类:一种自底向上的策略,首先将每个对象作为一个簇, 然后合并这些原子簇为越来越大的簇,直到某个终结条件被满足。 分裂的层次聚类:采用自顶向下的策略,它首先将所有对象置于一个 簇中,然后逐渐细分为越来越小的簇,直到达到了某个终结条件。
聚类分析
➢ 回顾
➢ 密度聚类方法
DBSCAN算法 OPTICS 算法
➢ 网格聚类方法
CLIQUE算法
主要内容
回顾
➢ 聚类
聚类(clustering)也称为聚类分析,指将样本分到不同的组中使得同一组中 的样本差异尽可能的小,而不同组中的样本差异尽可能的大。
聚类得到的不同的组称为簇(cluster)。
密度聚类方法
➢ 划分聚类方法 ➢ 层次聚类方法 ➢ 密度聚类方法 :基于密度的聚类方法以数据集在空间分布上的稠
密程度为依据进行聚类,无需预先设定簇的数量,因此特别适合对 于未知内容的数据集进行聚类。 ➢ 网格聚类方法 ➢ 模型聚类方法
基于密度方法的聚类
➢ 密度聚类方法的指导思想是,只要一个区域中的点的密度 大于某个域值,就把它加到与之相近的聚类中去。对于簇 中每个对象,在给定的半径ε的邻域中至少要包含最小数 数目(MinPts)个对象。
➢ 这类算法能克服基于距离的算法只能发现“类圆形”的聚 类的缺点,可发现任意形状的聚类,且对噪声数据不敏感。
➢ 代表算法有:DBSCAN、OPTICS、DENCLUE算法等。
基于密度方法的聚类- DBSCAN
➢ DBSCAN(Density-Based Spatial Clustering of Applications with Noise)一 个比较有代表性的基于密度的聚类算法。与层次聚类方法不同,它将 簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划 分为簇,并可在有“噪声”的空间数据库中发现任意形状的聚类。
k-means 算法
➢ k-means 算法基本步骤
1. 从 n个数据对象任意选择 k 个对象作为初始聚类中心; 2. 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;
并根据最小距离重新对相应对象进行划分; 3. 重新计算每个(有变化)聚类的均值(中心对象); 4. 计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条
一个好的聚类方法将产生以下的聚类 最大化类中的相似性 最小化类间的相似性
聚类ห้องสมุดไป่ตู้分类:
➢ 划分聚类方法 ➢ 层次聚类方法 ➢ 密度聚类方法 ➢ 网格聚类方法 ➢ 模型聚类方法
回顾
划分聚类方法
在基于划分的聚类中,任务就是将数据划分成 K个不相交的点集,使每个子集中的点尽可能 同质。
基于划分的方法 ,其代表算法有 k-means算法 、 K-medoids等