高中数学空间向量的基本定理题库
高中试卷-1.2 空间向量基本定理-提高练(含答案)

1.2 空间向量基本定理-提高练一、选择题1.给出下列命题:①已知a b ^r r ,则()()a b c c b a b c ×++×-=×r r r r r r r r ;②,,,A B M N 为空间四点,若,,BA BM BN 不构成空间的一个基底,那么,,,A B M N 共面;③已知a b ^r r ,则,a b r r 与任何向量都不构成空间的一个基底;④若,a b r r 共线,则,a b r r 所在直线或者平行或者重合.正确的结论的个数为()A .1B .2C .3D .4【答案】C 【解析】对于①,若a b ^r r ,则0a b ×=r r ,故()()a b c c b a a b a c c b c a×++×-=×+×+×-×r r r r r r r r r r r r r r 0c b b c =+×=×r r r r ,故①正确;对于②,若,,BA BM BN 不构成空间的一个基底,,,BA BM BN uuu r uuuu r uuu r 这3个向量共线面,故,,,A B M N 共面,故②正确;对于③,当a b ^r r 时,若c r 与,a b r r 不共面,则{},,a b c r r r 可构成空间的一个基底,故③不正确;对于④,根据向量共线的定义可得其成立,故④正确.2.若{},,a b c r r r 为空间的一组基底,则下列各项中能构成基底的一组向量是( )A .{},,a a b a b +-r r r r r B .{},,b a b a b +-r r r r r C .{},,c a b a b +-r r r r r D .{},,2a b a b a b +-+r r r r r r 【答案】C 【解析】A :因为()()2a b a b a r r r r r ++-=,所以向量,,a a b a b r r r r r+-是共面向量,因此这三个向量不能构成基底;B :因为()(1)()2a b a b b r r r r r ++--=,所以向量,,b a b a b r r r r r +-是共面向量,因此这三个向量不能构成基底;C :因为{},,a b c r r r 为空间的一组基底,所以这三个向量不共面.若,,c a b a b r r r r r +-不构成一组基底,则有()()()()c x a b y a b c x y a x y b r r r r r r r r =++-Þ=++-,所以向量,,a b cr r r 是共面向量,这与这三个向量不共面矛盾,故假设不正确,因此,,c a b a b r r r r r +-能构成一组基底,D :因为312()()22a b a b a b r r r r r r +=+++,所以向量,,2a b a b a b r r r r r r +-+是共面向量,因此,,2a b a b a b r r r r r r +-+不能构成一组基底.故选:C3.已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是边OA ,CB 的中点,点G 在线段MN 上,且使2MG GN =,用向量OA uuu v ,OB uuu v ,OC uuu v 表示向量OG uuu v是( )A .2233OG OA OB OC =++uuu v uuu v uuu v uuu v B .122233OG OA OB OC uuu v uuu v uuu v uuu v =++C .111633OG OA OB OC =++uuu v uuu v uuu v uuu v D .112633OG OA OB OC =++uuu v uuu v uuu v uuu v 【答案】C 【解析】2OG OM MG OM MN 3=+=+uuu r uuuu r uu Q uu r uuuu r uuuu r ,()()2121111OM MO OC CN OM OC OB OC OA OB OC 3333633uuuu r uuuu r uuu r uuu r uuuu r uuu r uuu r uuu r uuu r uuu r uuu r =+++=++-=++111OG OA OB OC 633uuu r uuu r uuu r uuu r \=++ ,故选:C .4.在四面体O-ABC 中,G 1是△ABC 的重心,G 是OG 1上的一点,且OG=3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )14341323【答案】A【解析】如图所示,连接AG 1交BC 于点E ,则E 为BC 中点,AE =12(AB +AC )=12(OB -2OA +OC ),AG 1=23AE =13(OB -2OA +OC ).因为OG =3GG 1=3(OG 1―OG ),所以OG=34OG 1.则OG =34OG 1=34(OA +AG 1)+13OB ―23OA =14OA +14OB +14OC .5.下列关于空间向量的命题中,正确的有( )A.若向量a r ,b r 与空间任意向量都不能构成基底,则//a b r r;B.若非零向量a r ,b r ,c r 满足a b ^r r ,b c ^r r ,则有//a c r r ;C.若OA uuu r ,OB uuu r ,OC uuu r 是空间的一组基底,且111333OD OA OB OC =++uuu r uuu r uuu r uuu r ,则A ,B ,C ,D 四点共面;D.若向量a b +r r ,b c +r r ,c a +r r ,是空间一组基底,则a r ,b r ,c r 也是空间的一组基底.【答案】ACD【解析】对于A :若向量a r ,b r 与空间任意向量都不能构成基底,只能两个向量为共线向量,即//a b r r,故A 正确;对于B :若非零向量a r ,b r ,c r 满足a b ^r r ,b c ^r r ,则a r 与c r 不一定共线,故B 错误;对于C :若OA uuu r ,OB uuu r ,OC uuu r 是空间的一组基底,且111333OD OA OB OC =++uuu r uuu r uuu r uuu r ,则()()1133OD OA OB OA OC OA -=-+-uuu r uuu r uuu r uuu r uuu r uuu r ,即1133AD AB AC =+uuu r uuu r uuu r ,可得到A ,B ,C ,D 四点共面,故C 正确;对于D :若向量a b +r r ,b c +r r ,c a +r r ,是空间一组基底,则空间任意一个向量d u r ,存在唯一实数组(),,x y z ,使()()()()()()d x a b y b c z x z a x c y b y a z c +=++++=+++++u r r r r r r r r r r ,则a r ,b r ,c r 也是空间的一组基底,故D 正确.6.(多选题)若{a ,b ,c }是空间的一个基底,则下列各组中能构成空间一个基底的是( )A.{a ,2b ,3c }B.{a +b ,b +c ,c +a }C.{a +2b ,2b +3c ,3a -9c }D.{a +b +c ,b ,c }【答案】ABD【解析】由于a ,b ,c 不共面,易判断A,B,D 中三个向量也不共面,可以作为一组基向量.对于C,有3(2b +3c )+(3a -9c )=3(a +2b ),故这三个向量是共面的,不能构成基底.二、填空题7.(2020山东泰安实验中学高二月考)在四面体ABCD 中,E 、G 分别是CD 、BE 的中点,若记®®=AB a ,AD b ®®=,AC c ®®=,则AG ®=______.【答案】111244a b c ®®®++【解析】在四面体ABCD 中,E 、G 分别是CD 、BE 的中点,则AG AB BG ®®®=+12AB BE ®®=+11()22AB BC BD ®®®=+´+1()4AB AC AB AD AB ®®®®®=+-+-111442AB AC AD AB ®®®®=++-111244AB AD AC ®®®=++.8.(2020上海复旦附中青浦分校高二月考)在斜三棱柱111A B C ABC -中,BC 的中点为M ,11A B a =uuuu r r ,11A C b =uuuu r r ,1A A c =uuu r r ,则1B M uuuur 可用a r 、b r 、c r 表示为______.【答案】1()2c b a +-r r r 【解析】在1B BM D 中,11B M B B BM =+uuuur uuur uuuu r ,又BC 的中点为M ,12BM BC =uuuu r uuu r 111A B C ABC -Q 是斜三棱柱,11B C BC =uuuu r uuu r ,11B B A A=uuur uuur 111112B M A A B C uuuur uuur uuuu r =+, 在111A B C D 中111111B C AC A B uuuu r uuuu r uuuu r =-11111111()()22B M A A AC A B c b a uuuur uuur uuuu r uuuu r r r r \=+-=+-9.已知直三棱柱ABC-A 1B 1C 1中,∠ABC=120°,AB=2,BC=CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为 .【解析】如图所示.设BA =a ,BC =b ,BB 1=c ,则<a ,b >=120°,c ⊥a ,c ⊥b ,因为AB 1=AB +BB 1=-a +c , BC 1=BC +CC 1=b +c ,cos <AB 1,BC 1>=11|AB 1|·|BC 1|=10. (2020山东省高二期末)如图所示的平行六面体1111ABCD A B C D -中,已知1,AB AA AD ==1BAD DAA Ð=Ð60,°=1BAA Ð30°=,N 为11A D 上一点,且111A N A D l =.若BD AN ^,则l 的值为________;若M 为棱1DD 的中点,//BM 平面1AB N ,则l 的值为________.1,23 【解析】 (1)取空间中一组基底:1,,AB a AD b AA c ===uuu r r uuu r r uuur r ,因为BD AN ^,所以0BD AN ×=uuu r uuu r ,因为11,BD AD AB b a AN AA A N c b l =-=-=+=+uuu r uuu r uuu r r r uuu r uuur uuuu r r r ,所以()()0b a c b l -×+=r r r r ,所以1022l l +-=,所以1l =-;(2)在AD 上取一点1M 使得11A N AM =,连接111,,M N M M M B ,因为11//A N AM 且11A N AM =,所以1111//,NB M B NB M B =,又因为1M B Ì/平面1AB N ,1NB Ì平面1AB N ,所以1//M B 平面1AB N ,又因为//BM 平面1AB N ,且1BM M B B =I ,所以平面1//M MB 平面1AB N ,所以1//MM 平面1AB N ,又因为平面11AA D D Ç平面1AB N AN =,且1MM Ì平面11AA D D ,所以1//M M AN ,所以11AA N MDM V V ∽,所以()111111121A N AA A D DM MD A D l l ===-,所以23l =.三、解答题11.如图所示,在平行六面体ABCD-A 1B 1C 1D 1中,MA =-13AC ,ND =13A 1D ,设AB =a ,AD =b ,AA 1=c ,试用a ,b ,c 表示MN .【答案】见解析【解析】连接AN ,则MN =MA +AN .由已知可得四边形ABCD 是平行四边形,从而可得AC =AB +AD =a +b ,MA =-13AC =-13(a +b ),又A 1D =AD ―AA 1=b -c ,故AN =AD +DN =AD ―ND =AD ―13A 1D =b -13(b -c ),所以MN =MA +AN =-13(a +b )+b -13(b -c )=13(-a +b +c ).12.在正方体ABCD-A 1B 1C 1D 1中,已知E ,F ,G ,H 分别是CC 1,BC ,CD 和A 1C 1的中点.证明:(1)AB 1∥GE ,AB 1⊥EH ;(2)A 1G ⊥平面EFD.【答案】见解析【解析】 (1)设正方体棱长为1,AB =i ,AD =j ,AA 1=k ,则{i ,j ,k }构成空间的一个单位正交基底.AB 1=AB +BB 1=i +k ,GE =GC +CE =12i +12k =12AB 1,∴AB 1∥GE.EH =EC 1+C 1H =12k +-i +j )=-12i -12j +12k ,∵AB 1·EH =(i +k )·-12i -12j +12k =-12|i |2+12|k |2=0,∴AB 1⊥EH.(2)A 1G =A 1A +AD +DG =-k +j +12i ,DF =DC +CF =i -12j ,DE =DC +CE =i +12k .∴A 1G ·DF =-k +j +12i ·i -12j =-12|j |2+12|i |2=0,∴A 1G ⊥DF.A 1G ·DE =-k +j +12i ·i +12k =-12|k |2+12|i |2=0,∴A 1G ⊥DE.又DE ∩DF=O ,∴A 1G ⊥平面EFD.。
高二数学空间向量基本定理与坐标运算试题答案及解析

高二数学空间向量基本定理与坐标运算试题答案及解析1.在直三棱柱中,底面ABC为直角三角形,,. 已知G与E分别为和的中点,D与F分别为线段和上的动点(不包括端点). 若,则线段的长度的最小值为。
【答案】为z轴,则【解析】建立直角坐标系,以A为坐标原点,AB为x轴,AC为y轴,AA1(),,,()。
所以,。
因为,所以,由此推出。
又,,从而有。
【考点】(1)空间向量的坐标运算及空间两点间距离公式的应用;(2)利用二次函数思想求最值。
2.是坐标原点,设,若,则点的坐标应为( )A.B.C.D.【答案】B【解析】根据题意,设点B(x,y,z),由于,且,故可知点的坐标应为,故选B.【考点】空间向量的坐标运算点评:主要是考查了空间中向量的坐标的代数运算,属于基础题。
3.已知向量,若,则______。
【答案】【解析】因为,所以,显然所以【考点】本小题主要考查共线向量的数量关系,考查学生运用公式的能力.点评:向量共线是空间向量的常考内容,记清楚关系直接代入计算即可,难度不大.4.已知,,则的最小值是A.B.C.D.【答案】C【解析】解:因为,,则则利用二次函数的性质得到最小值为,选C5.在直三棱柱中,,已知G与E分别为和的中点,D与F分别为线段AC和AB上的动点(不包括端点).若,则线段DF长度的取值范围为( )A.B.C.D.【答案】C【解析】解:建立如图所示的空间直角坐标系,则A(0,0,0),E(0,1,1 2 ),G( 1 2 ,0,1),F(x,0,0),D(0,y,0)∴ GD =(-,y,-1), EF =(x,-1,- )∵GD⊥EF,∴x+2y-1=0,∴x=1-2yDF2= x2+y2 = (1-2y)2+y2 = 5y2-4y+1 =" 5(y-2" 5 )2+1 5 ∵0<y<1∴当y="2" 5 时,线段DF长度的最小值是又y=1时,线段DF长度的最大值是 1而不包括端点,故y=1不能取;故线段DF的长度的取值范围是:[ ,1).故选A.6.已知a=(1,1,0),b=(-1,0,2),且ka+b与2a-b互相垂直,则k的值是().A.1B.C.D.【答案】D【解析】因为,所以7.空间直角坐标系中,O为坐标原点,已知两点A(3,1,0),B(-1,3,0),若点C满足=α+β,其中α,βR,α+β=1,则点C的轨迹为()A.平面B.直线C.圆D.线段【答案】D【解析】解:因为A(3,1,0),B(-1,3,0),若点C满足=α+β,其中α,βR,α+β=1,则说明A,B,C三点共线,解:设点C的坐标为(x,y,z ),由题意可得(x,y,z )=(3α-β,α+3β,0 ),再由α+β="1" 可得x=3α-β=3-4β,y=α+3β=1+2β,故有 x+2y-5=0,故点C的轨迹方程为x+2y-5=0,则点C的轨迹为直线,故选B.8.在空间直角坐标系中,以点A(4,1,9),B(10,-1,6),C(x,4,3)为顶点的是以BC为斜边的直角三角形,则实数x的值为。
北师版高中数学选择性必修第一册精品课件 第3章 空间向量与立体几何 空间向量基本定理——分层作业

1
1
∴x+y+z=12 + 4 + 3=1.
1 2 3 4 5 6 7 8 9 10 11
2
+ 3 1 1
1
+ 1
4
1
+ .
3
3. [探究点二]若a=e1+e2,b=e2+e3,c=e1+e3,d=e1+2e2+3e3,若e1,e2,e3不共面,当
d=αa+βb+γc时,α+β+γ= 3
解析 在三棱柱 ABC-A1B1C1 中,M,N 分别是 A1B,B1C1 上的点,且
BM=3A1M,C1N=2B1N,
则 = 1 + 1 1 + 1 =
1
=-
4
1
+ 1
4
+
2
+ (
3
1
1
4
+
5
− )=
12
∵ =x1 +y+z (x,y,z∈R),
1 2 3 4 5 6 7 8 9 10 11
共面,不能构成一组基,
2.[探究点二]如图所示,在三棱柱ABC-A1B1C1中,M,N分别是A1B和B1C1上的
点,且BM=3A1M,C1N=2B1N.设 =x1 +y +z (x,y,z∈R),则x+y+z的
1
值为
.
1 2 3 4 5 6 7 8 9 10 11
1
(
1
2
1
+ 1 1 )=2 (1
1
+ )=2 (1
高中数学选择性必修一:1.2空间向量基本定理精选考点提升训练

第一章 1.2空间向量基本定理A 级——基础过关练1.已知{a ,b ,c }是空间的一个基底,则可以与向量p =a +b ,q =a -b 构成基底的向量是( )A .2aB .2bC .2a +3bD .2a +5c【答案】D 【解析】由于{a ,b ,c }是空间的一个基底,所以a ,b ,c 不共面,在四个选项中,只有D 与p ,q 不共面,因此,2a +5c 与p ,q 能构成一组基底.2.如图,设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3GG 1,若OG →=xOA →+yOB →+zOC →,则(x ,y ,z )为( )A .⎝⎛⎭⎫14,14,14B .⎝⎛⎭⎫34,34,34 C .⎝⎛⎭⎫13,13,13D .⎝⎛⎭⎫23,23,23【答案】A 【解析】由已知OG →=34OG 1→=34(OA →+AG 1→)=34[OA →+13(AB →+AC →)]=34OA →+14[(OB→-OA →)+(OC →-OA →)]=14OA →+14OB →+14OC →,从而x =y =z =14.3.已知向量a ,b 满足|a |=5,|b |=6,a·b =-6,则cos 〈a ,a +b 〉=( ) A .-3135B .-1935C .1735D .1935【答案】D 【解析】∵|a |=5,|b |=6,a ·b =-6,∴a ·(a +b )=|a |2+a ·b =52-6=19.|a +b |=a +b2=a 2+2a ·b +b 2=25-2×6+36=7,因此cos 〈a ,a +b 〉=a ·a +b|a |·|a +b |=195×7=1935. 4.如图,在三棱柱ABC -A 1B 1C 1中,M ,N 分别是A 1B ,B 1C 1上的点,且BM =2A 1M ,C 1N =2B 1N .设AB →=a ,AC →=b ,AA 1→=c ,用a ,b ,c 表示向量MN →为( )A .13a +13b -cB .a +13b +13cC .13a -13b +13cD .13a +13b +13c【答案】D 【解析】MN →=BN →-BM →=BB 1→+B 1N →-BM →,因为BM =2A 1M ,C 1N =2B 1N ,BB 1→=AA 1→,所以MN →=AA 1→+13B 1C 1→-23BA 1→=AA 1→+13BC →-23((AA 1→-AB →()=AA 1→+13((AC →-AB →()-23(AA 1→-AB →)=13AA 1→+13AC →+13AB →=13a +13b +13c .5.已知{e 1,e 2,e 3}为空间向量的一个基底,若a =e 1+e 2+e 3,b =e 1+e 2-e 3,c =e 1-e 2+e 3,d =e 1+2e 2+3e 3,且d =αa +βb +γc ,则α,β,γ分别为________.【答案】52,-1,-12 【解析】由题意得a ,b ,c 为三个不共面的向量,∴由空间向量基本定理可知必然存在唯一的有序实数组(α,β,γ),使得d =αa +βb +γc ,∴d =α(e 1+e 2+e 3)+β(e 1+e 2-e 3)+γ(e 1-e 2+e 3)=(α+β+γ) e 1+(α+β-γ) e 2+(α-β+γ) e 3.又d =e 1+2e 2+3e 3,∴⎩⎪⎨⎪⎧α+β+γ=1,α+β-γ=2,α-β+γ=3,解得⎩⎪⎨⎪⎧α=52,β=-1,γ=-12.6.如图,在四棱锥P -ABCD 中,四边形ABCD 为平行四边形,AC 与BD 交于点O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,用基底{a ,b ,c }表示向量PG →=________.【答案】23a -13b +23c 【解析】PG →=PB →+BG →=PB →+23BD →=PB →+23(BA →+BC →)=PB →+23(P A→-PB →+PC →-PB →)=23P A →-13PB →+23PC →=23a -13b +23c .7.从空间一点P 引出三条射线P A ,PB ,PC ,在P A ,PB ,PC 上分别取PQ →=a ,PR →=b ,PS →=c ,点G 在PQ 上,且PG =2GQ ,H 为RS 的中点,则GH →=________(用a ,b ,c 表示).【答案】-23a +12b +12c 【解析】GH →=PH →-PG →=12(b +c )-23a =-23a +12b +12c .8.如图,已知在四面体ABCD 中,AB →=a -2c ,CD →=5a +6b -8c ,对角线AC ,BD 的中点分别为点E ,F ,则EF →=________.【答案】3a +3b -5c 【解析】如图,取BC 的中点G ,连接EG ,FG ,则EF →=GF →-GE →=12CD →-12BA →=12CD →+12AB →=12(5a +6b -8c )+12(a -2c )=3a +3b -5c . 9.如图,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →; (2)A 1N →; (3)MP →+NC 1→.解:(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为N 是BC 的中点,所以A 1N →=A 1A →+AB →+BN →=-a +b +12BC →=-a +b +12AD →=-a +b +12c.(3)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP →=-12a +⎝⎛⎭⎫a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→=⎝⎛⎭⎫12a +12b +c +⎝⎛⎭⎫a +12c =32a +12b +32c . 10.已知四棱锥P -ABCD 的底面是平行四边形,如图,M 是PC 的中点,问向量P A →,MB →,MD →是否可以组成一个基底,并说明理由.解:P A →,MB →,MD →不可以组成一个基底,理由如下:如图,连接AC ,BD 相交于点O ,连接OM . 因为ABCD 是平行四边形, 所以O 是AC ,BD 的中点. 在△BDM 中,MO →=12(MD →+MB →),在△P AC 中,M 是PC 的中点,O 是AC 的中点,则MO →=12P A →,即P A →=MD →+MB →,即P A →与MD →,MB →共面.所以P A →,MB →,MD →不可以组成一个基底.B 级——能力提升练11.给出下列命题:①若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d≠0,则{a ,b ,d }也可作为空间的一个基底;②已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底;③A ,B ,M ,N 是空间四点,如果BA →,BM →,BN →不能构成空间的一个基底,那么A ,B ,M ,N 共面;④已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底.其中真命题的个数是( )A .1B .2C .3D .4【答案】D 【解析】空间任何三个不共面的向量都可作为空间的一个基底,易知①②③④均为真命题.12.若{a ,b ,c }是空间向量的一个基底,且存在实数x ,y ,z 使得x a +y b +z c =0,则x ,y ,z 满足的条件是________.【答案】x =y =z =0 【解析】若x ≠0,则a =-y x b -zx c ,即a 与b ,c 共面.由{a ,b ,c }是空间向量的一个基底,知a ,b ,c 不共面,故x =0,同理y =z =0.13.已知点A 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则点A 在基底{i ,j ,k }下的坐标是________.【答案】(12,14,10) 【解析】设点A 在基底{a ,b ,c }下对应的向量为p ,则p =8a +6b +4c =8i +8j +6j +6k +4k +4i =12i +14j +10k ,故点A 在基底{i ,j ,k }下的坐标为(12,14,10).14.如图,三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长都等于1,∠BAA 1=∠CAA 1=60°. (1)设AA 1→=a ,AB →=b ,AC →=c ,用向量a ,b ,c 表示BC 1→,并求出BC 1的长度; (2)求异面直线AB 1与BC 1所成角的余弦值.解:(1)BC 1→=BB 1→+B 1C 1→=BB 1→+A 1C 1→-A 1B 1→=AA 1→+AC →-AB →=a +c -b , 因为a ·b =|a |·|b |cos ∠BAA 1=1×1×cos(60°=12,同理可得a ·c =b ·c =12,所以|BC 1→|=a +c -b2=a 2+c 2+b 2+2a ·c -2a ·b -2c ·b = 1+1+1+1-1-1= 2. (2)因为AB 1→=a +b , 所以|AB 1→|=a +b2=a 2+b 2+2a ·b =1+1+1= 3.因为AB 1→·BC 1→=(a +b )·(a +c -b )=a 2+a ·c -a ·b +b ·a +c ·b -b 2=1+12-12+12+12-1=1,所以cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=12×3=66.所以异面直线AB 1与BC 1所成角的余弦值为66. C 级——探究创新练15.已知正方体ABCD -A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若向量AE →在以{AA 1→,AB →,AD →}为单位正交基底下的坐标为(1,x ,y ),则x =________,y =________.【答案】12 12 【解析】AE →=AA 1→+A 1E →=AA 1→+12A 1C 1→=AA 1→+12(A 1B 1→+B 1C 1→)=AA 1→+12(AB→+AD →)=AA 1→+12AB →+12AD →.16.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. 解:(1)D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ).(2)D 1F →=12(D 1D →+D 1B →)=D 1D →+12DB →=A 1A →+12(AB →-AD →)=-AA 1→+12AB →-12AD →=-c +12a -12b ,所以x =12,y =-12,z =-1.。
高二数学空间向量基本定理与坐标运算试题答案及解析

高二数学空间向量基本定理与坐标运算试题答案及解析1.三棱锥中,两两垂直且相等,点分别是线段和上移动,且满足,,则和所成角余弦值的取值范围是()A.B.C.D.【答案】C.【解析】以为原点,分别,,为, , 轴建立如图所示的空间直角坐标系.不妨设,, ,则由,得出,,,.于是向量,,所以,令,,则.因为对称轴为,所以关于为递增函数,关于为递增函数.又因为与独立取值,所以,所以和所成角余弦值的取值范围为,即为所求.【考点】立体几何与空间向量.2.点关于原点对称的点的坐标是.【答案】【解析】空间直角坐标系中点的对称关系:,可得.【考点】空间直角坐标系中点的对称关系.3.已知,,,三角形的面积为()A.B.C.D.【答案】B【解析】,所以,所以,故选B.【考点】1.空间向量夹角公式;2.三角形面积公式.4.已知=(2,4,5),=(3,x,y),若∥,则()A.x=6,y=15B.x=3,y=C.x=3,y=15D.x=6,y=【答案】D【解析】因为∥,所以,所以x=6,y=.【考点】空间向量的平行.5.设是正三棱锥,是的重心,是上的一点,且,若,则为()A.B.C.D.【答案】A【解析】由是上一点,且,可得又因为是的重心,所以而,所以,所以,选A.【考点】1.空间向量的加减法;2.空间向量的基本定理.6.已知,当取最小值时,的值等于()A.B.-C.19D.【答案】A【解析】根据空间中两点间的距离公式可得设,,故,根据二次函数的图像可知,该函数的最小值在对称轴上取到,所以当取最小值时,的值等于,选A.【考点】1.空间中两点间的距离问题;2.二次函数的图像与性质.7.设点关于原点的对称点为,则等于()A.B.C.D.【答案】A【解析】关于原点对称的两个点的坐标之间横坐标、纵坐标、坚坐标的数都是相反数,故,所以,故选A.【考点】1.关于原点对称的两个点的坐标;2.空间中两点间的距离公式.8.已知向量,,且,那么等于()A.B.C.D.【答案】A【解析】因为,所以,所以,所以,解得,所以,选答案A.【考点】空间向量平行的坐标关系.9.已知,则的最小值是_______________.【答案】【解析】根据题意,由于,则可知,结合二次函数性质可知当t=时,根号下取得最小值,即可知答案为【考点】向量的数量积点评:主要是考查了运用向量的数量积来求解向量的模长的运用,属于基础题。
人教A版高中同步学案数学选择性必修第一册精品习题课件 第一章 1.2 空间向量基本定理

∴ ⟨,⟩ =
(
+
+ ) −
⋅
⋅
||||
−
=
,
⋅=
×
=
∴异面直线与所成的角为 .
,||
,
=
(
+
−
)
=
.
C级 学科素养创新练
8.已知向量,,可以构成空间向量的一个基底,则这三个向量中哪一个向量
C
[解析]对于A,若,,不全为0,则向量,,共面,与题意矛盾,故A正确;对于B,向量,,
两两共面,但向量,,不共面,故B正确;对于C,向量,,不共面,则不存在实数,,使得
= + ,故C错误;对于D,若向量 + , − , + 共面,则
= ,
∴ = = ( + + ) = + + .故选B.
3.[北师大版教材习题]在平行六面体 − ′′′′中,已知,,′为三条
不共面的线段,若′ = + 2 + 3′,则 + + 的值为() B
2
∠1 = ∠1 = ∠ = 60∘ ,则线段1 的长为____.
[解析]如图, = + + ,
∴ |
|
= ( + +
人教A版1.2空间向量的基本定理基础练习题

6.D
【分析】
由于 是空间的一个基底,则可得 , , 不共面,然后根据空间向量的共面定理,一组不共面的向量构成空间的一个基底,对选项中的向量进行判断即可
【详解】
因为 是空间的一个基底,所以 , , 不共面.
对于A,B,C选项,每组都是不共面的向量,能构成空间的一个基底;
对于D: , , 满足 ,
所以这三个向量是共面向量,故不能构成空间的一个基底.
故选:D.
【点睛】
此题考查了空间向量共面的判断与应用,属于基础题.
7.C
【分析】
将 用 表示,对比系数即可.
【详解】
因为 ,所以 ,故 .
故选:C.
【点睛】
本题考查空间向量的线性运算,一定要结合图形,灵活运用三角形法则和平行四边形法则,本题是一道基础题.
人教A版1.2空间向量的基本定理基础练习题
一、单选题
1.空间四个点O,A,B,C, 为空间的一个基底,则下列说法正确的是()
A.O,A,B,C四点不共线B.O,A,B,C四点共面,但不共线
C.O,A,B,C四点中任意三点不共线D.O,A,B,C四点不共面
2.如图所示,在平行六面体 中,设 , , , 是 的中点,试用 , , 表示 ( )
12.已知 是空间的一个基底,若 ,则 ________.
13.在正三棱柱 中,M为 的重心,若 ,则 _________.
14.如图,在平行六面体 中, 为 与 的交点,若 , , ,用 , , 表示 ,则 ________.
三、解答题
15.已知 平面 ,四边形 为正方形,G为 的重心, ,试用基底 表示 .
新教材高中数学第一章空间向量与立体几何2空间向量基本定理基础过关含解析新人教A版选择性必修第一册

空间向量基本定理基础过关练题组一 空间向量基本定理及相关概念的理解1.设x=a+b ,y=b+c ,z=c+a ,且{a ,b ,c}是空间的一个基底,给出下列向量组:①{a ,b ,x};②{x ,y ,z};③{b ,c ,z};④{x ,y ,a+b+c},则其中可以作为空间的基底的向量组有(深度解析) A.1个 B.2个 C.3个 D.4个2.若p:a ,b ,c 是三个非零向量;q:{a ,b ,c}为空间的一个基底,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件3.已知{e 1,e 2,e 3}为空间的一个基底,若a=e 1+e 2+e 3,b=e 1+e 2-e 3,c=e 1-e 2+e 3,d=e 1+2e 2+3e 3,且d=αa+βb+γc,则α,β,γ分别为 . 题组二 用空间的基底表示空间向量4.在三棱柱A 1B 1C 1-ABC 中,D 是四边形BB 1C 1C 的中心,且AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(深度解析)A.12a+12b+12c B.12a-12b+12c C.12a+12b-12cD.-12a+12b+12c5.(2020广东汕头金山中学高二上期中)已知正方体ABCD-A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +x AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则x ,y 的值分别为( )A.1,1B.1,12 C.12,12 D.12,16.已知PA⊥平面ABCD ,四边形ABCD 为正方形,G 为△PDC 的重心,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =i ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =j ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =k ,试用基底{i ,j ,k}表示AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ .题组三利用空间向量基本定理解决几何问题7.如图,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,平行六面体的各棱长均相等.给出下列结论:①A1M∥D1P;②A1M∥B1Q;③A1M∥平面DCC1D1;④A1M∥平面D1PQB1.其中正确结论的个数为( )A.1B.2C.3D.48.(2020黑龙江省实验中学高二上期中) 如图,在三棱柱ABC-A1B1C1中,底面ABC为正三角形,侧棱垂直于底面,AB=4,AA1=6.若E是棱BB1的中点,则异面直线A1E与AC1所成角的余弦值为( )A.√1313B.2√1313C.3√1313D.√13269.如图所示,在正方体ABCD-A1B1C1D1中,O为AC与BD的交点,G为CC1的中点,求证:A1O⊥平面GBD.10.如图所示,在平行四边形ABCD 中,AD=4,CD=3,∠ADC=60°,PA⊥平面ABCD ,PA=6,求线段PC 的长.能力提升练题组一 利用基底表示空间向量 1.(2020安徽淮北一中高二上期中,)已知M 、N 分别是四面体OABC 的棱OA ,BC 的中点,点P 在线段MN上,且MP=2PN ,设向量AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.16a+16b+16c B.13a+13b+13c C.16a+13b+13cD.13a+16b+16c2.(2019北京第八十中学高二下月考,)已知空间的一个基底{a ,b ,c},m=a-b+c ,n=xa+yb+c ,若m ,n共线,则x= ,y= . 3.(2020广东深圳实验学校高二上期中,)如图,在三棱锥O-ABC 中,G 是△ABC 的重心(三条中线的交点),P 是空间任意一点.(1)用向量AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 表示向量AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,并证明你的结论;(2)设AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +z AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,x ,y ,z∈R,请写出点P 在△ABC 的内部(不包括边界)的充分必要条件(不必给出证明).题组二证明平行和垂直4.(多选)()在三棱锥P-ABC中,三条侧棱PA,PB,PC两两垂直,且PA=PB=PC=3,G是△PAB的重心,E,F分别为BC,PB上的点,且BE∶EC=PF∶FB=1∶2,则下列说法正确的是(深度解析)A.EG⊥PGB.EG⊥BCC.FG∥BCD.FG⊥EF5.(2020海南五指山农垦实验中学高二上期中,)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD=√2AD,若E、F分别为PC、BD的中点.求证:2(1)EF∥平面PAD;(2)EF⊥平面PDC.(用向量方法证明)深度解析6.(2020陕西西北大学附属中学高二上期中,)如图所示,已知四面体ABCD的棱长为1,点E,F,G分别⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b,AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c,{a,b,c}为空间向量的一个基底,计算:⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a,AA是AB,AD,CD的中点,设AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ ;(2)|AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ |.⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA(1)AA7.(2020浙江余姚中学高二上期中,)在所有棱长均为2的三棱柱ABC-A 1B 1C 1中,∠B 1BC=60°,求证:(1)AB 1⊥BC; (2)A 1C⊥平面AB 1C 1.题组三 求线段长度和两条异面直线所成角 8.(多选)()如图,一个结晶体的形状为平行六面体ABCD-A 1B 1C 1D 1,其中,以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°,下列说法中正确的是( )A.AC 1=6√6B.AC 1⊥DBC.向量A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ 与AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的夹角是60°D.BD 1与AC 所成角的余弦值为√63 9.(2020浙江杭州学军中学高二上期中,)棱长为a 的正四面体ABCD 中,E ,F 分别为棱AD ,BC 的中点,则异面直线EF 与AB 所成角的大小是 ,线段EF 的长度为 . 10.(2020天津一中高二期末,)如图,在直三棱柱ABC-A 1B 1C 1中,CA=CB=1,∠BCA=90°,棱AA 1=2,点N为AA 1的中点. (1)求AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的模;(2)求cos<AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ >的值.答案全解全析 基础过关练1.C 结合长方体,如图,可知向量a ,b ,x 共面,x ,y ,z 不共面,b ,c ,z 不共面,x ,y ,a+b+c 也不共面,故选C.方法归纳 判断给出的某一个向量组中的三个向量能否作为基底,关键是要判断它们是否共面,如果从正面难以入手,常用反证法或借助一些常见的几何图形帮助我们进行判断.2.B 空间不共面的三个向量可以作为空间的一个基底,若a ,b ,c 是三个共面的非零向量,则{a ,b ,c}不能作为空间的一个基底;但若{a ,b ,c}为空间的一个基底,则a ,b ,c 不共面,所以a ,b ,c 是三个非零向量,所以p 是q 的必要不充分条件,故选B.3.答案 52,-1,-12解析 由题意得,a 、b 、c 为三个不共面的向量,∴由空间向量基本定理可知必然存在唯一的有序实数组(α,β,γ),使d=αa+βb+γc.∴d=α(e 1+e 2+e 3)+β(e 1+e 2-e 3)+γ(e 1-e 2+e 3)=(α+β+γ)e 1+(α+β-γ)e 2+(α-β+γ)e 3. 又∵d=e 1+2e 2+3e 3,∴{A +A +A =1,A +A -A =2,A -A +A =3⇒{A =52,A =-1,A =-12.4.D A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =12(A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ +A 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=12(A 1A ⃗⃗⃗⃗⃗⃗⃗⃗ +A 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +A 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=-12a+12b+12c ,故选D. 方法归纳 用基底表示向量的策略:(1)若基底确定,则充分利用向量加法、减法的三角形法则和平行四边形法则以及数乘向量的运算律表示向量;(2)若没有设定基底,首先选择基底,选择基底时,要尽量使所选的基向量能方便地表示其他向量,再就是看基向量的模及其夹角已知或易求.5.C AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=12(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以x=12,y=12,故选C. 6.解析 如图所示,延长PG 交CD 于E ,则E 为CD 的中点.AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23×12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=13(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ) =13(-k+i+j-k+j)=13i+23j-23k.AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗=-i+k+13i+23j-23k =-23i+23j+13k.AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =i+(-23A +23A +13A )=13i+23j+13k.7.C ∵A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,∴A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ∥A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ ,从而A 1M∥D 1P ,∵D 1P ⊂平面DCC 1D 1,A 1M ⊄平面DCC 1D 1,∴A 1M∥平面DCC 1D 1,同理A 1M∥平面D 1PQB 1,故①③④正确.又B 1Q 与D 1P 不平行,∴A 1M 与B 1Q 不平行,故②不正确.故选C.8.A 设AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则{a ,b ,c}构成空间的一个基底, A 1E ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +A 1E ⃗⃗⃗⃗⃗⃗⃗⃗ =a-12c ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b+c ,cos<A 1E ⃗⃗⃗⃗⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=A 1E ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗|A 1E ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗| =(A -12A )·(A +A )|A -12A ||A +A |=5×2√13=-√1313, 所以异面直线A 1E 与AC 1所成角的余弦值为√1313.9.证明 AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 是三个不共面的向量,它们构成空间的一个基底{AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ },A 1O ⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ , AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,A 1O ⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =[12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ]·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,A 1O ⃗⃗⃗⃗⃗⃗⃗⃗ ·AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ =[12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ]·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=0, 所以A 1O⊥DG,A 1O⊥BG,又DG ,BG ⊂平面GBD ,BG∩DG=G,所以A 1O⊥平面GBD.10.解析 因为在平行四边形ABCD 中,∠ADC=60°,所以∠BAD=120°,又PA⊥平面ABCD ,所以PA⊥AB,PA⊥AD.因为AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=√AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗=√9+16+36+2×3×4×(-12)-0-0=7,即线段PC 的长为7.能力提升练1.C AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23×12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+13×12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13b+13c+16a ,故选C. 2.答案 1;-1解析 ∵m ,n 共线,∴∃λ∈R,使m=λn, ∴a-b+c=λ(xa+yb+c),得{1=AA ,-1=AA ,1=A ,解得{A =1,A =1,A =-1.3.解析 (1)AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ). 证明如下:AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23×12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13[(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )] =13(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ).(2)若AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +z AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,x ,y ,z∈R,则点P 在△ABC 的内部(不包括边界)的充分必要条件是: x+y+z=1,且0<x<1,0<y<1,0<z<1.4.ABD 如图,设AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则{a ,b ,c}是空间的一个正交基底, 则a·b=a·c=b·c=0,取AB 的中点H ,则AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23×12(a+b)=13a+13b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13a+13b-23b-13c=13a-13b-13c ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c-b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13a+13b-13b=13a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13b-(13A +23A )=-13c-13b ,∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,A 正确;AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,B 正确;AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ≠λAA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ (λ∈R),C 不正确;AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,D 正确.故选ABD.解题反思 本题在解决过程中,重点应用了以下知识点.如图,△ABC 中,若BD ∶DC=λ∶μ,则AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA +A AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA +A AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ .在分线段成比例的图形中,要注意这个公式的应用.5.证明 (1)AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以向量AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 共面, 又EF ⊄平面PAD ,DA ,PD ⊂平面PAD , 所以EF∥平面PAD.(2)因为侧面PAD⊥底面ABCD ,侧面PAD∩底面ABCD=AD ,底面ABCD 是正方形,所以CD⊥平面PAD ,CD⊥PA. 设AD=1,则AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2-2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,即1=12+12-2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ , 所以AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,所以AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0, 所以EF⊥PD,EF⊥CD,由PD ,CD ⊂平面PCD ,PD∩CD=D,可得EF⊥平面PCD.解题反思 用向量方法证明线面平行或垂直,理论依据是线面平行的判定定理和线面垂直的判定定理,其中涉及的线线平行用共线向量证明,涉及的线线垂直用数量积为0证明.6.解析 (1)由题意得|a|=|b|=|c|=1,a·b=a·c=b·c=12,∵AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12c-12a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-a , ∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(12A -12A )·(-a)=-14+12=14.(2)∵AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(b+c)-12a ,∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=(12A +12A -12A )2=14a 2+14b 2+14c 2+12b·c -12b·a -12a·c=12, ∴|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√22.7.证明 (1)易知<AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=120°,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2×(-12)+2×2×12=0.所以AB 1⊥BC.(2)易知四边形AA 1C 1C 为菱形,所以A 1C⊥AC 1.因为AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ =(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ) =(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2×12-4-2×2×12+4 =0,所以AB 1⊥A 1C ,又AC 1∩AB 1=A ,所以A 1C⊥平面AB 1C 1.8.AB 因为以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°, 所以AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =6×6×cos60°=18,(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+2AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +2AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗=36+36+36+3×2×18=216,则|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=6√6, 所以A 正确;AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2-AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=0,所以B 正确; 显然△AA 1D 为等边三角形,则∠AA 1D=60°.因为A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,且向量A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ 与AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的夹角是120°,所以A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ 与AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的夹角是120°,所以C 不正确; 因为AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=6√2,|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=6√3,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=36,所以cos<AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=6√2×6√3=√66,所以D 不正确.故选AB. 9.答案π4;√22a 解析 设AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则{a ,b ,c}是空间的一个基底,∴|a|=|b|=|c|=a ,a·b=a·c=b·c=12a 2.∵AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(a+b)-12c ,∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12a 2+12a·b -12a·c=12a 2,|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√(12A +12A -12A )2=√22a ,∴cos<AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=12A 2√22a ×a =√22,∴异面直线EF 与AB 所成的角为π4.10.解析 (1)∵在直三棱柱ABC-A 1B 1C 1中,CA=CB=1,∠BCA=90°, ∴AB=√2,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 1,故AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +14AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=2+14×4=3, ∴|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√3.(2)∵CA=CB=1,∠BCA=90°, ∴∠ABC=45°,∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |cos(180°-∠ABC)=√2×1×cos135°=-1, 又AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =4, ∴AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ) =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+0+0+4=3,又|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√6×√5=√30, ∴cos<AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=√30=√3010.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.2 空间向量的基本定理学习目标 1.了解共线向量、共面向量的意义,掌握它们的表示方法.2.理解共线向量的充要条件和共面向量的充要条件及其推论,并能应用其证明空间向量的共线、共面问题.3.理解基底、基向量及向量的线性组合的概念.知识点一 共线向量定理与共面向量定理 1.共线向量定理两个空间向量a ,b (b ≠0),a ∥b 的充要条件是存在唯一的实数x ,使a =x b . 2.向量共面的条件(1)向量a 平行于平面α的定义已知向量a ,作OA →=a ,如果a 的基线OA 平行于平面α或在α内,则就说向量a 平行于平面α,记作a ∥α. (2)共面向量的定义平行于同一平面的向量,叫做共面向量. (3)共面向量定理如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是存在唯一的一对实数x ,y ,使c =x a +y b .知识点二 空间向量分解定理 1.空间向量分解定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c . 2.基底如果三个向量a ,b ,c 是三个不共面的向量,则a ,b ,c 的线性组合x a +y b +z c 能生成所有的空间向量,这时a ,b ,c 叫做空间的一个基底,记作{a ,b ,c },其中a ,b ,c 都叫做基向量.表达式x a +y b +z c ,叫做向量a ,b ,c 的线性表示式或线性组合.1.向量a ,b ,c 共面,即表示这三个向量的有向线段所在的直线共面.( × ) 2.若向量e 1,e 2不共线,则空间任意向量a ,都有a =λe 1+μe 2(λ,μ∈R ).( × ) 3.若a ∥b ,则存在唯一的实数λ,使a =λb .( × )4.对于三个不共面向量a 1,a 2,a 3,不存在实数组{λ1,λ2,λ3}使0=λ1a 1+λ2a 2+λ3a 3.( × )题型一 向量共线问题例1 (1)已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( ) A .A ,B ,D B .A ,B ,C C .B ,C ,DD .A ,C ,D(2)设e 1,e 2是空间两个不共线的向量,已知AB →=e 1+k e 2,BC →=5e 1+4e 2,DC →=-e 1-2e 2,且A ,B ,D 三点共线,实数k =________. 考点 线线、线面平行的判断 题点 线线平行的判断 答案 (1)A (2)1解析 (1)因为AD →=AB →+BC →+CD →=3a +6b =3(a +2b )=3AB →,故AD →∥AB →,又AD →与AB →有公共点A ,所以A ,B ,D 三点共线.(2)因为AD →=AB →+BC →+CD →=7e 1+(k +6)e 2, 且AB →与AD →共线,故AD →=xAB →, 即7e 1+(k +6)e 2=x e 1+xk e 2, 故(7-x )e 1+(k +6-xk )e 2=0, 又∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧ 7-x =0,k +6-kx =0,解得⎩⎪⎨⎪⎧x =7,k =1,故k 的值为1. 反思感悟 (1)判断向量共线的策略①熟记共线向量的充要条件:(ⅰ)若a ∥b ,b ≠0,则存在唯一实数λ使a =λb ;(ⅱ)若存在唯一实数λ,使a =λb ,b ≠0,则a ∥b . ②判断向量共线的关键:找到实数λ.(2)证明空间三点共线的三种思路对于空间三点P ,A ,B 可通过证明下列结论来证明三点共线. ①存在实数λ,使P A →=λPB →成立.②对空间任一点O ,有OP →=OA →+tAB →(t ∈R ). ③对空间任一点O ,有OP →=xOA →+yOB →(x +y =1).跟踪训练1 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线. 证明 设AB →=a ,AD →=b ,AA 1→=c . ∵A 1E →=2ED 1→,A 1F →=23FC →,∴A 1E →=23A 1D 1—→,A 1F →=25A 1C →.∴A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c . ∴EF →=A 1F →-A 1E →=25a -415b -25c =25⎝⎛⎭⎫a -23b -c . 又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,∴EF →=25EB →.∴E ,F ,B 三点共线.题型二 空间向量共面问题例2 如图所示,已知矩形ABCD 和矩形ADEF 所在的平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且BM =13BD ,AN =13AE .求证:向量MN →,CD →,DE →共面.考点 空间向量的数乘运算 题点 空间共面向量定理及应用 证明 因为M 在BD 上,且BM =13BD ,所以MB →=13DB →=13DA →+13AB →.同理AN →=13AD →+13DE →.所以MN →=MB →+BA →+AN →=⎝⎛⎭⎫13DA →+13AB →+BA →+⎝⎛⎭⎫13AD →+13DE → =23BA →+13DE →=23CD →+13DE →. 又CD →与DE →不共线,根据向量共面的充要条件可知MN →,CD →,DE →共面. 反思感悟 (1)利用四点共面求参数向量共面的充要条件的实质是共面的四点中所形成的两个不共线的向量一定可以表示其他向量,对于向量共面的充要条件,不仅会正用,也要能够逆用它求参数的值. (2)证明空间向量共面或四点共面的方法①向量表示:设法证明其中一个向量可以表示成另两个向量的线性组合,即若p =x a +y b ,则向量p ,a ,b 共面.②若存在有序实数组(x ,y ,z )使得对于空间任一点O ,有OP →=xOA →+yOB →+zOC →,且x +y +z =1成立,则P ,A ,B ,C 四点共面.③用平面:寻找一个平面,设法证明这些向量与该平面平行.跟踪训练2 已知A ,B ,C 三点不共线,平面ABC 外一点M ,满足OM →=13OA →+13OB →+13OC →,判断MA →,MB →,MC →三个向量是否共面. 解 MA →,MB →,MC →三个向量共面. 因为OM →=13OA →+13OB →+13OC →,所以3OM →=OA →+OB →+OC →,化简,得(OA →-OM →)+(OB →-OM →)+(OC →-OM →)=0, 即MA →+MB →+MC →=0,即MA →=-MB →-MC →, 故MA →,MB →,MC →共面.题型三 空间向量分解定理及应用例3 如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB →=a ,AD →=b ,AA ′—→=c ,P 是CA ′的中点,M 是CD ′的中点,N 是C ′D ′的中点,点Q 在CA ′上,且CQ ∶QA ′=4∶1,用基底{a ,b ,c }表示以下向量.(1)AP →;(2)AM →;(3)AN →;(4)AQ →. 解 连接AC ,AD ′.(1)AP →=12(AC →+AA ′—→)=12(AB →+AD →+AA ′—→)=12(a +b +c ).(2)AM →=12(AC →+AD ′—→)=12(a +2b +c )=12a +b +12c .(3)AN →=12(AC ′—→+AD ′—→)=12[(AB →+AD →+AA ′—→)+(AD →+AA ′—→)]=12a +b +c .(4)AQ →=AC →+CQ →=AC →+45CA ′—→=AC →+45(AA ′—→-AC →)=15AC →+45AA ′—→=15(AB →+AD →)+45AA ′—→=15a +15b +45c . 反思感悟 用基底表示向量的步骤(1)定基底:根据已知条件,确定三个不共面的向量构成空间的一个基底.(2)找目标:用确定的基底(或已知基底)表示目标向量,需要根据三角形法则及平行四边形法则,结合相等向量的代换、向量的运算进行变形、化简,最后求出结果.(3)下结论:利用空间向量的一个基底{a ,b ,c }可以表示出空间所有向量.表示要彻底,结果中只能含有a ,b ,c ,不能含有其他形式的向量.跟踪训练3 如图所示,空间四边形OABC 中,G ,H 分别是△ABC ,△OBC 的重心,设OA →=a ,OB →=b ,OC →=c .试用向量a ,b ,c 表示向量GH →.解 ∵H 为△OBC 的重心,D 为BC 的中点, ∴OD →=12(OB →+OC →),OH →=23OD →=23×12(OB →+OC →)=13(b +c ).又OG →=OA →+AG →=OA →+23AD →,AD →=OD →-OA →,∴OG →=OA →+23×12(OB →+OC →)-23OA →=13(OA →+OB →+OC →) =13(a +b +c ). ∵GH →=OH →-OG →,∴GH →=13(b +c )-13(a +b +c )=-13a .空间共线向量定理的应用典例 如图所示,已知四边形ABCD ,ABEF 都是平行四边形,且它们所在的平面不共面,M ,N 分别是AC ,BF 的中点,求证:CE ∥MN .考点 空间向量的数乘运算题点 空间共线向量定理及应用 证明 ∵M ,N 分别是AC ,BF 的中点, 又四边形ABCD ,ABEF 都是平行四边形, ∴MN →=MA →+AF →+FN →=12CA →+AF →+12FB →,又∵MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,∴12CA →+AF →+12FB →=-12CA →+CE →-AF →-12FB →, ∴CE →=CA →+2AF →+FB →=2(MA →+AF →+FN →), ∴CE →=2MN →,∴CE →∥MN →. ∵C 不在MN 上,∴CE ∥MN .[素养评析] 证明空间图形中的两直线平行,可以转化为证明两直线的方向向量共线问题.这里关键是利用向量的线性运算,从而确定CE →=λMN →中的λ的值.1.给出下列几个命题:①向量a ,b ,c 共面,则它们所在的直线共面; ②零向量的方向是任意的;③若a ∥b ,则存在唯一的实数λ,使a =λb . 其中真命题的个数为( ) A .0 B .1 C .2 D .3 答案 B解析 ①假命题.三个向量共面时,它们所在的直线在平面内,或与平面平行; ②真命题.这是关于零向量的方向的规定; ③假命题.当b =0,则有无数多个λ使之成立.2.对于空间的任意三个向量a ,b,2a -b ,它们一定是( ) A .共面向量 B .共线向量C .不共面向量D .既不共线也不共面的向量答案 A解析 ∵2a -b =2·a +(-1)·b , ∴2a -b 与a ,b 共面.3.若向量MA →,MB →,MC →的起点M 和终点A ,B ,C 互不重合且无三点共线,则能使向量MA →,MB →,MC →成为空间一组基底的关系是( )A.OM →=13OA →+13OB →+13OC →B.MA →=MB →+MC →C.OM →=OA →+OB →+OC →D.MA →=2MB →-MC →答案 C解析 对于A ,由结论OM →=xOA →+yOB →+zOC →(x +y +z =1)⇒M ,A ,B ,C 四点共面知,MA →,MB →,MC →共面;对于B ,D ,易知MA →,MB →,MC →共面,故只有C 中MA →,MB →,MC →不共面. 4.设e 1,e 2是平面内不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则k =________. 答案 -8解析 ∵BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2, 又A ,B ,D 三点共线,由共线向量定理得AB →=λBD →, ∴12=-4k .∴k =-8. 5.以下命题:①两个共线向量是指在同一直线上的两个向量; ②共线的两个向量互相平行;③共面的三个向量是指在同一平面内的三个向量; ④共面的三个向量是指平行于同一平面的三个向量. 其中正确命题的序号是________. 答案 ②④解析 根据共面与共线向量的定义判定,易知②④正确.1.四点P ,A ,B ,C 共面⇔对空间任意一点O ,都有OP →=xOA →+yOB →+zOC →,且x +y +z =1.2.OP →=OA →+xAB →+yAC →称为空间平面ABC 的向量表达式.由此可知空间中任意平面由空间一点及两个不共线向量唯一确定.3.证明(或判断)三点A ,B ,C 共线时,只需证明存在实数λ,使AB →=λBC →(或AB →=λAC →)即可,也可用“对空间任意一点O ,有OC →=tOA →+(1-t )OB →”来证明三点A ,B ,C 共线. 4.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP →=xMA →+yMB →,满足这个关系式的点都在平面MAB 内;反之,平面MAB 内的任一点都满足这个关系式.这个充要条件常用于证明四点共面.一、选择题1.如图所示,在四面体A -BCD 中,点E 是CD 的中点,记AB →=a ,AC →=b ,AD →=c ,则BE →等于( )A .a -12b +12cB .-a +12b +12cC.12a -b +12c D .-12a +b +12c考点 空间向量的数乘运算 题点 空间向量的线性运算 答案 B 解析 连接AE ,∵E 是CD 的中点,AC →=b ,AD →=c , ∴AE →=12(AC →+AD →)=12(b +c ).在△ABE 中,BE →=BA →+AE →=-AB →+AE →,又AB →=a ,∴BE →=-a +12(b +c )=-a +12b +12c .2.已知{a ,b ,c }是空间的一个基底,则可以与向量p =a +b ,q =a -b 构成基底的向量是( ) A .a B .b C .a +2b D .a +2c 答案 D解析 能与p ,q 构成基底,则与p ,q 不共面. ∵a =p +q 2,b =p -q 2,a +2b =32p -12q . ∴A ,B ,C 都不合题意.∵{a ,b ,c }为基底, ∴a +2c 与p ,q 不共面,可构成基底.3.设空间四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( ) A .点P 一定在直线AB 上 B .点P 一定不在直线AB 上C .点P 可能在直线AB 上,也可能不在直线AB 上 D.AB →与AP →的方向一定相同 答案 A解析 已知m +n =1,则m =1-n ,OP →=(1-n )OA →+nOB →=OA →-nOA →+nOB →⇒OP →-OA →=n (OB →-OA →)⇒AP →=nAB →.因为AB →≠0,所以AP →和AB →共线,即点A ,P ,B 共线.故选A.4.对于空间一点O 和不共线三点A ,B ,C ,且有6OP →=OA →+2OB →+3OC →,则( ) A .O ,A ,B ,C 四点共面 B .P ,A ,B ,C 四点共面 C .O ,P ,B ,C 四点共面 D .O ,P ,A ,B ,C 五点共面答案 B解析 由6OP →=OA →+2OB →+3OC →, 得OP →-OA →=2(OB →-OP →)+3(OC →-OP →), 即AP →=2PB →+3PC →,∴AP →,PB →,PC →共面,又它们有公共点P ,∴P ,A ,B ,C 四点共面.故选B.5.已知点M 在平面ABC 内,并且对空间任意一点O ,有OM →=xOA →+13OB →+13OC →,则x 的值为( )A .1B .0C .3 D.13答案 D解析 ∵OM →=xOA →+13OB →+13OC →,且M ,A ,B ,C 四点共面,∴x +13+13=1,∴x =13.故选D.6.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,若将b 与c 作为基底,则AD →等于( ) A.23b +13c B.35c -23b C.23b -13c D.13b +23c 答案 A解析 ∵BD →=2DC →,∴AD →-AB →=2(AC →-AD →), ∴AD →-c =2(b -AD →),∴AD →=13c +23b .7.在以下三个命题中,真命题的个数是( )①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面;②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a ,b 共线; ③若a ,b 是两个不共线的向量,而c =λa +μb (λ,μ∈R 且λμ≠0),则{a ,b ,c }构成空间的一个基底.A .0B .1C .2D .3 答案 C解析 ①正确.基底必须不共面;②正确;③不对,a ,b 不共线.当c =λa +μb 时,a ,b ,c 共面,故只有①②正确.8. 已知A ,B ,C 三点不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC →,则P ,A ,B ,C 四点( ) A .不共面 B .共面C .不一定共面D .无法判断是否共面 答案 B解析 OP →=34OA →+18OB →+18OC →=34OA →+18(OA →+AB →)+18(OA →+AC →)=OA →+18AB →+18AC →,∴OP →-OA →=18AB →+18AC →,∴AP →=18AB →+18AC →.由共面的充要条件知P ,A ,B ,C 四点共面.二、填空题9.已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若由OP →=15OA →+23OB →+λOC →确定的一点P 与A ,B ,C 三点共面,则λ=________. 答案215解析 由P ,A ,B ,C 四点共面可知,15+23+λ=1,故λ=215.10.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________. 答案 0解析 延长DE 交边BC 于点F ,则AB →+12BC →=AF →,32DE →+AD →=AD →+DF →=AF →, 故AB →+12BC →-32DE →-AD →=AF →-AF →=0.11.已知O 是空间任一点,A ,B ,C ,D 四点满足任三点均不共线,但四点共面,且OA →=2x ·BO →+3y ·CO →+4z ·DO →,则2x +3y +4z =________. 答案 -1解析 OA →=(-2x )·OB →+(-3y )·OC →+(-4z )·OD →,由A ,B ,C ,D 四点共面,得-2x -3y -4z =1,即2x +3y +4z =-1. 三、解答题12.已知A ,B ,C 三点不共线,对平面ABC 外一点O ,当OP →=2OA →-OB →-OC →时,点P 是否与A ,B ,C 共面?并给出证明.解 点P 与A ,B ,C 三点不共面,证明如下:若点P 与A ,B ,C 共面,则存在唯一的实数对(x ,y ),使AP →=xAB →+yAC →,于是对平面ABC 外一点O ,有OP →-OA →=x (OB →-OA →)+y (OC →-OA →), ∴OP →=(1-x -y )OA →+xOB →+yOC →, 比较原式得⎩⎪⎨⎪⎧1-x -y =2,x =-1,y =-1,此方程组无解,这样的x ,y 不存在,所以A ,B ,C ,P 四点不共面.13.已知点E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点. (1)证明:E ,F ,G ,H 四点共面; (2)证明:BD ∥平面EFGH . 证明 如图,连接EG ,BG .(1)EG →=EB →+BG →=EB →+12(BC →+BD → )=EB →+BF →+EH →=EF →+EH →,由向量共面的充要条件知,E ,F ,G ,H 四点共面. (2)方法一 ∵EH →=AH →-AE →=12AD →-12AB →=12BD →,∴EH ∥BD . 又EH ⊂平面EFGH ,BD ⊄平面EFGH , ∴BD ∥平面EFGH .方法二 ∵BD →=BA →+AD →=2EA →+2AH →=2EH →=2(EG →+GH →)=2EG →+2GH →, 又EG →,GH →不共线,∴BD →与EG →,GH →共面. 又BD ⊄平面EFGH ,∴BD ∥平面EFGH .14.已知A ,B ,C 三点共线,则对空间任一点O ,存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________. 答案 0解析 ∵A ,B ,C 三点共线, ∴存在唯一实数k 使AB →=kAC →, 即OB →-OA →=k (OC →-OA →), ∴(k -1)OA →+OB →-kOC →=0. 又λOA →+mOB →+nOC →=0,则λ=k -1,m =1,n =-k ,∴λ+m +n =0.15.已知O ,A ,B ,C ,D ,E ,F ,G ,H 为空间的9个点(如图所示),并且OE →=kOA →,OF →=kOB →,OH →=kOD →,AC →=AD →+mAB →,EG →=EH →+mEF →.求证:(1)A ,B ,C ,D 四点共面,E ,F ,G ,H 四点共面; (2)AC →∥EG →.证明 (1)由AC →=AD →+mAB →,EG →=EH →+mEF →, 知A ,B ,C ,D 四点共面, E ,F ,G ,H 四点共面.(2)∵EG →=EH →+mEF →=OH →-OE →+m (OF →-OE →) =k (OD →-OA →)+km (OB →-OA →) =kAD →+kmAB → =k (AD →+mAB →)=kAC →,∴AC →∥EG →.。