机械振动阻尼自由振动共32页文档

合集下载

机械振动--第03课 单自由度系统:阻尼自由振动

机械振动--第03课 单自由度系统:阻尼自由振动
第三十一页,共32页。
内容总结
第四课 单自由度系统: 阻尼自由振动。库仑阻尼与结构阻尼。库仑阻尼与结构阻尼。比如汽车上常用的液压筒式减振器,其内部的工 作缸被活塞分成上下两腔,并充满液体。当活塞与工作缸有相对运动时,强迫液体经过活塞上的阀在上下腔运 动,液体经脱阀时产生的阻力,使运动能量变为热能耗散掉。在理论分析中最常用的阻尼是气体和液体的粘性 阻尼,它是由于气体或液体在某些机械部件中运动,因而扩散到气体或液体中的热量等能量耗散的度量。例 题
(2.3-2)
第十一页,共32页。
粘性阻尼振动系统
s1,2
c 2m
c
c
2
k
2m 2m m
c
2
2m
k m
c 2m
c
i
2m
k c 2 m 2m
k
c
c
2
k
2m m
c
2
k
2m m
c 2 k 2m m
x m
第十二页,共32页。
粘性阻尼振动系统
考虑 x Aest Aeσ iω ( Aeσ )eiω ,如果 0 ,则物体的运动将不
fd jx
式中 为结构阻尼系数,它与刚度 k 成正比,
gk
式中 g 为结构阻尼损耗因子,或称结构阻尼比。结构阻尼系统运动
方程为
mx kx jx f
第三十页,共32页。
Homework
▪ Write the differential equation of motion for the system in the following figure and determine the natural frequency of damped oscillation and critical damping coefficient.

机械振动 第3章-单自由度系统的振动

机械振动 第3章-单自由度系统的振动

kx H sin(t ) m x
2 令 n k , h H 则 m m 2 x x h sin(t ) n
无阻尼受迫振动微分方程的标准形式 ,二阶常系数非齐次线性微分方程。
x x1 x2
x1 A sin( n t ) 为对应齐次方程的通解 x2 b sin(t ) 为特解 h h b 2 , x sin(t ) 2 2 2 2 n n h x A sin( t ) sin(t ) 全解为 n 2 2 n :
——初相位,决定振体运动的起始位置。
T ——周期,每振动一次所经历的时间。
2 f —— 频率,每秒钟振动的次数, f = 1 / T,T 。 n n —— 固有频率,振体在2秒内振动的次数。
n 1 c fn 2 2 a
n反映振动系统的动力学特性,只与系统本身的固有参数有关。
则自由振动的微分方程的标准形式 : 2
q q 0
其解为 也可以写成 有
q A sin(nt ) q C1 cos nt C2 sin nt
2 1 2 2
A C C
C1 tg C2
1
6
对于初始扰动引起的自由运动
=q 0 设 t = 0 时, q = q0 , q
单自由度系统无阻尼自由振动
一、自由振动的例子

J
k
实验确定转动惯量装置
5
二、单自由度系统无阻尼自由振动微分方程及其解 对于任何一个单自由度系统,以q 为广义坐标(从平衡位 置开始量取 ),则自由振动的运动微分方程必将是:
c a, c是与系统的物理参数有关的常数,令 a
2 n

《阻尼和振动公式》课件

《阻尼和振动公式》课件

线性阻尼的数学模型通常表示为: y''(t) + 2*zeta*omega*y'(t) +
omega^2*y(t) = 0,其中 y(t) 是振动 位移,zeta 是阻尼比,omega 是无阻
尼自然频率。
该模型描述了阻尼振动的基本特征,即 线性阻尼适用于描述大多数物理系统的
振幅随时间衰减的现象。
阻尼行为。
故障诊断与预测
通过监测机械设备的振动数据,结合振动公式,可以对设备故障进 行诊断和预测,及时发现潜在问题,提高设备维护效率。
在航空航天中的应用
1 2 3
飞行器稳定性分析
航空航天领域的飞行器在飞行过程中会受到各种 气动力的作用,振动公式的应用可以帮助分析飞 行器的稳定性。
结构强度与疲劳寿命评估
航空航天器的结构和零部件在长期使用过程中会 受到疲劳损伤,振动公式的应用可以评估结构的 强度和疲劳寿命。
受迫振动
当物体受到周期性外力作用时, 会产生受迫振动。受迫振动公式 的推导基于牛顿第二定律和周期
性外力模型。
多自由度系统的振动公式推导
多自由度系统
当一个物体有多个自由度时,其运动可以用多个振动公式 的组合来表示。多自由度系统的振动公式推导基于牛顿第 二定律和多自由度系统模型。
耦合振动
当多个自由度之间存在耦合作用时,其振动规律更为复杂 。耦合振动公式的推导需要考虑各自由度之间的相互作用 。
实验步骤与操作
步骤一
准备实验器材,包括振动平台、 阻尼器、测量仪器等。
步骤三
启动振动平台,记录物体在不同 阻尼条件下的振动情况。
步骤二
将待测物体放置在振动平台上, 调整阻尼器以模拟不同阻尼情况 。

单自由度系统的有阻尼自由振动

单自由度系统的有阻尼自由振动

0.8 (e nTd ) 20 0.16
ln5 20 nTd 20 n 2 n 1 2
由于 很小,ln5 40
ln5 W W ln5 1502 c 2 m k 2 2 40 g st 40 1980 0.122( Ns/cm)
nt
2 t n2 n
C2 e
2 t n2 n
)
代入初始条件 (t 0时 , x x0 , x x 0 )
C1
2 0 ( n n 2 n x ) x0
2 n
2
2 n
; C2
2 0 ( n n 2 n ) x0 x 2 2 n 2 n
可见阻尼使自由振动的周期增大,频率降低。当阻尼小时, 影响很小,如相对阻尼系数为5%时,为1.00125,为20%时, 影响为1.02,因此通常可忽略。
14
振幅的影响: 为价评阻尼对振幅衰减快慢的影响,引入减 幅系数η ,定义为相邻两个振幅的比值。
Ai Aewnti wnti td ewntd Ai 1 Ae
5
也可写成
x Ae nt sin(d t )
2 d n n2
—有阻尼自由振动的圆频率
x 0 , 则 设 t 0 时, x x0 , x
2 2 2 x n ( x nx ) 0 n 2 A x0 0 2 02 ; tg1 0 nx0 n n x
16
例4 如图所示,静载荷P去除后质量块越过平衡位置的最大 位移为10%,求相对阻尼系数。
17
x(t ) e
wnt
0 wn x0 x ( x0 cos wd t sin wd t ) wd
18

第三节有阻尼的自由振动

第三节有阻尼的自由振动

解:(1)由动量矩定理 :(1
&& & & J Aθ = − akx − lcx = − a 2 kθ − l 2 cθ
系统的动力学方程: 系统的动力学方程:
l 2c & a 2 k && θ+ θ+ θ =0 JA JA
&& J oθ = ∑ M o
&& & J Aθ + l 2 cθ + a 2 kθ = 0
可以看出: 可以看出: t → ∞ 时,
x (t ) → 0
是指数衰减运动,非振动。 是指数衰减运动,非振动。
例题1 例题1
由弹簧k 阻尼器c及质量为m的匀质杆,组成的系统如图。 由弹簧k、阻尼器c及质量为m的匀质杆,组成的系统如图。 试求: 试求: 系统的动力学方程; 系统的动力学方程; 发生自由振动的条件; 发生自由振动的条件; 最大初始转角; 最大初始转角; 不产生振动的条件; 不产生振动的条件; 对数减缩率。 对数减缩率。 ξ << 1 ( )

实际计算时,常用对数系数, 实际计算时,常用对数系数,
Λ = lnη = δTd = ξω 0Td
Td =
Λ=

ωd
=
ω0 1 − ξ 2
一般为: 一般为:
பைடு நூலகம்
1 A1 Λ = ln j A j +1
用途: 用途:此公式在振动实验中有重要应用 (利用实验测出对数减缩并换算出阻尼比) 利用实验测出对数减缩并换算出阻尼比) 当
& & Fd = −c d x 2 sgn x
c d 为阻力系数

机械震动--单自由度体系的自由振动

机械震动--单自由度体系的自由振动

y sy(t)机械振动分析------单自由度无阻尼系统的自由振动机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。

可分为自由振动、受迫振动。

又可分为无阻尼振动与阻尼振动。

常见的简谐运动有弹簧振子模型、单摆模型等。

振动在机械中的应用非常普遍,例如在振动筛分行业中基本原理系借电机轴上下端所安装的重锤(不平衡重锤),将电机的旋转运动转变为水平、垂直、倾斜的三次元运动,再把这个运动传达给筛面。

若改变上下部的重锤的相位角可改变原料的行进方向。

物体受到初干扰后,仅在系统的恢复力作用下在其平衡位置附近的振动称为无阻尼自由振动。

其中仅需用一个独立坐标就可确定振体位置的系统为单自由度系统。

单自由度系统的振动理论是振动理论的基础。

研究单自由度系统的振动有着非常普遍的实际意义,因为工程上有许多问题通过简化,用单自由度系统的振动理论就能得到满意的结果。

而同时对多自由度系统和连续系统的振动,在特殊坐标系中考察时,显示出与单自由度系统类似的性态。

因此,揭示单自由度振动系统的规律、特点,为进一步研究复杂振动系统奠定了基础。

影响振动作用的因素是振动频率、加速度和振幅。

现在我们就此方面展开对单自由度无阻尼振动的讨论。

主要包括两部分:单自由度无阻尼系统的自由振动和单自由度无阻尼系统的受迫振动。

一、单自由度无阻尼系统的自由振动如下图,设此梁上的集中质量为m ,其重量为W mg ,梁由于质量的重力引起的质量处的静力位移用s y 表示,与s y 相应的质量位置称为质量的静力平衡位置。

若此质量受到扰动离开了静力平衡位置,当扰动除去后,则体系将发生振动,这样的振动称为体系的自由振动。

由于振动的方向与梁轴垂直,故称为横向振动。

在此,只讨论微小振幅的振动,由振动引起的内力限于材料的弹性极限以内,用以表示质量运动的方程将为线性微分方程。

1、建立运动方程建立运动方程常用的基本原理是达朗伯原理(亦称惯性力法或动静法)。

机械振动阻尼自由振动

机械振动阻尼自由振动
利用能量守恒原理——求系统微分方程和固有频率的重要手段
例2.3 如图所示系统,绳索一端接一质量,另一端绕过一转动惯量为I的滑轮与 弹簧相接,弹簧的另一端固定。设绳索无伸长,绳索与滑轮之间无滑动。此时 系统可视为单自由度系统,求系统的固有频率。
解: 原点取在静平衡位置,弹簧的相对伸长为x ,滑轮 沿顺时针方向转过一个角度 x/r 系统的势能为
2
以 0.05 为例,算得 e
1
2
1.37
即物体每振动一次,振幅就减少27%。由此 可见 ,在欠阻尼情况下,周期的变化虽然微 小( Td=1.00125T,周期 Td 仅增加0.125% ), 但振幅的衰减却非常显著 ,它是按几何级数衰 减的。


例 图示系统的薄板质量为m, 系统在空气中(认为无阻尼)振动周期为T1 , 在粘性液体中振 动周期为T2 , 液体阻尼力可表示为f d 2 Au, 其中2 A为板的面积, 为粘性系数,为板 u 运动的速度。求证: 2 m 2 2 T2 T1 ATT2 1
d
sin d t )
d n
nTd 2

阻尼比较大的系统其自由振动衰减的较快。 如果两个系统的阻尼比相同,则具有较高固有 频率的系统其自由振动衰减较快。这也就是常 说的“高频成分衰减快”
具有临界阻尼的系统与过阻尼系统比较,它为最小阻
尼系统。质量m将以最短的时间回到静平衡位置,并不作
§2.2 无阻尼自由振动
自由振动是系统在初始激励下或外加激励消失后的一种振动形态。自由 振动时系统不受外界激励的影响,其振动规律完全取决于系统本身的性质。
自由振 动的运 动微分 方程:
x" x 0 x(0) x0 , x' (0) x'0 通解为: x A cos t A sin t A cos( t ) n 1 n 2 n

(完整版)阻尼振动

(完整版)阻尼振动

阻尼振动是否具有“周期性"和“等时性”简谐运动在不考虑摩擦和其他阻力等因素的影响时,振动过程中系统的机械能守恒,所以不管是单摆还是弹簧振子在振动过程中振幅始终保持不变,这种振动称为无阻尼振动。

然而,实际的振动总要受到阻力的影响,由于要克服阻力做功,振动系统的机械能不断减少。

同时振动系统与周围介质相互作用,振动向外传播形成波,随着波的传播,系统的机械能不断减少,因此振幅也逐渐减小.这种振幅逐渐减小的振动叫做阻尼振动,阻尼振动的图象如图1所示。

学生学完这节内容后,存在两方面疑问:一是阻尼振动是否具有“周期性",二是阻尼振动是否具有“等时性”(振子连续两次通过平衡位置的时间间隔相同)。

这两个问题教材没有涉及,在图象中也不能反映出来,但是课后有些学生会提出,有些资料中也会出现相关的问题。

一、定性分析要想知道阻尼振动是否具有“周期性”,首先要知道什么是机械振动的周期。

人教版高二《物理》教材(必修加选修)中对周期的定义是这样的:物体完成一次全振动所需的时间,叫做振动的周期。

在周期的定义中存在全振动这个概念,全振动是指做机械振动的物体从某个点出发,等到下次回到该点时的运动状态和开始振动时的运动状态完全相同,且所用时间最短.所以能重复原来的运动状态(位移、速度、加速度等)的机械振动才是全振动,非等幅的阻尼振动不是全振动,所以它是没有周期的.关于阻尼振动是否具有“等时性”,有两种不同的说法。

第一种说法认为具有“等时性”,理由是阻尼振动的振幅虽然在不断减小,但可以看成是由很多个振幅不断减小的简谐运动的叠加,由于简谐运动具有等时性,它的周期与振幅无关,所以阻尼振动和简谐运动的相位是一致的,节奏也是相同的,所以具有“等时性”。

第二种说法认为不具有“等时性”,理由是物体做阻尼振动时,由于机械能的损失。

振子前后两次通过同一点时,后一次的速度肯定比前一次的小。

这样,从平衡位置到达最大位移处的平均速度总比返回时的平均速度大,所以回来就变慢了,对应的时间也就长了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档